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Abstract. A simple mechanism for allocating indivisible resources is sequential allocation in which agents take
turns to pick items. We focus on possible and necessary allocation problems, checking whether allocations of a
given form occur in some or all mechanisms for several commonly used classes of sequential allocation mecha-
nisms. In particular, we consider whether a given agent receives a given item, a set of items, or a subset of items
for five natural classes of sequential allocation mechanisms: balanced, recursively balanced, balanced alternating,
strictly alternating and all policies. We identify characterizations of allocations produced balanced, recursively
balanced, balanced alternating policies and strictly alternating policies respectively, which extend the well-known
characterization by Brams and King [2005] for policies without restrictions. In addition, we examine the computa-
tional complexity of possible and necessary allocation problems for these classes.

1 Introduction

Efficient and fair allocation of resources is a pressing problem within society today. One important and challenging
case is the fair allocation of indivisible items [Chevaleyre et al., 2006, Bouveret and Lang, 2008, Bouveret et al., 2010,
Aziz et al., 2014b, Aziz, 2014]. This covers a wide range of problems including the allocation of classes to students,
landing slots to airlines, players to teams, and houses to people. A simple but popular mechanism to allocate indivisible
items is sequential allocation [Bouveret and Lang, 2011, Brams and Taylor, 1996, Kohler and Chandrasekaran, 1971,
Levine and Stange, 2012]. In sequential allocation, agents simply take turns to pick the most preferred item that has
not yet been taken. Besides its simplicity, it has a number of advantages including the fact that the mechanism can be
implemented in a distributed manner and that agents do not need to submit cardinal utilities. Well-known mechanisms
like serial dictatorship [Svensson, 1999] fall under the umbrella of sequential mechanisms.

The sequential allocation mechanism leaves open the particular order of turns (the so called “policy”) [Kalinowski
et al., 2013a, Bouveret and Lang, 2014]. Should it be a balanced policy i.e., each agent gets the same total number of
turns? Or should it be recursively balanced so that turns occur in rounds, and each agent gets one turn per round? Or
perhaps it would be fairer to alternate but reverse the order of the agents in successive rounds: a1 B a2 B a3 B a3 B
a2 B a1 . . . so that agent a1 takes the first and sixth turn? This particular type of policy is used, for example, by the
Harvard Business School to allocate courses to students [Budish and Cantillion, 2012] and is referred to as a balanced
alternation policy. Another class of policies is strict alternation in which the same ordering is used in each round,
such as a1 B a2 B a3 B a1 B a2 B a3 . . . . The sets of balanced alternation and strict alternation policies are subsets of
the set of recursively balanced policies which itself is a subset of the set of balanced policies (see Figure 1).

We consider here the situation where a policy is chosen from a family of such policies. For example, at the Har-
vard Business School, a policy is chosen at random from the space of all balanced alternation policies. As a second
example, the policy might be left to the discretion of the chair but, for fairness, it is restricted to one of the recursively
balanced policies. Despite uncertainty in the policy, we might be interested in the possible or necessary outcomes. For
example, can I get my three most preferred courses? Do I necessarily get my two most preferred courses? We examine
the complexity of checking such questions. There are several high-stake applications for these results. For example,
sequential allocation is used in professional sports ‘drafts’ [Brams and Straffin, 1979]. The precise policy chosen from
among the set of admissible policies can critically affect which teams (read agents) get which players (read items).



The problems of checking whether an agent can get some item or set of items in a policy or in all policies is closely
related to the problem of ‘control’ of the central organizer. For example, if an agent gets an item in all feasible policies,
then it means that the chair cannot ensure that the agent does not get the item. Apart from strategic motivation, the
problems we consider also have a design motivation. The central designer may want to consider all feasible policies
uniformly at random (as is the case in random serial dictatorship [Aziz et al., 2013, Saban and Sethuraman, 2013])
and use them to find the probability that a certain item or set of item is given to an agent. The probability can be a
suggestion of time sharing of an item. The problem of checking whether an agent gets a certain item or set of items in
some policy is equivalent to checking whether an agent gets a certain item or set of items with non-zero probability.
Similarly, the problem of checking whether an agent gets a certain item or set of items in all policy is equivalent to
checking whether an agent gets a certain item or set of items with probability one.

Arbitrary

Balanced
Rec-Balanced

Strict-Alt Bal-Alt

Fig. 1: Inclusion relationships between sets of policies. We use abbreviations Rec-Balanced (recursively balanced);
Strict-Alt (strict alternation), and Bal-Alt (balanced alternation).

We let A = {a1, . . . , an} denote a set of n agents, and I denote the set of m = kn items4. P = (P1, . . . , Pn)
is the profile of agents’ preferences where each Pj is a linear order over I . Let M denote an assignment of all items
to agents, that is, M : I → A. We will denote a class of policies by C . Any policy π specifies the |I| turns of the
agents. When an agent takes her turn, she picks her most preferred item that has not yet been allocated. We leave it to
future work to consider agents picking strategically. Sincere picking is a reasonable starting point as when the policy
is uncertain, a risk averse agent is likely to pick sincerely.

Example 1. Consider the setting in which A = {a1, a2}, I = {b, c, d, e}, the preferences of agent a1 are b � c � d �
e and of agent a2 are b � d � c � e. Then for the policy a1 B a2 B a2 B a1, agent a1 gets {b, e} whilst a2 gets {c, d}.

We consider the following natural computational problems.

1. POSSIBLEASSIGNMENT: Given (A, I, P,M) and policy class C , does there exist a policy in C which results in
M?

2. NECESSARYASSIGNMENT: Given (A, I, P,M), and policy class C , is M the result of all policies in C ?
3. POSSIBLEITEM: Given (A, I, P, aj , o) where aj ∈ A and o ∈ I , and policy class C , does there exist a policy in

C such that agent aj gets item o?
4. NECESSARYITEM: Given (A, I, P, aj , o) where aj ∈ A and o ∈ I , and policy class C , does agent aj get item o

for all policies in C ?
5. POSSIBLESET: Given (A, I, P, aj , I

′) where aj ∈ A and I ′ ⊆ I , and policy class C , does there exist a policy in
C such that agent aj gets exactly I ′?

6. NECESSARYSET: Given (A, I, P, aj , I
′) where aj ∈ A and I ′ ⊆ I , and policy class C , does agent aj get exactly

I ′ for all policies in C ?

4 This is without loss of generality since we can add dummy items of no utility to any agent.
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7. POSSIBLESUBSET: Given (A, I, P, aj , I
′) where aj ∈ A and I ′ ⊆ I , and policy class C , does there exist a policy

in C such that agent aj gets I ′?
8. NECESSARYSUBSET: Given (A, I, P, aj , I

′) where aj ∈ A and I ′ ⊆ I , and policy class C does agent aj get I ′

for all policies in C ?

We will consider problems top-k POSSIBLESET and top-k NECESSARYSET that are restrictions of POSSIBLESET
and NECESSARYSET in which the set of items I ′ is the set of top k items of the distinguished agent. When policies
are chosen at random, the possible and necessary allocation problems we consider are also fundamental to understand
more complex problems of computing the probability of certain allocations.

Contributions. Our contributions are two fold. First, we provide necessary and sufficient conditions for an allocation
to be the outcome of balanced policies, recursively balanced policies, and balanced alternation policies, respectively.
Previously Brams and King [2005] characterized the outcomes of arbitrary policies. In a similar vein, we provide
sufficient and necessary conditions for more interesting classes of policies such as recursively balanced and balanced
alternation. Second, we provide a detailed analysis of the computational complexity of possible and necessary alloca-
tions under sequential policies. Table 1 summarizes our complexity results. Our NP/coNP-completeness results also
imply that there exists no polynomial-time algorithm that can approximate within any factor the number of admissible
policies which do or do not satisfy the target goals.

