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phase transition occurs more rapidly as we vary theconstrainedness. Surprisingly, we can often character-ize an ensemble of problems using just two parameters:their size, and their constrainedness.We will �rst de�ne a parameter � (the Greek letter`kappa') which we use to measure constrainedness. Weshow how it can be calculated in several classes of com-binatorial problems where phase transitions have beenintensively studied, and also one where they have not.Then we show that � can be used in a heuristic to guidesearch, and that it can outperform a good heuristic forconstraint satisfaction problems. Finally we show howmany existing heuristics for combinatorial search canbe understood as heuristics to minimize �.ConstrainednessBy studying the parameters introduced in a varietyof domains like graph colouring and satis�ability, wepropose a de�nition of the \constrainedness" of an en-semble of problems. We assume that each problem inan ensemble has a state space S with jSj elements anda number, Sol of these states are solutions. Any pointin the state space can be represented by a N -bit binaryvector where N = log2(jSj). Let hSol i be the expectednumber of solutions averaged over the ensemble. Wewill de�ne constrainedness, �, of an ensemble by,� =def 1� log2(hSol i)N (1)It is very important to note that this de�nes the con-strainedness of an ensemble of problems, not of an in-dividual problem. In following sections, we will showthat this de�nition generalizes, uni�es, and extends alarge body of previous work on randomly generatedproblems. In such cases, the method of generation de-�nes the ensemble of problems, so � is well de�ned.Further motivation for this de�nition comes fromconsidering the probability that we can set the bitsin the N -bit binary vector and arrive at a solution. Ifthe problems are under-constrained, there will be manysolutions and the probability that a bit can be set cor-rectly will be high. If problems are over-constrained,there are very few or no solutions, and the probabil-ity that a bit can be set correctly will be much lower.



Constrainedness is thus closely related to this prob-ability. Unfortunately, it is di�cult to compute thisprobability directly. We do know, however, the prob-ability that all the bits can be set correctly as this isjust the expected number of solutions divided by thesize of the state space. This equals the product of theN probabilities for each bit. In the absence of anyother evidence, we assume that all these probabilitiesare equal. That is, we estimate a single probability bythe geometric mean. We then take � as the negativelogarithm of this estimate.Since log2(hSol i) � N , � is bounded in the range[0;1). A value � = 0 corresponds to a completely un-constrained ensemble with Sol = jSj, while a value of� =1 corresponds to a completely constrained ensem-ble with Sol = 0. In constraint satisfaction, (Williams& Hogg 1994; Smith & Dyer 1996) predict a phase tran-sition between soluble and insoluble problems whenhSoli � 1. In line with this prediction, using (1) weconjecture that a transition will occur when � � 1. If� < 1, problems are under-constrained and are typi-cally soluble. If � > 1, problems are over-constrainedand are typically insoluble. The equality � � 1 onlygives a �rst approximation of the location of the phasetransition: we will see that � is typically between about0.75 and 1 at the phase transition. More re�ned esti-mates take account of the variance in the number of so-lutions at the phase boundary (Williams & Hogg 1994;Smith & Dyer 1996).There is no di�erence between the prediction of aphase transition at � � 1 or at hSol i � 1. The valueof the de�nition of � is as a parameter for measuringproblems. While hSol i can grow exponentially withN , we will see that the value of � at the phase tran-sition varies very little. What variation there is canbe modelled by the technique of �nite size scaling. In-deed, � is such a good parameter that it has been usedindependently in a number of problem classes, as weshow below. For the �rst time, we can see that theseassorted parameters all measure the same thing.An exampleIt is often quite straightforward to compute hSoli andtherefore �. Consider, for example, constraint satis-faction problems (CSP's). Each variable v 2 V , has adomain of valuesMv of size mv. Each constraint c 2 Cof arity a restricts a tuple of variables hv1; : : : ; vai, andrules out some proportion pc of possible values fromthe cartesian product Mv1 � : : :�Mva . We call pc the\tightness" of a constraint. To avoid trivial problemswe insist that all arities are at least one, but make nofurther restrictions. Problems may have variables withmany di�erent domain sizes, and constraints of manydi�erent arities and tightnesses.The state space has size Qv2V mv. Each constraintrules out a proportion pc of these states, so we havehSoli = (Yv2V mv)� (Yc2C(1� pc))

