
Asymptotic and Finite Size Parameters for PhaseTransitions: Hamiltonian Circuit as a Case Study�Jeremy Franky and Ian P. Gentz and Toby WalshzAugust 15, 1997Keywords: analysis of algorithms, computational complexity, phase tran-sitions, constrainedness, �nite size scalingEnsembles of random NP-hard problems often exhibit a phase transition in solv-ability with a corresponding peak in search cost [3]. Problem instances from suchphase transitions are now used routinely to benchmark algorithms. To study suchphase transitions, parameters have been derived either from asymptotic scaling re-sults or from the constrainedness [6]. Using the Hamiltonian Circuit (HC) problemas a case study, we show that a simple re-scaling of the constrainedness gives aparameter whose relation with the asymptotic parameter is almost independent ofproblem size for small problems. As a result both approaches are equally able tomodel the phase transition. This justi�es the use of the constrainedness parame-ter in NP problems where asymptotic results are currently unknown. In additionconstrainedness can be used to compare di�erent problem classes and as a meta-heuristic.The HC problem is: given an undirected graph, decide whether there is anordered sequence of nodes such that, for all i, (ni; ni+1) and (nn; n1) are edges inthe graph. Here, we consider random graphs with a �xed number of edges, thoseedges distributed randomly through the graph. A key asymptotic result is known.For graphs generated with n nodes and e edges; if we �x e=(n logn), then as n!1,there is almost certainly a circuit if e=(n logn) > 12 , and almost certainly not ife=(n logn) < 12 , as shown by Kor�sunov [12, 13]. This asymptotic result suggeststhe parameter e=n logn for studying phase transitions. This has been used as a�This research was partly supported by a Strathclyde University grant and EPSRC grantGR/L/24014 supporting the third author. Authors are listed in alphabetical order.yCaelum Research Corporation, NASA Ames Research Center, Mail Stop 269-1, Mo�et Field,CA 94035-1000, USA. frank@ptolemy.arc.nasa.govzDepartment of Computer Science, University of Strathclyde, Glasgow G1 1XH, United King-dom. [ipg,tw]@cs.strath.ac.uk 1



parameter by Cheeseman, Kanefsky and Taylor [3], and by Frank and Martel [4].Another domain in which an asymptotic result has been used to suggest a parameteris the Euclidean TSP, in which Gent and Walsh [9] showed the existence of a phasetransition using a parameter based on a result of Beardwood et al [2].In many NP-complete domains, more ad hoc methods have been used to con-struct appropriate parameters. These have recently been uni�ed by the introductionof �, a general constrainedness parameter [6]. In a random ensemble of problemseach de�ned over a �xed state space S, this is de�ned by� =def 1� log2(hSoli)Nwhere hSoli is the expected number of solutions per problem in the ensemble, andN is the size of the problem, taken as log2 jSj. Subject to multiplication by ap-propriate constants, � is identical to parameters previously used in satis�ability,graph colouring, constraint satisfaction, and number partitioning [6]. However, inneither the HC problem nor the Euclidean TSP is the relationship between � andthe asymptotic parameter known. This therefore leaves open a question, whetherthe use of � is justi�ed if it does not relate well to known asymptotic parameters.Since it is not known how to calculate � in the Euclidean TSP, we address thisquestion in the HC problem.To calculate �, we need �, the probability of a randomly selected circuit of nodeshaving every edge in the graph. There are e edges in the graph out of a possiblen(n � 1)=2. The probability that the �rst edge of any circuit is in the graph is2e=n(n� 1). That leaves e � 1 edges and (n(n � 1)=2)� 1 places to put them. Sothe next edge is in the graph with chance (e� 1)=[(n(n� 1)=2)� 1]. Then the nextwith chance (e� 2)=[(n(n� 1)=2)� 2]. Since there are n edges under investigationwe get an overall probability of� = n�1Yi=0 (e � i)(n(n� 1)=2)� iSince we may designate a starting point arbitrarily, and because we may take circuitsin either direction, the number of distinct potential circuits is (n� 1)!=2. So hSoliis given by �(n � 1)!=2 and N by log2((n � 1)!=2) yielding� = �Pn�1i=0 log2 (e�i)(n(n�1)=2)�ilog2((n� 1)!=2) (1)We analysed the HC phase transition using � to determine whether or not it isas good a parameter for this problem as it is for other problems it has been usedfor in the past [6, 8]. We implemented Martello's algorithm [14]: as this algorithmis for directed graphs, we added an edge in each direction for each edge in theundirected graph. We ran tests on random graphs from 5 to 30 nodes in steps of 12