Problems Sequential Policy Class
Any Balanced Recursively Balanced Strict Alternation Balanced Alternation

POSSIBLEITEM in P NPC (Thm. 3) NPC (Thm. 3) NPC (Thm. 3) NPC (Thm. 3)

NECESSARYITEM in P
coNPC (Thm. 9);
in P for const. k (Thm. 7)

coNPC for all k ≥ 2 (Thm. 12) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 22)

POSSIBLESET in P NPC (Thm. 3) NPC (Thm. 3) NPC (Thm. 3) NPC (Thm. 3)
NECESSARYSET in P in P (Thm. 10) coNPC for all k ≥ 2 (Thm. 12) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 23)

Top-k POSSIBLESET in P in P (trivial)
NPC for all k ≥ 3 (Thm. 14);
in P for k = 2 (Thm. 13)

NPC for all k ≥ 3 (Thm. 18);
in P for k = 2 (Thm. 17)

NPC for all k ≥ 2 (Thm. 22)

Top-k NECESSARYSET in P in P (Thm. 10) coNPC for all k ≥ 2 (Thm. 12) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 23)
POSSIBLESUBSET in P NPC (Thm. 3) NPC (Thm. 3) NPC (Thm. 3) NPC (Thm. 3)

NECESSARYSUBSET in P
coNPC (Thm. 9);
in P for const. k (Thm. 8)

coNPC for all k ≥ 2 (Thm. 12) coNPC for all k ≥ 2 (Thm. 19) coNPC for all k ≥ 2 (Thm. 22)

POSSIBLEASSIGNMENT in P in P (Coro. 1) in P (Coro. 2) in P (Coro. 3) in P (Coro. 4)
NECESSARYASSIGNMENT in P in P (Thm. 6) in P (Thm. 11) in P (Thm. 16) in P (Thm. 21)

Table 1: Complexity of possible and necessary allocation for sequential allocation. All possible allocation problems
are NPC for k = 1. All necessary problems are in P for k = 1.

Related Work. Sequential allocation has been considered in the operations research and fair division literature (e.g.
[Kohler and Chandrasekaran, 1971, Brams and Taylor, 1996]). It was popularized within the AI literature as a sim-
ple yet effective distributed mechanism [Bouveret and Lang, 2011] and has been studied in more detail subsequently
[Kalinowski et al., 2013a,b, Bouveret and Lang, 2014]. In particular, the complexity of manipulating an agent’s pref-
erences has been studied [Bouveret and Lang, 2011, 2014] supposing that one agent knows the preferences of the
other agents as well as the policy. Similarly in the problems we consider, the central authority knows beforehand the
preferences of all agents.

The problems considered in the paper are similar in spirit to a class of control problems studied in voting theory: if
it is possible to select a voting rule from the set of voting rules, can one be selected to obtain a certain outcome [Erdélyi
and Elkind, 2012]. They are also related to a class of control problems in knockout tournaments: does there exist a
draw of a tournament for which a given player wins the tournament [Vu et al., 2009, Aziz et al., 2014a]. Possible and
necessary winners have also been considered in voting theory for settings in which the preferences of the agents are
not fully specified [Konczak and Lang, 2005, Betzler and Dorn, 2010, Baumeister and Rothe, 2010, Bachrach et al.,
2010, Xia and Conitzer, 2011, Aziz et al., 2012].
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When n = m, serial dictatorship is a well-known mechanism in which there is an ordering of agents and with
respect to that ordering agents pick the most preferred unallocated item in their turns [Svensson, 1999]. We note that
serial dictatorship for n = m is a balanced, recursively balanced and balanced alternation policy.

2 Characterizations of Outcomes of Sequential Allocation

In this section we provide necessary and sufficient conditions for a given allocation to be the outcome of a balanced
policy, recursively balanced policy, or balanced alternation policy. We first define conditions on an allocation M . An
allocation is Pareto optimal if there is no other allocation in which each item of each agent is replaced by at least as
preferred an item and at least one item of some agent is replaced by a more preferred item.

Condition 1. M is Pareto Optimal.

Condition 2. M is balanced.

It is well-known that Condition 1 characterizes outcomes of all sequential allocation mechanisms (without con-
straints). Brams and King [2005] proved that an assignment is achievable via sequential allocation iff it satisfies
Condition 1. The theorem of Brams and King [2005] generalized the characterization of Abdulkadiroğlu and Sönmez
[1998] of Pareto optimal assignments as outcomes of serial dictatorships when m = n. We first observe the following
simple adaptation of the characterization of Brams and King [2005] to characterize possible outcomes of balanced
policies:

Remark 1. Given a profile P , an allocation M is the outcome of a balanced policy if and only if M satisfies Condi-
tions 1 and 2.

Given a balanced allocation M , for each agent aj ∈ A and each i ≤ k, let pij denote the item that is ranked at
the i-th position by agent aj among all items allocated to agent aj by M . The third condition requires that for all
1 ≤ t < s ≤ k, no agent prefers the s-th ranked item allocated to any other agent to the t-th ranked item allocated to
her.

Condition 3. For all 1 ≤ t < s ≤ k and all pairs of agent aj , aj′ , agent aj prefers ptj to psj′ .

The next theorem states that Conditions 1 through 3 characterize outcomes of recursively balanced policies.

Theorem 1. Given a profile P , an allocation M is the outcome of a recursively balanced policy if and only if it
satisfies Conditions 1, 2, and 3.

Proof. To prove the “only if” direction, clearly if M is the outcome of a recursively balanced policy then Condition 1
and 2 are satisfied. If Condition 3 is not satisfied, then there exists 1 ≤ t < s ≤ k and a pair of agents aj , aj′ such that
agent aj prefers psj′ to ptj . We note that in the round when agent aj is about to choose ptj according to M , psj′ is still
available, because it is allocated by M in a later round. However, in this case agent aj will not choose ptj because it is
not her top-ranked available item, which is a contradiction.

To prove the “if” direction, for any allocation M that satisfies the three conditions we will construct a recursively
balanced policy π. For each i ≤ k = m/n, we let phase i denote the ((i − 1)n + 1)-th round through in-th round.
It follows that for all i ≤ k, {pij : j ≤ n} are allocated in phase i. Because of Condition 3, {pij : j ≤ n} is a Pareto
optimal allocation when all items in {pi′j : i′ < i, j ≤ n} are removed. Therefore there exists an order πi over A that
gives this allocation. Let π = π1 B π2 B · · · B πk. It is not hard to verify that π is recursively balanced and M is the
outcome of π.

Given a profile P and an allocation M that is the outcome of a recursively balanced policy, that is, it satisfies the
three conditions as proved in Theorem 1, we construct a directed graph GM = (A,E), where the vertices are the
agents, and we add the edges in the following way. For each odd i ≤ k, we add a directed edge aj′ → aj if and only
if agent aj prefers pij′ to pij and the edge is not already in GM ; for each even i ≤ k, we add a directed edge aj → aj′

if and only if agent aj prefers pij′ to pij and the edge is not already in GM .
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Condition 4. Suppose M is the outcome of a recursively balanced policy. There is no cycle in GM .

Theorem 2. An allocation M is achievable by a balanced alternation policy if and only if satisfies Conditions 1, 2, 3,
and 4.

Proof. The “only if” direction: SupposeM is achievable by a balanced alternation policy π. Let π′ denote the suborder
of π from round 1 to round n. Let Gπ′ = (A,E′) denote the directed graph where the vertices are the agents and there
is an edge aj′ → aj if and only if aj′ Bπ′ aj . It is easy to see that Gπ′ is acyclic and complete. We claim that GM is a
subgraph of Gπ′ . For the sake of contradiction suppose there is an edge aj → aj′ in GM but not in Gπ′ . If aj → aj′

is added to GM in an odd round i, then it means that agent j′ prefers pij to pij′ . Because aj → aj′ is not in Gπ′ ,
aj′ Bπ′ aj . This means that right before aj′ choosing pij′ in M , pij is still available, which contradicts the assumption
that aj′ chooses pij′ in M . If aj → aj′ is added to GM in an even round, then following a similar argument we can
also derive a contradiction. Therefore, GM is a subgraph of Gπ′ , which means that GM is acyclic.

The “if” direction: Suppose the four conditions are satisfied. Because GM has no cycle, we can find a linear order
π′ over A such that GM is a subgraph of Gπ′ . We next prove that M is achievable by the balanced alternation policy π
whose first n rounds are π′. For the sake of contradiction suppose this is not true and let t denote the earliest round that
the allocation in π differs the allocation in M . Let aj denote the agent at the t-th round of π, let pi

′

j′ denote the item
she gets at round t in π, and let pij denote the item that she is supposed to get according to M . Due to Condition 3,
i′ ≤ i. If i′ < i then agent aj′ didn’t get item pi

′

j′ in a previous round, which contradicts the selection of t. Therefore
i′ = i. If i is odd, then there is an edge aj′ → aj in GM , which means that aj′ Bπ′ aj . This means that aj′ would
have chosen pij′ in a previous round, which is a contradiction. If i is even, then a similar contradiction can be derived.
Therefore M is achievable by π.

Given a profile P and an allocation M that is the outcome of a recursively balanced policy, that is, it satisfies the
three conditions as proved in Theorem 1, we construct a directed graph HM = (A,E), where the vertices are the
agents, and we add the edges in the following way. For each j ≤ n and i ≤ k, we let pij denote the item that is ranked
at the i-th position among all items allocated to agent j. For each i ≤ k, if we add a directed edge aj′ → aj if j prefers
pij′ to pij if the edge is not already there.