Substituting this into (1) gives� = �Pc2C log2(1� pc)Pv2V log2(mv) (2)(Williams & Hogg 1994) present a similar model forconstraint satisfaction problems. The approach pre-sented here can, as we show later, be applied to otherproblems of a very di�erent nature like number parti-tioning and the travelling salesman problem.Comparison with existing parametersThe de�nition of constrainedness generalizes severalparameters introduced recently for satis�ability, con-straint satisfaction, graph colouring, and number par-titioning. We predict that it will prove useful in manyother domains.In satis�ability, we are given a formula with n vari-ables and l clauses each of which has a literals. Wecan view this as an instance of a constraint satisfac-tion problem. Each variable has two values, true andfalse, so mv = 2 for all v. Each clause rules out one ofthe 2a possible tuples of values of the variables in theclause. So each clause is a constraint of tightness 1=2a,and there are l such constraints. Equation (2) gives� = � log2(1� 12a ) lnThat is, a constant times l=n for �xed a. The ratio l=nhas been used as an \order parameter" for satis�abil-ity. A phase transition in satis�ability occurs arounda critical value of l=n (Mitchell, Selman, & Levesque1992). For large a, this phase transition occurs at avalue close to �1= log2(1� 12a ) (Kirkpatrick & Selman1994), that is around � � 1, as expected.In graph colouring, we are given a graph with nnodes and e edges, and wish to colour it withm colours.As a CSP, each node represents a variable with a �xeddomain of size m, and each edge represents a binaryconstraint ruling out m of the m2 possible pairs ofcolours, a tightness of 1=m. So (2) gives� = en logm( mm � 1)This is a constant, namely logm( mm�1 )=2, times the av-erage degree of a node in the graph. The average de-gree has been used as an order parameter for describingthe phase transition in colouring problems (Cheese-man, Kanefsky, & Taylor 1991). A phase transitionhas been observed in random 3-colouring problems atan average degree of 4.6 (Hogg & Williams 1994), cor-responding to � = 0:84.In binary CSP's (in which constraints only have a bi-nary arity), a standard means of generating test prob-lems is to have n variables each with the same domainsize of m. Given a constraint density of p1, exactlyp1n(n�1)=2 constraints are chosen, each with a tight-ness of p2 (Prosser 1996; Smith & Dyer 1996). Such



problems are described by the tuple, hn;m; p1; p2i. Us-ing these values, (2) gives� = n� 12 p1 logm( 11� p2 )This has been used as a parameter for binary constraintsatisfaction problems (Gent et al. 1995). The phasetransition again occurs around � � 1.In number partitioning, we have n numbers fromthe range (0; l] and wish to �nd an exact partition intom bags with the same sum. We have N = n log2m asthere are mn possible partitions. (Gent & Walsh 1996)present an \annealed" theory in which the expectednumber of exact partitions ishSoli � mn(12)(m�1) log2(l)Although (2) no longer applies, substituting N andhSoli into (1) gives� = (m � 1) logm(l)n (3)In two-way partitioning, i.e. m = 2, a phase transitionin solubility occurs at � = 0:96 (Gent & Walsh 1996).We thus see that our de�nition of � generalises anumber of parameters introduced in a variety of prob-lem classes. This suggests that \constrainedness" is afundamental property of problem ensembles. In ad-dition to unifying existing parameters, we can nowcompare problems between classes. For example, thephase transition in 3-satis�ability problems occurs atl=n = 4:24 (Crawford & Auton 1993) which corre-sponds to � = 0:82, roughly comparable to that in3-colouring at � = 0:84, while the phase transition innumber partitioning occurs at � = 0:96. This suggeststhat number partitioning problems at the phase tran-sition may in some sense be more constrained. Thede�nition of � also allows us to treat a wider rangeof problems within a class. For example, we