(although for clarity we restrict graphed data to multiples of 5). At each numberof nodes n we varied the number of edges e in the graph in steps of 1, exceptingn = 30 where the step size was 6 edges. For each value of n and e we generated1000 problems pseudo-randomly. Figure 1 shows the observed probability of a cir-cuit existing plotted against �. This graph shows behaviour very similar to that inmany other classes when plotted against constrainedness or equivalent parameters,including satis�ability [11], constraint satisfaction [5], number partitioning [8], andthe asymmetric TSP [6]. As in all these classes, the transition gets sharper withrespect to � as we increase the number of nodes. Figure 2 shows that, as in otherproblem classes, there is a critical value �c where the curves approximately inter-sect. The critical value �c is particularly interesting as it seems to be a point ofscale-invariant behaviour. Figure 2 suggests that �c = 0:7, since at this value theprobability is in the range 0:840� 0:015 except for n = 5. Using data at all valuesof n from 5 to 30, �c = 0:7 seems to be an accurate �xed point from n = 9 upwards.The very smallest sizes deviate slightly, but this deviation has been seen in manyclasses such as those just mentioned.
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Figure 1: Probability of a circuit existing (y-axis) plotted against � (x-axis).The boxed area is shown in more detail in Figure 2.It is now standard to characterise the increasing sharpness of the curves inFigure 1 using the technique of �nite size scaling [11, 5, 6, 8]. Given a critical value�c and a scaling constant �, de�ne 
 =def N 1=�(� � �c)=�c. We choose �c = 0:7as described above and empirically choose � to minimize the discrepancies betweenobserved behaviour at each problem size. One technique for choosing � is describedby Gent et al [5], based on behaviour when probability of a circuit existing is 0.5.Each pair of values of n results in an estimate of �. We obtained a median estimateof � = 2:4�0:5, with the errors indicating upper and lower quartiles in the estimates3
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Figure 2: Zoom in on the area outlined in Figure 1 with probability (y-axis)plotted against � (x-axis). Observed data points for each value of n have beenjoined by lines to guide interpolation. Additionally, a vertical line shows � = 0:7and horizontal lines show the range of probabilities 0:840 � 0:015of � when all data from n = 5 to n = 30 was used. Using 
 = N 1=2:4(� � 0:7)=0:7and N = log2((n � 1)!=2) yields the plot seen in Figure 3. That all curves arevery similar, again apart from the smallest n, shows that �nite size scaling canempirically correct the constrainedness parameter very successfully.
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Figure 3: Probability of a circuit existing (y-axis) plotted against 
 (x-axis)The hardest problems to solve appear at the phase transition in the probabilityof a circuit existing [3]. The rescaled constrainedness parameter shows this correla-tion particularly clearly. Figure 4 shows the maximumnumber of leaf nodes used ineach data set. We report worst case behaviour rather than mean or median becausemost problems were solved after searching just one leaf node, so the mean is dom-4



inated by the worst case behaviour. This behaviour is similar to the occurrence of`exceptionally hard problems' in domains such as graph colouring [10], satis�ability[7], and constraint satisfaction [16]. The hardest problems are always in the regionof 
 where some graphs have circuits and some do not, and generally in the middleof this region. Random problems generated with more uniform graphs might pro-duce less variable behaviour and greater median problem di�culty, an e�ect whichhas been noted in satis�ability and constraint satisfaction [7, 16].