Condition 5. Suppose M is the outcome of a recursively balanced policy. There is no cycle in HM .

Theorem 3. An allocation M is achievable by a strict alternation policy if and only if satisfies Condition 1, 2, 3, and
5.

Proof. The “only if” direction: If M is an outcome of a recursively balanced policy but does not satisfy 5, then this
means that there is a cycle in HM . Let agents ai and aj be in the cycle. This means that ai is before aj in one round
and aj is before ai in some other round.

The “if” direction: Now assume that M is an outcome of a recursively balanced policy but is not alternating. This
means that there exist at least two agents ai and aj such that ai comes before aj in one round and aj comes before ai
in some other round. But this means that there is cycle ai → aj → ai in graph HM .

3 General Complexity Results

Before we delve into the complexity results, we observe the following reductions between various problems.

Lemma 1. Fixing the policy class to be one of {all, balanced policies, recursively balanced policies, balanced alter-
nation policies}, there exist polynomial-time many-one reductions between the following problems: POSSIBLESET to
POSSIBLESUBSET; POSSIBLEITEM to POSSIBLESUBSET; Top-k POSSIBLESET to POSSIBLESET; NECESSARYSET
to NECESSARYSUBSET; NECESSARYITEM to NECESSARYSUBSET; and Top-k NECESSARYSET to NECESSARY-
SET.

A polynomial-time many-one reduction from problem Q to problem Q′ means that if Q is NP(coNP)-hard then Q′

is also NP(coNP)-hard, and if Q′ is in P then Q is also in P. We also note the following.
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Remark 2. For n = 2, POSSIBLEASSIGNMENT and POSSIBLESET are equivalent for any type of policies. Since
n = 2, the allocation of one agent completely determines the overall assignment.

For m = n, checking whether there is a serial dictatorship under which each agent gets exactly one item and a
designated agent aj gets item o is NP-complete [Theorem 2, Saban and Sethuraman, 2013]. They also proved that for
m = n, checking if for all serial dictatorships, agent aj gets item o is polynomial-time solvable. Hence, we get the
following statements.

Remark 3. POSSIBLEITEM and POSSIBLESET is NP-complete for balanced, recursively balanced as well as balanced
alternation policies.

Remark 4. Form = n, NECESSARYITEM and NECESSARYSET is polynomial-time solvable for balanced, recursively
balanced, and balanced alternation policies.

Theorem 3 does not necessarily hold if we consider the top element or the top k elements. Therefore, we will
especially consider top-k POSSIBLESET.

4 Arbitrary Policies

We first observe that for arbitrary policies, POSSIBLEITEM, NECESSARYITEM and NECESSARYSET are trivial: POS-
SIBLEITEM always has a yes answer (just give all the turns to that agent) and NECESSARYITEM and NECESSARYSET
always have a no answer (just don’t give the agent any turn). Similarly, NECESSARYASSIGNMENT always has a no
answer.

Remark 5. POSSIBLEITEM, NECESSARYITEM, NECESSARYSET, and NECESSARYASSIGNMENT are polynomial-
time solvable for arbitrary policies.

Theorem 4. POSSIBLEASSIGNMENT is polynomial-time solvable for arbitrary policies.

Proof. By the characterization of Brams and King [2005], all we need to do is to check whether the assignment is
Pareto optimal. It can be checked in polynomial time O(|I|2) whether a given assignment is Pareto optimal via an
extension of a result Abraham et al. [2005].

There is also a polynomial-time algorithm for POSSIBLESET for arbitrary policies.

Theorem 5. POSSIBLESET is polynomial-time solvable for arbitrary policies.

Proof. The following algorithm works for POSSIBLESET. Let the target allocation of agent ai be S. If there is any
agent aj ∈ A \ {ai} who wants to pick an item o′ ∈ I \ S, let him pick it. If no agent in A \ {ai} wants to pick an
item o′ ∈ I \ S, and i does not want to pick an item from S return no. If no agent in A \ {ai} wants to pick an item
o′ ∈ I \S, and i wants to pick an item o ∈ S, let ai pick o. If some agent in A \ {ai} wants to pick an item o ∈ S, and
also i wants to pick o ∈ S, then we let ai pick o. Repeat the process until all the items are allocated or we return no at
some point.

5 Balanced Policies

In contrast to arbitrary policies, POSSIBLEITEM, NECESSARYITEM, NECESSARYSET, and NECESSARYASSIGN-
MENT are more interesting for balanced policies since we may be restricted in allocating items to a given agent to
ensure balance. Before we consider them, we get the following corollary of Remark 1.

Corollary 1. POSSIBLEASSIGNMENT for balanced assignments is in P.

Note that an assignment is achieved via all balanced policies iff the assignment is the unique balanced assignment
that is Pareto optimal. This is only possible if each agent gets his top k items. Hence, we obtain the following.
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Theorem 6. NECESSARYASSIGNMENT for balanced assignments is in P.

Compared to NECESSARYASSIGNMENT, the other ‘necessary’ problems are more challenging.

Theorem 7. For any constant k, NECESSARYITEM for balanced policies is in P.

Proof. Given a NECESSARYITEM instance (A, I, P, a1, o), if o is ranked below the k-th position by agent a1 then we
can return “No”, because by letting agent a1 choose in the first k rounds she does not get item o.

Suppose o is ranked at the k′-th position by agent a1 with k′ ≤ k, the next claim provides an equivalent condition
to check whether the NECESSARYITEM instance is a “No” instance.

Claim. Suppose o is ranked at the k′-th position by agent a1 with k′ ≤ k, the NECESSARYITEM instance (A, I, P, a1, o)
is a “No” instance if and only if there exists a balanced policy π such that (i) agent a1 picks items in the first k′ − 1
rounds and the last k − k′ + 1 rounds, and (ii) agent a1 does not get o.

Let I∗ denote agent a1’s top k′ − 1 items. In light of Claim 9, to check whether the (A, I, P, a1, o) is a “No”
instance, it suffices to check for every set of k − k′ + 1 items ranked below the k′-th position by agent a1, denoted by
I ′, whether it is possible for agent a1 to get I∗ and I ′ by a balanced policy where agent a1 picks items in the first k′−1
rounds and the last k− k′+1 rounds. To this end, for each I ′ ⊆ I − I∗−{o} with |I ′| = k− k′+1, we construct the
following maximum flow problem FI′ , which can be solved in polynomial-time by e.g. the Ford-Fulkerson algorithm.

– Vertices: s, t, A− {a1}, I − I ′ − I∗.
– Edges and weights: For each a ∈ A − {a1}, there is an edge s → a with weight k; for each a ∈ A − {a1} and
c ∈ I − I ′ − I∗ such that agent a ranks c above all items in I ′, there is an edge a → c with weight 1; for each
c ∈ I − I ′ − I∗, there is an edge c→ t with weight 1.

– We are asked whether the maximum amount of flow from s to t is k(n− 1) (the maximum possible flow from s
to t).

Claim. (A, I, P, a1, o) is a “No” instance if and only if there exists I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 such
that FI′ has a solution.

Because k is a constant, the number of I ′ we will check is a constant. Algorithm 1 is a polynomial algorithm for
NECESSARYITEM with balanced policies.

Input: A NECESSARYITEM instance (A, I, P, aj , o).
1 if o is ranked below the k-th position by agent aj then
2 return “No”.
3 end
4 Let I∗ denote agent aj’s top k′ − 1 items.
5 for I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 do
6 if F|I′| has a solution then
7 return “No”
8 end
9 end

10 return “Yes”.
Algorithm 1: NECESSARYITEM for balanced policies.

Theorem 8. For any constant k, NECESSARYSET and NECESSARYSUBSET for balanced policies are in P.

Proof. W.l.o.g. given a NECESSARYSET instance (A, I, P, a1, I
′), if I ′ is not the top-ranked k items of agent a1 then

it is a “No” instance because we can simply let agent a1 choose items in the first k rounds. When I ′ is top-ranked k
items of agent a1, (A, I, P, a1, I ′) is a “No” instance if and only if (A, I, P, a1, o) is a “No” instance for some o ∈ I ′,
which can be checked in polynomial time by Theorem 7. A similar algorithm works for NECESSARYSUBSET.
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Theorem 9. NECESSARYITEM and NECESSARYSUBSET for balanced policies where k is not fixed is coNP-complete.