now dealwith problems having mixed arity constraints, mixeddomain sizes and mixed constraint tightnesses. Thispermits the computation of � during search as domainsizes change and constraints are removed. We will seethe value of this in a later section.The travelling salesman problemWe now give a case study of using our de�nition of con-strainedness in a new problem class. We consider theasymmetric travelling salesman problem (ATSP) withinter-city distances drawn from a normal distributionwith mean � and standard deviation �. We considerthe decision problem of determining if there is a tourof length d or less which visits all n cities. Most com-putational studies of the travelling salesman problemhave been on the optimisation rather than the deci-sion problem (Cheeseman, Kanefsky, & Taylor 1991;Zhang & Korf 1992). Although a phase transitionhas been observed in the decision problem in the two-dimensional Euclidean TSP (Gent &Walsh 1995b), the

parameter used was based on an asymptotic result andits relationship to constrainedness is, as yet, uncertain.The state space S contains all (n� 1)! possible dis-tinct tours (one city is designated the starting pointarbitrarily). Each of these tours has some length l. Asthe sum of n normal distributions, l has a normal dis-tribution with mean n� and standard deviation �pn.If we normalise l to l̂ = (l � n�)=�pn then l̂ is dis-tributed normally with mean 0 and standard deviation1. The probability that a randomly chosen tour has alength l less than or equal to some given length d isprob(l � d) = Z d̂�1 e�x2=2p2� dxFor z < 0 (Abramowitz & Stegun ) gives the equalityZ z�1 e�x2=2p2� dx = e�z2=2p2�  1jzj + O( 1jzj3 )!The optimal tour length will tend to have d̂ << 0 sothe error term will be small. Accordingly we use theapproximation prob(l � d) � e�d̂2=2jd̂jp2�Multiplying this by (n� 1)!, the number of distincttours, gives hSoli, the expected number of tours lessthan or equal to d. Substituting this into (1) gives,� = d̂2=2 + log2(jd̂jp2�)log2(n � 1)!We expect a phase transition in the decision prob-lem when � � 1. We tested this experimentally us-ing a branch and bound algorithm with the Hungarianheuristic for branching (Carpaneto & Toth 1980). Forn=6 to 48, we randomly generated 1000 problems withinter-city distances independently normallydistributedwith �=106 and �=105. Figure 1 shows the probabil-ity that there was a tour less than distance d, plottedagainst �. There is a clear phase transition from sol-uble to insoluble problems that becomes sharper withmore cities. Except for problems with 6 cities, there isa critical value of � = 0:75 which gives the probabilityof a tour existing of 0:45� 0:04 at all sizes.Finite size transitionsWe can use the constrainedness, �, to predict the shapeas well as the location of phase transitions. Phase tran-sitions in physical systems have been successfully de-scribed using �nite size scaling methods (Barber 1983).Around a critical temperature Tc, problems of all sizestend to be indistinguishable except for a change of scalegiven by a power law in a characteristic length. Herewe propose that the constrainedness, �, plays the roleof temperature whilst the problem size, N , plays therole of the characteristic length. This analogy suggeststhat around some critical constrainedness �c, problems
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n= 6Figure 1. Probability of tour of required length ex-isting in ATSP, plotted against � for 6 to 48 cities.of all sizes will tend to be indistinguishable except fora simple change of scale given by a power law in N .For example, we conjecture that a macroscopic prop-erty like the probability of a solution averaged over anensemble of problems will obey the equation,prob(Sol > 0) = f(� � �c�c N1=�) (4)where f is some fundamental function, ���c�c is analo-gous to the reduced temperature T�TcTc , and N1=� pro-vides the change of scale. Such scaling has been shownto model the probability of a solution in �nite sizephase transitions in satis�ability (Kirkpatrick & Sel-man 1994), constraint satisfaction (Gent et al. 1995),and number partitioning (Gent & Walsh 1996).To test this conjecture for the ATSP, in Figure 2we replot our data against the parameter ���c�c N1=�using �c = 0:75 and � = 2, both values derived fromexamination of the data. If (4) holds, the curves willline up when plotted against this rescaled parameter.As predicted, except at n = 6, �nite size scaling