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Figure 4: Worst case number of leaf nodes searched (y-axis) plotted against 
 (x-axis).In the HC problem, the parameter suggested by asymptotic analysis also seemsto capture behaviour successfully at small sizes. Figure 5 shows the result of plottingprobability of a circuit existing against e=(n logn). Low values of this parameterrepresent insoluble problems with few edges. The �t as problem size changes isof broadly similar quality to that seen in Figure 3. This is surprising: in otherdomains where asymptotic parameters have been used, such as the Euclidean TSP[9], �nite size scaling has still been necessary to yield a parameter which givessuch scale-invariant behaviour. Why this parameter is so good for the HC problemremains an interesting open question. Note however that the plotted curve cannotbe representative of limiting behaviour as it is inconsistent with Kor�sunov's resultof a limiting value of e=(n logn) = 0:5.To summarise, we have shown that two techniques for devising a parameter forthe study of phase transitions both give good results in the case of HamiltonianCircuits at small sizes. Which should we choose? We suggest there is little ornothing to choose between the two approaches at these problem sizes. To illustratethis, Figure 6 shows how e=(n logn) varies with 
 for n up to 30 in the region ofthe phase transition. At each n we �nd that e=(n logn) is almost exactly the samefunction of 
 in this region. Even for n = 5 the di�erence of about 0.1 from the5
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Figure 5: Probability of a circuit existing (y-axis) plotted against e=(n log n) (x-axis)other plots in e=(n logn) at its worst corresponds to only about 0.8 of an edge. Therelationship between the two parameters is almost independent of problem size forsmall n. Neither parameter can be seen as superior to the other for analysis ofexperimental data at these problem sizes.
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Figure 6: Relationship between 
 (y-axis) and e=(n log n) (x-axis) for varying n.The constrainedness parameter � is useful for comparisons between problemclasses and as the basis for a meta-heuristic. The general parameter is identicalto those used in many other domains, so features such as the location of the phasetransition can be compared directly. For example, we note that the critical value � =0:7 is smaller than that reported for 3-SAT, where the phase transition occurs at � =0:82 [6]. A consequence of this is that critically constrained HC problems must havea higher average number of solutions than critically constrained 3-SAT problemsfor equal problem sizes N . This suggests that simple stochastic search procedures6



may work very well in random HC problems since they can be expected to performbetter with increasing number of solutions, and procedures such as WSAT areknown to perform very well in 3-SAT problems at the phase transition [15]. Thetheoretical results of Angluin and Valiant [1] support this suggestion, as do theexperimental results observed by Frank and Martel [4]. Perhaps more signi�cantly,the meta-heuristic of minimizing � in backtracking search seems to capture thewidely accepted informal heuristic of picking the most constrained choice out ofthose available [6]. Recalling the de�nition of � in Equation (1), minimizing � isequivalent to selecting an edge that maximises the remaining number of edges inthe graph, given that each choice e�ectively reduces the number of nodes n in theremaining graph by 1. As has been suggested in constraint satisfaction problems[6], we can view the heuristic used in Martello's algorithm [14] as a proxy for thisheuristic. Martello's heuristic is to pick the edge which minimizes the minimumof out-degree and in-degree of the selected node: this naturally tends to leave asmany edges as possible in the graph. It would be interesting to explore further howsuccessful the minimize-� heuristic is for HC and how it relates to other heuristicsfor HC.Our work has two consequences. First, as just discussed, there are signi�cantbene�ts of the use of the general parameter � for Hamiltonian Circuits. Second,our results show the robustness of the constrainedness parameter even in a domainwhere an asymptotic result is known. There are many NP-complete domains whereno asymptotic result is currently known and so only the constrainedness parameteris available. We suggest that in such domains the constrainedness parameter canbe used with some con�dence.References[1] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltoniancircuits and matchings. Journal of Computer and System Sciences, 18(2):155{193, 1979.[2] J. Beardwood, J.H. Halton, and J.M. Hammersley. The shortest path throughmany points. Proceedings of the Cambridge Philosophical Society, 55:299{327,1959.[3] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problemsare. In Proceedings of the 12th IJCAI, pages 331{337, 1991.[4] J. Frank and C. Martel. Phase transitions in random graphs. In Proceedings,Workshop on Studying and Solving Really Hard Problems, CP-95, 1995.7
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