Proof. Membership in coNP is obvious. By Lemma 1 it suffices to prove that NECESSARYITEM is coNP-hard, which
we will prove by a reduction from POSSIBLEITEM for k = 1, which is NP-complete [Saban and Sethuraman, 2013].
Let (A, I, P, a1, o) denote an instance of the possible allocation problem for k = 1, where A = {a1, . . . , an}, I =
{o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn) is the preference profile of the n agents, and we are asked whether it is
possible for agent a1 to get item o in some sequential allocation. Given (A, I, P, a1, o), we construct the following
NECESSARYITEM instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪ D ∪ F1 ∪ · · · ∪ Fn, where |D| = n − 1 and for each aj ∈ A, |Fj | = n − 2. We have

|I ′| = (n+ 1)(n− 1) and k = n− 1.
Preferences:

– The preferences of a1 is [F1 � P1 � others].
– For any j ≤ n, the preferences of aj are obtained from [Fj � Pj ] by replacing o by D, and then add o to the

bottom position.
– The preferences for an+1 is [o � others].

We are asked whether agent an+1 always gets item o.
If (A, I, P, a1, o) has a solution π, we show that the NECESSARYITEM instance is a “No” instance by considering

π B · · ·B π︸ ︷︷ ︸
n−1

B an+1 B · · ·B an+1︸ ︷︷ ︸
n−1

. In the first (n− 2)n rounds all Fj’s are allocated to agent aj’s. In the following n

rounds o is allocated to a1, which means that an+1 does not get o.
Suppose the NECESSARYITEM instance is a “No” instance and agent n+1 does not get o in a balanced policy π′.

Because agent a2 through an rank o in their bottom position, o must be allocated to agent a1. Clearly in the first n− 2
times when agent a1 through an choose items, they will choose F1 through Fn respectively. Let π denote the order
over which agents a1 through an choose items for the last time. We obtain another order π∗ over A from π by moving
all agents who choose an item in D after agent a1 while keeping other orders unchanged. It is not hard to see that the
outcomes of running π and π∗ are the same from the first round until agent a1 gets o. This means that π∗ is a solution
to (A, I, P, a1, o).

Theorem 10. NECESSARYSET and top-k NECESSARYSET for balanced policies are in P even when k is not fixed.

Proof. Given an instance of NECESSARYSET, if the target set is not top-k then the answer is “No” because we can
simply let the agent choose k items in the first k rounds. It remains to show that top-k NECESSARYSET for balanced
policies is in P. That is, given (A, I, P, a1), we can check in polynomial time whether there is a balanced policy π for
which agent a1 does not get exactly her top k items.

For NECESSARYSET, suppose agent a1 does not get her top-k items under π. Let π′ denote the order obtained
from π by moving all agent a1’s turns to the end while keeping the other orders unchanged. It is easy to see that agent
a1 does not get her top-k items under π′ either. Therefore, NECESSARYSET is equivalent to checking whether there
exists an order π where agent a1 picks item in the last k rounds so that agent a1 does not get at least one of her top-k
items.

We consider an equivalent, reduced allocation instance where the agents are {a1, a2, . . . , an}, and there are k(n−
1)+1 items I ′ = (I− I∗)∪{c}, where I∗ is agent a1’s top-k items. Agent aj’s preferences over I ′ are obtained from
Pj by replacing the first occurrence of items in I∗ by c, and then removing all items in I∗ while keeping the order
of other items the same. We are asked whether there exists an order π where agent a1 is the last to pick and a1 picks
a single item, and each other agents picks k times, so that agent a1 does not get item c. This problem can be solved
by a polynomial-time algorithm based on maximum flows that is similar to the algorithm for NECESSARYITEM for
balanced policies in Theorem 7.

6 Recursively Balanced Policies

In this section, we consider recursively balanced policies. From Theorem 1, we get the following corollary.
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Corollary 2. POSSIBLEASSIGNMENT for recursively balanced policies is in P.

We also report computational results for problems other than POSSIBLEASSIGNMENT

Theorem 11. NECESSARYASSIGNMENT for recursively balanced policies is in P.

Proof Sketch. We initialize t to 1 i.e., focus on the first round. We check if there is an agent whose turn has not come
in the round whose most preferred unallocated item is not pit. In this case return “No”. Otherwise, we complete the
round in any order. If all the items are allocated, we return “Yes”. If t 6= k, we increment t by one and repeat.

The other ‘necessary problems’ turn out to be computationally intractable.

Theorem 12. For k ≥ 2, NECESSARYITEM, NECESSARYSET, top-k NECESSARYSET, and NECESSARYSUBSET for
recursively balanced policies are coNP-complete.

Theorem 13. Top-k POSSIBLESET for recursively balanced policies is in P for k = 2.

Proof Sketch. Let the agent under question be a1. We give agent a1 the first turns in each round with s1, s2 a1’s top
two items. The agent is guaranteed to get s1. We now construct a bipartite graph G = ((A \ {a1}) ∪ (I \ {s1}), E)
in which each {ai, o} ∈ E iff iff ai prefers o to s2. We check whether G admits a matching that perfectly matches the
agent nodes. If G does not, we return no. Otherwise, there exists a recursively balanced policy for which agent a1 gets
s1 and s2.

Finally, top-k-POSSIBLESET is NP-complete iff k ≥ 3.

Theorem 14. For all k ≥ 3, top-k POSSIBLESET for balanced policies is NP-complete.

The proof is given in the appendix.

7 Strict Alternation Policies

As for balanced alternation polices , there are n! possible strict alternation policies, so if n is constant, then all problems
can be solved in polynomial time by brute force search.

Theorem 15. If the number of agents is constant, then POSSIBLEITEM, POSSIBLESET, NECESSARYITEM, NECES-
SARYSET, POSSIBLEASSIGNMENT, and NECESSARYASSIGNMENT are polynomial-time solvable for strict alterna-
tion policies.

As a result of our characterization of strict alternation outcomes (Theorem 3), we get the following.

Corollary 3. POSSIBLEASSIGNMENT for strict alternation polices is in P.

We also present other computational results.

Theorem 16. NECESSARYASSIGNMENT for strict alternation polices is in P.

Theorem 17. Top-k POSSIBLESET for strict alternation policies is in P for k = 2.

For Theorem 17, the polynomial-time algorithm is similar to the algorithm for Theorem 13. The next theorems state
that the remaining problems are hard to compute. Both theorems are proved by reductions from the POSSIBLEITEM
problem.

Theorem 18. For all k ≥ 3, top-k POSSIBLESET is NP-complete for strict alternation policies.

Theorem 19. For all k ≥ 2, NECESSARYITEM, NECESSARYSET, top-k NECESSARYSET, and NECESSARYSUBSET
are coNP-complete for strict alternation policies.

9



8 Balanced Alternation Policies

Balanced alternation policies and strict alternation policies are the most constrained class among all policy classes
we study. There are n! possible balanced alternation policies, so if n is constant, then all problems can be solved in
polynomial time by brute force search. Note that such an argument does not apply to recursively balanced policies.

Theorem 20. If the number of agents is constant, then POSSIBLEITEM, POSSIBLESET, NECESSARYITEM, NEC-
ESSARYSET, POSSIBLEASSIGNMENT, and NECESSARYASSIGNMENT are polynomial-time solvable for balanced
alternation policies.

As a result of our characterization of balanced alternation outcomes (Theorem 2), we get the following.

Corollary 4. POSSIBLEASSIGNMENT for balanced alternation polices is in P.

NECESSARYASSIGNMENT can be solved efficiently as well:

Theorem 21. NECESSARYASSIGNMENT for balanced alternation polices is in P.

Proof. We first check whether it is possible to find π over A such that after running π there exists an agent j that
does not get item p1j . If so then we return “No”. Otherwise, we remove all items in {p1j : j ≤ n} and check whether
it is possible to find π over A such that after running π on the reduced instance, there exists an agent aj that does
not get item p2j . If so then we return “No”. Otherwise, we iterate until all items are removed in which case we return
“Yes”.

We already know that for k = m/n = 1, top-k possible and necessary problems can be solved in polynomial
time. The next theorems state that for any other k, they are NP-complete for balanced alternation policies. Theorem 22
is proved by a reduction from the EXACT 3-COVER problem and Theorem 23 is proved by a reduction from the
POSSIBLEITEM problem.

Theorem 22. For all k ≥ 2, top-k POSSIBLESET is NP-complete, NECESSARYITEM is coNP-complete, and NECES-
SARYSUBSET is coNP-complete for balanced alternation policies.

Theorem 23. For all k ≥ 2, top-k NECESSARYSET for balanced alternation policies is coNP-complete.

9 Conclusions

We have studied sequential allocation mechanisms like the course allocation mechanism at Harvard Business School
where the policy has not been fixed or has been fixed but not announced. We have characterized the allocations
achievable with three common classes of policies: recursively balanced, strict alternation, and balanced alternation
policies. We have also identified the computational complexity of identifying the possible or necessary items, set or
subset of items to be allocated to an agent when using one of these three policy classes as well as the class of all
policies. There are several interesting future directions including considering other common classes of policies, as
well as other properties of the outcome like the possible or necessary welfare.
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Testing Pareto optimality

Lemma 2. It can be checked in polynomial time O(|I|2) whether a given assignment is Pareto optimal.