modelsthe probability of a tour existing. A discrepancy atsmall problem sizes has also been seen in other classessuch as satis�ability (Kirkpatrick & Selman 1994) andsuggests that �nite size scaling provides a very usefulbut incomplete description of scaling behaviour.Other macroscopic measures like search cost can of-ten be modelled by �nite size scaling (Selman & Kirk-patrick 1996; Gent et al. 1995). In Figure 3, we plotthe search cost against the rescaled parameter with thesame values of �c and �. We use the 90th percentileof the number of nodes searched, as lower percentilessuch as median cost were always trivial in that no back-tracking occurred. As in many other problem classes,e.g. satis�ability (Mitchell, Selman, & Levesque 1992),search cost displays a distinctive easy-hard-easy pat-tern through the phase transition.This case study clearly illustrates that our de�nitionof constrainedness is useful in new problem classes. A
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n= 6Figure 3. 90th percentile of nodes searched to solveATSP instances, plotted against ���c�c N1=� .phase transition occurs, as predicted, at � � 1. Andas expected, by means of �nite size scaling we are ableto model scaling behaviour of the phase transition.Constrainedness as a heuristicMany existing heuristics branch on the most con-strained variable, resulting in the least constrainedsubproblem; i.e. the subproblem with smallest �.Hence, we propose the heuristic of minimizing �.To test this idea, we performed experiments onrandomly generated binary CSP's from the classhn;m; p1; p2i described earlier. We encoded mini-mizing � as a dynamic variable ordering heuristicwithin the algorithm fc-cbj (i.e. forward checking withcon
ict-directed backjumping)(Prosser 1993). Afterinstantiating a variable, domain �ltering is performed.This may result in a reduction in the size of the do-mains of future (i.e. uninstantiated) variables and con-sequently alter the tightness of future constraints (i.e.constraints acting between pairs of future variables).The future sub-problem may then be non-uniform in



domain sizes and constraint tightnesses. To measure� for this reduced problem, we assume it is a repre-sentative of the ensemble of problems with the samenumber of variables, the same domain sizes, and thesame number of constraints each of the same tightnessas the reduced problem. This is a heuristic assumptionwhich seems to be justi�ed by our results.When considering a variable vi as the new currentvariable we remove it and all constraints involving itfrom the future sub-problem. We then calculate � forthe future sub-problem using equation (2) and takethis as the cost of selecting variable vi. This is donefor all future variables and the variable with minimumcost is selected as the current variable.
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Figure 4. Fail First (FF) and minimize-� heuristicsapplied to h20; 10; p1i problems using fc-cbj. Meansearch e�ort on y-axis, � on x-axis. Contours forp1 = 1:0 (top), p1 = 0:5 (middle), p1 = 0:2 (bottom).We compared the minimize-� heuristic with an en-coding of the fail �rst (FF) principle (Haralick & Elliott1980) i.e. selecting the variable with smallest domain.Figure 4 shows the results of experiments performed onh20; 10; p1; p2i problems (i.e. 20 variables, uniform do-main size of 10). Constraint density p1 was varied from0.2 up to 1.0, for each value of p1 constraint tightnessp2 was varied, and at each value of p1 and p2 1000 prob-lems were generated. The contours shown are for themean search e�ort, measured as consistency checks. Ascan be seen, minimize-� outperforms the FF heuristic,especially around the phase transition. Although notshown, the same holds for median performance. Whensearch e�ort is measured as number of trial instanti-ations of variables, minimize-� again shows superiormean and median performance. (Gent et al. 1996)reports more extensive experiments on the minimize-�heuristic with similar results. At the peak in searchcosts, paired-sample t-tests gave values of t = 12:3 atp1 = 0:2, t = 24:4 at p1 = 0:5, and t = 46:3 at p1 = 1:0,all in favour of minimize-�. To check the signi�canceof these values we performed an approximate random-ization version of the test (Cohen 1995) with a sampleof 1000 in each case, which never gave a value abovet = 3:5. This provides strong statistical evidence thatminimize-� is better than FF in these problem classes.