The set of assignments achieved via arbitrary policies is characterized by Pareto optimal assignments. For any
given assignment setting and an assignment, the corresponding cloned setting is one in which for each item o that is
owned by agent i, we make a copy io of agent i so that each agent copy owns exactly one item. Each copy io has
exactly the same preferences as agent i. The assignment in which copies of agents get a single item is called the cloned
transformation of the original assignment.

Claim. An assignment is Pareto optimal iff its cloned transformation is Pareto optimal for the cloned setting.

Proof. If an assignment is not Pareto optimal for the cloned setting, then there exists another assignment in which
each of the cloned agents get at least as preferred an item and at least one agent gets a strictly more preferred item.
But if the new assignment for the cloned setting is transformed to the assignment for the original setting, then the new
assignment Pareto dominates the prior assignment for the original setting. If an assignment is not Pareto optimal (with
respect to responsive preferences) then there exists another assignment that Pareto dominates it. But this implies that
the new assignment also Pareto dominates the old assignment in the cloned setting.

We are now ready to prove Lemma 2.

Proof. By Lemma 9, the problem is equivalent to checking whether the cloned transformation of the assignment is
Pareto optimal in the cloned setting. Pareto optimality of an assignment in which each agent has one item can be
checked in time O(m2) [see e.g., Abraham et al., 2005] where m is the number of items.5 Firstly, for each item o
that is owned by agent i, we make a copy io of agent i so that each agent copy owns exactly one item. Each copy io
has exactly the same preferences as agent i. Based on the ownership information of each the m agent copies, and the
preferences of the agent copies, we construct a trading graph in which each copy io points to each of the items more
preferred than o. Also each o points to its owner io. Then the assignment in the cloned transformation is Pareto optimal
iff the trading graph is acyclic [Abraham et al., 2005, see e.g.,]. Acyclicity of a graph can be checked in time linear in
the size of the graph via depth-first search.

Proof of Theorem 5

Proof. Let the target allocation of agent ai be S. If there is any agent aj ∈ A \ {ai} who wants to pick an item
o′ ∈ I \ S, let him pick it. If no agent in A \ {i} wants to pick such an item o′ ∈ I \ S, and i does not want to pick
an item from S return no. If no agent in A \ {ai} wants to pick such an item o′ ∈ I \ S, and ai wants to pick an item
o ∈ S, let ai pick o. If some agents in A \ {ai} wants to pick such an item o ∈ S, and also i wants to pick o ∈ S, then
we let ai pick o. Repeat the process until all the items are allocated or we return no at some point.

We now argue for the correctness of the algorithm. Observe the order in which agent a1 picks items in S is exactly
according to his preferences.

Claim. Let us consider the first pick in the algorithm. If agent a1 picks an item o = max%i
(S), then if there exists a

policy π in which agent ai gets S, then there also exists a policy π′ in which agent a1 first picks o and agent i gets S
overall.

Proof. In π, by the time agent ai picks his second most preferred item from S, all items more preferred have already
been allocated. In π, if ai 6= π(1), then we can obtain π′ by bringing ai to the first place and having all the other
turns in the same order. Note that in π′, for any agent’s turn the set of available items are either the same or o is the
extra item missing. However since o was not even chosen by the latter agents, the picking outcomes of π and π′ are
identical.

5 The main idea is to construct a trading graph in which agent points to agent whose item he prefers more. The assignment is
Pareto optimal iff the graph is acyclic.

13



Claim. Let us consider the first pick in the algorithm. If some agent aj picks an item o′ ∈ A \ S in the algorithm,
then if there exists a policy in which agent ai gets S, then there also exists a policy in which agent aj first picks o′ and
agent ai gets S overall.

Proof. In π, if aj 6= π(1), then we can obtain π′ by bringing aj to the first place and having all the other turns in the
same order. If j does not get o′ in π, then when we construct π′ we simply delete the turn of the agent who got o′. Note
that in π′, for any agent’s turn the set of available items are either the same or o′ is the extra item missing. However
since o′ was not even chosen by the latter agents, the picking outcomes of π and π′ are identical.

By inductively applying Claims 9 and 9, we know that as long as a policy exists in which i gets allocation S, our
algorithm can construct a policy in which i gets allocation S.

Proof of Theorem 7

Proof. In a NECESSARYITEM instance we can assume the distinguished agent is a1. Given (A, I, P, a1, o), if o is
ranked below the k-th position by agent a1 then it we can return “No”, because by letting agent a1 choose in the first
k rounds she does not get item o.

Suppose o is ranked at the k′-th position by agent a1 with k′ ≤ k, the next claim provides an equivalence condition
to check whether the NECESSARYITEM instance is a “No” instance.

Claim. Suppose o is ranked at the k′-th position by agent a1 with k′ ≤ k, the NECESSARYITEM instance (A, I, P, a1, o)
is a “No” instance if and only if there exists a balanced policy π such that (i) agent a1 picks items in the first k′ − 1
rounds and the last k − k′ + 1 rounds, and (ii) agent a1 does not get o.

Proof. Suppose there exists a balanced policy π′ such that agent a1 does not get item o, then we obtain π∗ from π′

by moving the first k′ − 1 occurrences of agent a1 to the beginning of the sequence while keeping other positions
unchanged. When preforming π∗, in the first k′ − 1 rounds agent a1 gets her top k′ − 1 items.

By the next time agent a1 picks an item in π∗, o must have been chosen by another agent. To see why this is true,
for each agent from the k′-th round until agent a1’s next turn in π∗, we compare side by side the items allocated before
this agent’s turn by π∗ and by π′. It is not hard to see by induction that the item allocated by π∗ before agent a1’s next
turn is a superset of the item allocated by π′ before agent a1’s k′-th turn. Because the latter contains o, agent a1 does
not get o in π∗.

Then, we obtain π from π∗ by moving the k′-th through the k-th occurrence of agent a1 to the end of the sequence
while keeping other positions unchanged. It is easy to see that agent a1 does not get o in π. This completes the
proof.

Let I∗ denote agent a1’s top k′ − 1 items. In light of Claim 9, to check whether the (A, I, P, a1, o) is a “No”
instance, it suffices to check for every set of k − k′ + 1 items ranked below the k′-th position by agent a1, denoted by
I ′, whether it is possible for agent a1 to get I∗ and I ′ by a balanced policy where agent a1 picks items in the first k′−1
rounds and the last k− k′+1 rounds. To this end, for each I ′ ⊆ I − I∗−{o} with |I ′| = k− k′+1, we construct the
following maximum flow problem FI′ , which can be solved in polynomial-time by e.g. the Ford-Fulkerson algorithm.

– Vertices: s, t, A− {a1}, I − I ′ − I∗.
– Edges and weights: For each a ∈ A − {a1}, there is an edge s → a with weight k; for each a ∈ A − {a1} and
c ∈ I − I ′ − I∗ such that agent a ranks c above all items in I ′, there is an edge a → c with weight 1; for each
c ∈ I − I ′ − I∗, there is an edge c→ t with weight 1.

– We are asked whether the maximum amount of flow s to t is k(n− 1) (the maximum possible flow from s to t).

Claim. (A, I, P, o) is a “No” instance if and only if there exists I ′ ⊆ I − I∗ − {o} with |I ′| = k − k′ + 1 such that
FI′ has a solution.
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Proof. If (A, I, P, o) is a “No” instance, then by Claim 9 there exists π such that agent a1 picks items in the first k′−1
rounds and the last k − k′ + 1 rounds, and agent a1 gets I∗ ∪ I ′ for some I ′ ⊆ I − I∗ − {o}. For each agent aj with
j 6= 2, let there be a flow of amount k from s to aj and a flow of amount 1 from aj to all items that are allocated to
her in π. Moreover, let there be a flow of amount 1 from any c ∈ I − I∗ − {o} to t. It is easy to check that the amount
of flow is k(n− 1).

If FI′ has a solution, then there exists an integer solution because all weights are integers. This means that there
exists an assignment of all items in I − I ′ − I∗ to agent 2 through n such that no agent gets an item that is ranked
below any item in I∗. Starting from this allocation, after implementing all trading cycles we obtain a Pareto optimal
allocation where I− I ′− I∗ are allocated to agent 2 through n, and still no agent gets an item that is ranked below any
item in I∗. By Proposition 1 in Brams and King, there exists a balanced policy π∗ that gives this allocation. It follows
that agent a1 does not get o under the balanced policy π = a1 B . . .B a1︸ ︷︷ ︸

k′−1

Bπ∗ B a1 B . . .B a1︸ ︷︷ ︸
k−k′+1

.

Because k is a constant, the number of I ′ we will check is a constant. The polynomial algorithm for NECES-
SARYITEM for balanced policies is presented as Algorithm 1.

Proof of Theorem 11

Proof. In the allocation p, let pji be the j-th most preferred item for agent i among his set of k allocated items.

Claim. If there exists a recursively balanced policy achieving the target allocation. Then, in any such recursively
balanced policy, we know that in each t-th round, each agent gets item pti.

We initialize t to 1 i.e., focus on the first round. We check if there is an agent whose turn has not come in the round
whose most preferred unallocated item is not pti. In this case return “no”. Otherwise, we complete the round in any
arbitrary order. If all the items are allocated, we return “yes”. If t 6= k, we increment t by one and repeat the process.

We now argue for correctness. If the algorithm returns no, then we know that there is a recursively balanced policy
that does not achieve the allocation. This policy was partially built during the algorithm and can be completed in an
arbitrary way to get an allocation that is not the same as the target allocation. Now assume for contradiction that there is
a policy which does not achieve the allocation but the algorithm incorrectly returns yes. Consider the first round where
the algorithm makes a mistake. But in each round, each agent had a unique and mutually exclusive most preferred
unallocated item. Hence no matter which policy we implement in the round, the allocation and the set of unallocated
items after the round stays the same. Hence a contradiction.

Proof of Theorem 12

Proof Sketch. Membership in coNP is obvious. By Lemma 1 it suffices to show coNP-hardness for NECESSARYITEM
and top-k NECESSARYSET. We will prove the co-NP-hardness for them for k = 2 by the same reduction from
POSSIBLEITEM for k = 1, which is NP-complete [Saban and Sethuraman, 2013]. The proof for other k ≥ 2 can
be done similarly by constructing preferences so that the distinguished agent always get her top k − 2 items. Let
(A, I, P, a1, o) denote an instance of POSSIBLEITEM for k = 1, where A = {a1, . . . , an}, I = {o1, . . . , on}, o ∈ I ,
P = (P1, . . . , Pn) is the preference profile of the n agents, and we are asked wether it is possible for agent a1 to get
item o in some sequential allocation. Given (A, I, P, a1, o), we construct the following necessary allocation instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪ {c, d} ∪D, where |D| = n+ 1.
Preferences:

– The preferences of a1 is obtained from P1 by inserting d right before o, and append the other items such that the
bottom item is c.

– For any 2 ≤ j ≤ n, the preferences of aj is obtained from Pj by replacing o by D and then appending the
remaining items such that the bottom items are c � d � o.

– The preferences for an+1 is [c � o � others � d].
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For NECESSARYITEM, we are asked whether agent an+1 always get item o; for top-k NECESSARYSET, we are
asked whether agent an+1 always get {c, o}, which are her top-2 items.

Suppose the (A, I, P, a1, o) has a solution, denoted by π. We claim that π′ = an+1 B π B a1 B (A′ − {a1}) is a
“No” answer to the NECESSARYITEM and top-k NECESSARYSET instance. Following π′, in the first round an+1 gets
c. In the next n rounds a1 gets d. Then in the (n+ 2)-th round agent a1 gets item o, which means that an+1 does not
get item o after all items are allocated.

We note that an+1 always get item c for any recursively balanced policy. We next show that if NECESSARYITEM
or top-k NECESSARYSET instance is a “No” instance, then the POSSIBLEITEM instance is a “Yes” instance. Suppose
π′ is a recursively balanced policy such that an+1 does not get o. We let phase 1 denote the first n+ 1 rounds, and let
phase 2 denote the (n+ 2)-th through 2(n+ 1)-th round.

Because o is the least preferred item for all agents except a1 and an+1, if an+1 does not get o in the second phase,
then o must be allocated to a1. This is because for the sake of contradiction suppose o is allocated to agent aj with
j 6= 1, n, then aj must be the last agent in π′ and o is not chosen in any previous round. However, when it is an’s turn
in the second phase, o is still available, which means that an would have chosen o and contradicts the assumption that
aj gets o.

Claim. If a1 gets o under π′, then a1 gets d in the first phase.

Proof. For the sake of contradiction, suppose in the first phase a1 does not get d, then either she gets an item before d,
or she gets o, because it is impossible for a1 to get an item after o otherwise another agent must get o in the first phase,
which is impossible as we just argued above.

– If a1 gets an item before d in the first phase, then in order for a1 to get o in the second phase, d must be chosen by
another agent. Clearly d cannot be chosen by an+1 before a1 gets o, because d is the bottom item by an+1, which
means that the only possibility for an+1 to get d is that an+1 is the last agent in π′. If d is chosen by aj with j ≤ n,
then because d, o are the bottom two items by aj , the last two agents in π′ must be ajBa1 . Therefore, when an+1

chooses an item in the second phase, o is still available, which means that an+1 gets o in π′, a contradiction to the
assumption that an+1 does not get her top-2 items.

– If a1 gets o in the first phase, then it means that another agent must get d in the first phase, which is impossible
because all other agents rank d within their bottom two positions, which means that the earliest round that any of
them can get d is 2n+ 1.

Let π denote the order over A that is obtained from the first phase of π′ by removing an+1, and them moving
all agents who get an item in D after a1. We claim that π is a solution to (A, I, P, a1, o), because when it is a1’s
round all items before o must be chosen and o has not been chosen (if another agent gets o before a1 in π then the
same agent must get an item in D in the first phase of π′, which contradicts the construction of π). This proves the
co-NP-completeness of the allocation problems mentioned in the theorem.

Proof of Theorem 13

Proof. We give agent a1 the first turns in each round. He is guaranteed to get s1. We now construct a bipartite graph
G = ((A \ {a1}) ∪ (I \ {s1}), E) in which each {i, o} ∈ E iff o is strictly more preferred for i than s2. We check
whether G admits a perfect matching. If G does not admit a perfect matching, we return no. Otherwise, there exists a
recursively balanced policy for which agent a1 gets s1 and s2.

Claim. G admits a perfect matching if and only if there a recursively balanced policy for which a1 gets {s1, s2}.

Proof. If G admits a perfect matching, then each agent in A \ {a1} can get a more preferred item than s2 in the first
round. If this particular allocation is not Pareto optimal for agents in A \ {a1} for items among I \ {s1}, we can easily
compute a Pareto optimal Pareto improvement over this allocation by implementing trading cycles as in setting of
house allocation with existing tenants. This takes at most O(n3). Hence, we can compute an allocation in which each
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agent inA\{a1} gets a strictly more preferred item than s2 and this allocation for agents inA\{a1} is Pareto optimal.
Since the allocation is Pareto optimal, we can easily build up a policy which achieves this Pareto optimal allocation
via the characterization of Brams. In the second round, a1 gets s2 and then subsequently we don’t care who gets what
because agent a1 has already got s1 and s2.

If G does not admit a perfect matching, then there is no allocation in which each agent in A \ {a1} get a strictly
better item than s2 in I \ {s1}. Hence in each policy in the first round, some agent in A \ {a1} will get s2.

Proof of Theorem 14

Proof. Membership in NP is obvious. We prove that top-k POSSIBLESET for k = 3 is NP-hard by a reduction
from POSSIBLEITEM for k = 1, which is NP-complete [Saban and Sethuraman, 2013]. Hardness for other k’s can
be proved similarly by constructing preferences so that the distinguished agent always get her top k − 2 items. Let
(A, I, P, a1, o) denote an instance of POSSIBLEITEM for k = 1, where A = {a1, . . . , an}, I = {o1, . . . , on}, o ∈ I ,
P = (P1, . . . , Pn) is the preference profile of the n agents, and we are asked wether it is possible for agent a1 to get
item o in some sequential allocation. Given (A, I, P, a1, o), we construct the following POSSIBLESET instance.

Agents: A′ = A ∪ {an+1} ∪ {d1, . . . , dn−1}.
Items: I ′ = I ∪ {c1, c2, c3} ∪D ∪ E ∪ F , where |D| = |E| = n− 1 and |F | = 3n− 1. We have |I ′| = 6n.
Preferences:

– The preferences of a1 is [P1 � others � c1 � c2 � c3].
– For any 2 ≤ j ≤ n, the preferences of aj is obtained from [Pj � others � c1 � c2 � c3 � E] by switching o and
E.

– The preferences for an+1 is [c1 � c2 � c3 � others].
– For all j ≤ n− 1, the preferences for dj is [D � ((I − {o}) ∪ E) � c3 � c2 � c1 � others].