(Tsang, Borrett, & Kwan 1995) give results on thesame problem classes seen in Figure 4, on a range ofalgorithm/heuristic combinations. For high values ofp1 they report that fc-cbj with the FF heuristic wasthe best combination studied for problems near thephase transition. That the minimize-� heuristic cando better is strong evidence that it is a good heuristic.Unfortunately, the complexity of (2) leads to signi�-cant overheads in computation, so the heuristic maynot give optimal run-times for general CSP solving.We return to this later.Constrainedness in number partitioningMany existing heuristics can be justi�ed in terms ofminimizing �. Consider, for example, the Karmarkar-Karp (KK) heuristic for two-way number partitioning(Karmarkar & Karp 1982). The KK heuristic takes abag B of n numbers to partition and reduces it to anew bag C by removing the largest two numbers x andy, and replacing them by x�y (we assume that x � y).This commits us to those solutions in which x and yare in opposite partitions.Let b = Pi2B i and c = Pi2C i. For n num-bers drawn uniformly at random from (0; l], set-ting m = 2 in (3) gives the constrainedness � =log2(l)=n. We will approximate l by 2b=n, i.e. twicethe mean value of the numbers. As c = b � x �y + (x � y) = b � 2y, � goes from (log2(2b=n))=n to(log2(2(b� 2y)=n� 1))=(n� 1). Since we have no con-trol over n, � is minimized by maximizing y. Giventhat x � y, the maximum y is the second largest el-ement of B. And thus the KK heuristic minimizes �by picking the two largest elements of B for x and y.Note that we improve the claim of (Karmarkar & Karp1982) that the motivation behind the KK heuristic isto pick x and y so that x� y is small. The motivationis to pick x and y to minimize the sum of the remain-ing numbers. Indeed picking x and y so that x � y isminimal (instead of picking x and y maximal) is likelyto give very poor performance.The greedy heuristic for number partitioning (Korf1995) can also be seen as minimizing �. The analysisis a little more complex since, unlike the KK heuristic,the greedy heuristic builds partial partitions: it picksthe largest number remaining to be partitioned andadds it to the currently smaller partial partition. Wewill show that this choice is optimal with respect tominimizing �. We observe that if we have partial par-titions with sums s1 and s2 and a bag B of numbers re-maining to be partitioned then this is equivalent to theproblem of partitioning B [ fs1�s2g (we assume thats1 � s2). We minimize � by maximizing the reductionin the sum ofB [fs1�s2g. If we add a number x to thebigger partition, then the sum (and �) is unchanged.If, however, we add it to the smaller partition thenthe sum (and �) decreases. So it is better to put anynumber in the smaller partition. There are now twocases to consider, depending on whether x > s1 � s2



or x � s1 � s2. First suppose that x > s1 � s2.The sum reduces by x + s1 � s2 � ((x + s2) � s1) =2(s1 � s2). If, however, x � s1 � s2, the sum reducesby x+ s1� s2� (s1� (x+ s2)) = 2x � 2(s1� s2). The�rst di�erence is always the larger and is therefore pre-ferred. To minimize � a heuristic should pick a x in Bsuch that x � s1 � s2, or failing that the largest x inB. The greedy heuristic achieves this by picking thelargest x in B and putting it in the smaller partition.Although both the greedy and KK heuristics min-imize �, the KK heuristic appears to perform signi�-cantly better (Korf 1995; Gent & Walsh 1996). This isdue to the di�erent methods used by the two heuris-tics in decomposing problems into subproblems. For itsmethod, each heuristic does as well as possible with re-spect to minimizing �. Comparisons of the changes in� between the two methods of decomposition may o�eran explanation of the superiority of KK over greedy.Not all proposed heuristics minimize �: for example(Horowitz & Sahni 1974) consider partitioning num-bers in increasing order. However, constrainednesssuggests considering numbers in decreasing order. Thiswas shown to be superior in (Rubin 1976).Proxies for constrainednessAlthough minimizing � appears to be a good heuristic,it can be expensive to compute according to formula(2), as in the CSP experiments discussed earlier. Wemay therefore use a