We are asked whether agent an+1 can get items {c1, c2, c3}, which are her top-3 items.
If (A, I, P, a1, o) has a solution π, we show that the top-3 POSSIBLESET instance is a “Yes” instance by consider-

ing π′ = an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸
Phase 1

B an+1 B d1 B · · ·B dn−1 BA︸ ︷︷ ︸
Phase 2

B an+1 B others︸ ︷︷ ︸
Phase 3

. In the first phase an+1 gets

c1; dj’s get D a1 gets o and other agents in A get n− 1 items in (I −{o})∪E. In the second phase an+1 gets c2; dj’s
get the remaining n− 1 items in (I − {o}) ∪ E; agents in A get n items in F . In the third phase an+1 gets c3.

Suppose the top-3 POSSIBLESET instance is a “Yes” instance and agent an+1 gets {c1, c2, c3} in a recursively
balanced policy π′. Let π denote the order over which agents a1 through n choose items in the first phase of π′. We
obtain another order π∗ over A from π by moving all agents who choose an item in D after agent a1 without changing
the order of other agents. We claim that π∗ is a solution to (A, I, P, a1, o). For the sake of contradiction suppose π∗ is
not a solution to (A, I, P, a1, o). It follows that in the first phase of π′ agent a1 gets an item she ranks higher than o,
because no other agents can get o. This means that in the first phase n items in (I−{o})∪E are chosen byA. We note
that in the first phase dj’s must chose items in D. Then in the second phase at least one dj will choose {c3}, because
there are n− 1 of them and only 2(n− 1)− n = n− 2 items available before {c3}. This contradicts the assumption
that an+1 gets c3.

Proof of Theorem 16

Proof. We prove that an assignmentM is the outcome of all strict alternating policies iff in each round, each agent has
a unique most preferred item from among the unallocated items from the previous round. If in each round, each agent
gets the most preferred item from among the unallocated items from the previous round, the order does not matter in
any round. Hence all alternating policies result in M .

Now assume that it is not the case that in each round, each agent gets the most preferred item from among the
unallocated items from the previous round. Then, there exist at least two agent who have the same most preferred item
from among the remaining items. Therefore, a different relative order among such agents results in different allocations
which means that M is not the unique outcome of all strict alternating policies.
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Proof of Theorem 18

Proof. Membership in NP is obvious. We prove that top-k POSSIBLESET for k = 3 is NP-hard by a reduction from
POSSIBLEITEM for k = 1, which is NP-complete [Saban and Sethuraman, 2013]. The reduction is similar to the proof
of Theorem 14. Hardness for other k’s can be proved similarly by constructing preferences so that the distinguished
agent always get her top k − 2 items. Let (A, I, P, a1, o) denote an instance of POSSIBLEITEM for k = 1, where
A = {a1, . . . , an}, I = {o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn) is the preference profile of the n agents, and we are
asked wether it is possible for agent a1 to get item o in some sequential allocation. Given (A, I, P, a1, o), we construct
the following POSSIBLESET instance.

Agents: A′ = A ∪ {an+1} ∪ {d1, . . . , dn−1}.
Items: I ′ = I ∪ {c1, c2, c3} ∪D ∪ E ∪ F , where |D| = |E| = n− 1 and |F | = 3n− 1. We have |I ′| = 6n.
Preferences:

– The preferences of a1 is [P1 � others � c1 � c2 � c3].
– For any 2 ≤ j ≤ n, the preferences of aj is obtained from [Pj � others � c1 � c2 � c3 � E] by switching o and
E.

– The preferences for an+1 is [c1 � c2 � c3 � others].
– For all j ≤ n− 1, the preferences for dj is [D � ((I − {o}) ∪ E) � c3 � c2 � c1 � others].

We are asked whether agent an+1 can get items {c1, c2, c3}, which are her top-3 items.
If (A, I, P, a1, o) has a solution π, we show that the top-3 POSSIBLESET instance is a “Yes” instance by consid-

ering π′ = an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸
Phase 1

B an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸
Phase 2

B an+1 B d1 B · · ·B dn−1 B π︸ ︷︷ ︸
Phase 3

. In the first

phase an+1 gets c1, a1 gets o; other agents in A get n − 1 items in (I − {o}) ∪ E; dj’s get D. In the second phase
an+1 gets c2; dj’s get the remaining n − 1 items in (I − {o}) ∪ E; agents in A get n items in F . In the third phase
an+1 gets c3.

Suppose the top-3 POSSIBLESET instance is a “Yes” instance and agent an+1 gets {c1, c2, c3} in a strict alternation
policy π′. Let π denote the order over which agents a1 through n choose items in the first phase of π′. We obtain
another order π∗ over A from π by moving all agents who choose an item in D after agent a1 without changing the
order of other agents. We claim that π∗ is a solution to (A, I, P, a1, o). For the sake of contradiction suppose π∗ is
not a solution to (A, I, P, a1, o). It follows that in the first phase of π′ agent a1 gets an item she ranks higher than o,
because no other agents can get o. This means that in the first phase n items in (I−{o})∪E are chosen byA. We note
that in the first phase dj’s must chose items in D. Then in the second phase at least one dj will choose {c3}, because
there are n− 1 of them and only 2(n− 1)− n = n− 2 items available before {c3}. This contradicts the assumption
that an+1 gets c3.

Proof of Theorem 19

Proof Sketch. The proof is similar to the proof of Theorem 12. Membership in coNP is obvious. By Lemma 1 it suffices
to show coNP-hardness for NECESSARYITEM and top-k NECESSARYSET. We will prove the co-NP-hardness for them
for k = 2 by the same reduction from POSSIBLEITEM for k = 1, which is NP-complete [Saban and Sethuraman,
2013]. The proof for other k ≥ 2 can be done similarly by constructing preferences so that the distinguished agent
always get her top k − 2 items. Let (A, I, P, a1, o) denote an instance of POSSIBLEITEM for k = 1, where A =
{a1, . . . , an}, I = {o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn) is the preference profile of the n agents, and we are asked
wether it is possible for agent a1 to get item o by some strict alternation policy. Given (A, I, P, a1, o), we construct
the following necessary allocation instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪ {c, d} ∪D, where |D| = n+ 1.
Preferences:

– The preferences of a1 is obtained from P1 by inserting d right before o, and append the other items such that the
bottom item is c.
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– For any 2 ≤ j ≤ n, the preferences of aj is obtained from Pj by replacing o by D and then appending the
remaining items such that the bottom items are c � d � o.

– The preferences for an+1 is [c � o � others � d].

For NECESSARYITEM, we are asked whether agent an+1 always get item o; for top-k NECESSARYSET, we are
asked whether agent an+1 always get {c, o}, which are her top-2 items.

Suppose the (A, I, P, a1, o) has a solution, denoted by π. We claim that π′ = π B an+1︸ ︷︷ ︸
Phase 1

Bπ B an+1︸ ︷︷ ︸
Phase 2

is a “No”

answer to the NECESSARYITEM and top-k NECESSARYSET instance. Following π′, in phase a1 gets d gets d and
an+1 gets c. In phase 2 a1 gets o, which means that an+1 does not get item o after all items are allocated.

We next show that if NECESSARYITEM or top-k NECESSARYSET instance is a “No” instance, then the POSSI-
BLEITEM instance is a “Yes” instance. We note that an+1 always get item c in the first phase of any strict alternation
policy. Let π′ denote a strict alternation policy where an+1 does not get o. If a1 does not get d in the first phase, then
following a similar argument in the proof of Theorem 12, we have that an+1 gets o in the second phase, which is a
contradiction. Therefore, a1 must get d in the first phase.

Let π denote the order over A that is obtained from the first phase of π′ by removing an+1, and them moving
all agents who get an item in D after a1. We claim that π is a solution to (A, I, P, a1, o), because when it is a1’s
round all items before o must be chosen and o has not been chosen (if another agent gets o before a1 in π then the
same agent must get an item in D in the first phase of π′, which contradicts the construction of π). This proves the
co-NP-completeness of the allocation problems mentioned in the theorem.

Proof of Theorem 22

Proof. Membership in NP and coNP are obvious. By Lemma 1, if NECESSARYITEM is coNP-hard then NECESSARY-
SUBSET is coNP-hard. We show the NP-hardness of top-k POSSIBLESET and coNP-hardness of NECESSARYITEM
by the same reduction from EXACT 3-COVER (X3C) for k = 2. Hardness for other k can be proved similarly by
constructing preferences so that the distinguished agent always get her top k − 2 items. In an X3C instance (S , X),
we are given S = {S1, . . . , St} and X = {x1, . . . , xq}, such that q is a multiple of 3 and for all j ≤ t, |Sj | = 3 and
Sj ⊆ X; we are asked whether there exists a subset of q/3 elements of S whose union is exactly X .