proxy which is cheaper to compute.If we assume that all constraints in a problem havethe same tightness, and that each variable is in thesame number of constraints, we can ignore the numer-ator of (2) as it will be the same whichever variablewe instantiate. The variable chosen should then bethe one that maximizes the denominator of (2), and isequivalent to instantiating the variable with smallestdomain. This is the fail-�rst (FF) heuristic (Haralick& Elliott 1980).An alternative assumption is that all variables havethe same domain size. This is valid if all variables haveidentical domain sizes and we use a backward checkingalgorithm, i.e. an algorithm that does not perform do-main �ltering of the future variables. The denominatorwill now be the same whichever variable we instanti-ate. If we further assume that all constraint tightnessesare the same, the numerator becomes the cardinalityof the set of constraints acting between future vari-ables and between future and past variables. We min-imize the numerator of (2) by choosing a variable thathas most constraints with past variables. This corre-sponds to the maximumcardinality heuristic describedin (Dechter & Meiri 1994).We may take advantage of both numerator and de-nominator of (2). One way to do this is to choose thevariable with smallest domain size (maximizing the de-nominator) and break ties by choosing the tied variablein most constraints (minimizing the numerator, assum-ing uniform constraint tightness). This is the Brelaz

heuristic (Brelaz 1979).This analysis has identi�ed three state of the artheuristics for CSP. Domain knowledge may still beneeded to convert the idea of minimizing � into aheuristic with low overheads. However, by consider-ing how to minimize �, we can remove much of theintuition involved in developing heuristics for a newdomain. While intuition is valuable, it can often bemisleading or even wrong, as we saw in discussingheuristics for number partitioning. Furthermore, intu-ition about new domains can be hard to achieve. Wetherefore see this reduction in the role of intuition inheuristic design as a signi�cant contribution.Related work(Smith 1995) proposed a heuristic that simply maxi-mizes the expected number of solutions, hSoli. Given achoice of two subproblems with equal hSol i, the heuris-tic of minimizing � will branch into the smaller prob-lem in the expectation that this is less constrained.Initial experiments have failed to show which heuris-tic, if either, is better (Gent et al. 1996).(Hooker & Vinay 1995) investigate the Jeroslow-Wang heuristic for satis�ability. They propose the\satisfaction hypothesis", that it is best to branch intosubproblems that are more likely to be satis�able, butreject this in favour of the \simpli�cation hypothesis",that it is best to branch into simpler subproblems withfewer and shorter clauses after unit propagation. Min-imizing � is related but not identical to both thesehypotheses: in general it will seek out simple problemsthat are likely to be soluble.(Musick & Russell 1992) model search using an ab-stracted Markov process. They identify regions whereproblems are easy and outside which it is very hard to�nd a solution. It would be fruitful to explore the con-nections between constrainedness, and the transitionprobabilities of such Markov processes.(Gent & Walsh 1996) suggest that we use � to com-pare heuristics. For example, in number partitioningthe KK heuristic almost always returns the optimaland exact partition when � < 0:4, but the greedyheuristic only performs well for � < 0:2.Phase transitions have also been observed in prob-lems based on real data (Gent & Walsh 1995a). Theconstrainedness of a problem depends on the ensemblefrom which it is drawn. We may not know the en-semble from which a real problem is drawn, so naivemeasurements of � may mislead us. The role of prob-lem representation must also be taken into account, asin a study such as (Borrett & Tsang 1995). Furtherwork in this area is vital if this research is to be ofvalue in understanding and solving real problems.ConclusionsWe have de�ned a very general parameter �, pro-nounced `kappa', that measures the constrainedness
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