Given an X3C instance (S , X), we construct the following agents, items, and preferences.
Agents: A = {a} ∪

⋃
j≤t Sj ∪X ∪C, where C = {c1, . . . , cq/3} and Sj = {Sj , Sj1j , S

j2
j , S

j1
j } such that j ≤ t,

j1, j2, j3 are the indices of elements Sj . That is, Sj = {xj1 , xj2 , xj3}. We note that |A| = 4t+ 4q/3 + 1.
Items: 8t+8q/3+ 2 items are defined as follows. Let I = {a, b, c} ∪

⋃
j≤t Sj ∪D ∪E ∪F , where |D| = 8q/3,

E = q/3, and F = 4t− q/3− 1. We note that |I| = 2|A|. For each i ≤ q, we let Ki denote the sets in S that cover
xi. That is, Ki = {S ∈ S : xi ∈ S}.

Preferences are illustrated in Table 2.

Agent Preferences
a: a � b � c � others

∀j, Sj : Sj � a � D � b � others � c

∀j, s = 1, 2, 3, Sjs
j : Sj � Sjs

j � a � D � b � others � c

∀i, xi: Ki � b � others � c

∀k ≤ q/3, ck: a � S1 � . . . � St � E � others � c

Table 2: Agents’ preferences, where Ki = {S ∈ S : xi ∈ S}.

For top-2 POSSIBLESET, we are asked whether agent a can get {a, b}. For NECESSARYITEM, we are asked
whether agent a always get item c.
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If the X3C instance has a solution, w.l.o.g. {S1, . . . , Sq/3}, we show that there exists a solution to the constructive
control problem and destructive control problem described above. For each j ≤ t, we let Lj = Sj B Sj1j B Sj2j B Sj3j .
Let the order π over agents be the following.

π = Lq/3+1 B Lq/3+2 B · · ·B Lt BX B aB C B L1 B · · ·B Lq/3

The balanced alternation policy is thus π B inv(π), where inv(π) is the inverse order of π. It is not hard to verify that
in the first round the allocation w.r.t. π is as follows:

– for each j ≥ q/3 + 1, agent Sj gets item Sj and agent Sjsj gets item Sjsj ;
– for each i ≤ q, agent xi get Sij for the (only) j ≤ q/3 such that xi ∈ Sj ;
– agent a gets item a;
– for each k ≤ q/3, agent ck gets item Sk;
– for each j ≤ q/3 and s = 1, 2, 3, agent Sj gets an item in D and agent Sjsj gets an item in D.

In the second round, the allocation w.r.t. inv(π) is as follows:

– for each j ≤ q/3 and s = 1, 2, 3, agent Sj gets an item in D and agent Sjsj gets an item in D; all items in D
(|D| = 8q/3) are allocated;

– for each k ≤ q/3, agent ck gets an item in E; all items in E are allocated (|E| = q/3).
– agent a gets item b;
– other agents get the remaining items.

Specifically, agent a gets {a, b}.
Now suppose the constructive control has a solution, namely there exists an order π over A such that in the

sequential allocation w.r.t. π B inv(π) agent a gets {a, b}. We next show that the X3C instance has a solution. For
convenience, we divide the sequential allocation of π B inv(π) into three stages:

– Stage 1: turns before agent a’s first turn, where each agent ranked before agent a in π chooses an item;
– Stage 2: turns between agent a’s first turn and agent a’s second turn, where each agent ranked after agent a in π

chooses two items;
– Stage 3: turns after agent a’s second turn, where each agent ranked before agent a in π chooses an item.

Claim. Agents in C must be after agent a in π, and they get at least q/3 items in S .

Proof. Because any agent inC ranks item a at their top, all of them must be after agent a in π. We note that |C| = q/3,
|E| = q/3, and each agent in C will choose two items before agent a’s second turn. Therefore, agents in C must get at
least q/3 items in S , otherwise one of them will choose b, which contradicts the assumption that agent a gets b.

W.l.o.g. let {S1, . . . , Sq′} (for some q′ ≥ q/3) be the items in S that are chosen by agents in C.

Claim. q′ = q/3. For all j ≤ q/3, agents in Sj are ranked after agent a in π, and for all j ≥ q/3 + 1, agents in Sj

are ranked before agent a in π.

Proof. Let K =
⋃
j≤t Sj ∪ D denote the set of 4t + 8q/3 items. The crucial observation is that for any agent

s ∈
⋃
j≤t Sj , if s is ranked before a in π, then in the sequential allocation she will get at least one item in K, because

she picks an item in K in Stage 1, and maybe another item in K in Stage 3; and if s is ranked after a in π, then in the
sequential allocation she will get exactly two items in K in Stage 2. Moreover, each agent in X must get at least one
item in K and agents in C must get at least q/3 items in K. Therefore, agents in

⋃
j≤t Sj get no more than 4t+4q/3

items in K. Because |
⋃
j≤t Sj | = 4t, at most 4q/3 of these agents are ranked after a in π.

On the other hand, for all j ≤ q′, agents in Sj must be ranked after all agents in C in π, otherwise some item Sj
would have been allocated to an agent in Sj (because all of them rank item Sj at the top). By Claim 9 all agents in
C must be ranked after agent a in π, which means that for all j ≤ q′, all agents in Sj are ranked after agent a in π.
Because q′ ≥ q/3, we must have that q′ = q/3 and for all j ≤ q/3, agents in Sj are ranked after agent a in π, and for
all j ≥ q/3 + 1, agents in Sj are ranked before agent a in π.
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Finally, we are ready to show that {S1, . . . , Sq/3} is an exact cover of X . For the sake of contradiction suppose xi
is not covered. Let Sij (with j > q/3) denote an item that agent xi gets in the sequential allocation. Because agents in
Sj are before a in π, it follows that agent Sij must get item Sj (because her top-ranked items are Sj , Sij , a). However,
in this case agent Sj must be allocated item a, which contradicts the assumption that agent a gets item a. Therefore,
{S1, . . . , Sq/3} is an exact cover of X . This proves the top-2 POSSIBLESET is NP-complete.

We note that item c is the most undesirable item for all agents except agent a, which means that agent a gets item
c if and only if she does not get item a and b. This proves that the NECESSARYITEM is coNP-complete.

Proof of Theorem 23

Proof. Membership in coNP is obvious. We prove that top-k NECESSARYSET for k = 2 is coNP-hard by a re-
duction from POSSIBLEITEM for k = 1, which is NP-complete [Saban and Sethuraman, 2013]. Hardness for other
k’s can be proved similarly by constructing preferences so that the distinguished agent always get her top k − 2
items. Let (A, I, P, a1, o) denote an instance of possible allocation problem for k = 1, where A = {a1, . . . , an},
I = {o1, . . . , on}, o ∈ I , P = (P1, . . . , Pn), and we are asked wether it is possible for agent a1 to get item o in some
sequential allocation. Given (A, I, P, a1, o), we construct the following top-2 NECESSARYSET instance.

Agents: A′ = A ∪ {an+1}.
Items: I ′ = I ∪ {c1, c2} ∪D, where |D| = n. We have |I ′| = 2n+ 2.
Preferences:

– The preferences of a1 is obtained from P1 by inserting c2 right after o, and then append D � c1.
– For any j ≤ n, the preferences of aj is obtained from [Pj � D � c2 � c1] by switching o and D.
– The preferences for an+1 is [c1 � c2 � others � o].

We are asked whether agent an+1 always gets items {c1, c2}, which are her top-2 items.
If (A, I, P, a1, o) has a solution π, we show that the top-2 NECESSARYSET instance is a “No” instance by con-

sidering π′ = an+1 B π B π B an+1. In the first phase of π′, an+1 gets c1 and a1 gets o. In the third phase a1 gets
c2.

Suppose the top-2 NECESSARYSET instance is a “No” instance and agent an+1 does not get {c1, c2} in an balanced
alternation policy π′. It is easy to see that an+1 must get c1 in the first phase. Suppose a1 does not get o in the first
phase, then in the beginning of the second phase both o and c2 are still available. In this case an+1 must get c2, because
clearly none of a2 through an can get c2, which means that a1 must get c2 in the second phase. However, this means
that o must be chosen by another agent before, which is impossible since it is ranked in the bottom position after c1
and c2 are removed by all other agents. Let π∗ denote a linear order over A obtained from the restriction of the first
phase of π′ on A by moving all agents who choose an item in D after agent a1 without changing other orders. It is not
hard to see that π∗ is a solution to (A, I, P, a1, o).
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