
Constraints (2011) 16:372–406
DOI 10.1007/s10601-011-9110-y

New algorithms for max restricted path consistency

Thanasis Balafoutis · Anastasia Paparrizou ·
Kostas Stergiou · Toby Walsh

Published online: 29 June 2011
© Springer Science+Business Media, LLC 2011

Abstract Max Restricted Path Consistency (maxRPC) is a local consistency for
binary constraints that enforces a higher order of consistency than arc consistency.
Despite the strong pruning that can be achieved, maxRPC is rarely used because
existing maxRPC algorithms suffer from overheads and redundancies as they can
repeatedly perform many constraint checks without triggering any value deletions.
In this paper we propose and evaluate techniques that can boost the performance
of maxRPC algorithms by eliminating many of these overheads and redundancies.
These include the combined use of two data structures to avoid many redundant
constraint checks, and the exploitation of residues to quickly verify the existence
of supports. Based on these, we propose a number of closely related maxRPC
algorithms. The first one, maxRPC3, has optimal O(end3) time complexity, displays
good performance when used stand-alone, but is expensive to apply during search.
The second one, maxRPC3rm, has O(en2d4) time complexity, but a restricted version
with O(end4) complexity can be very efficient when used during search. The other
algorithms are simple modifications of maxRPC3rm. All algorithms have O(ed)

space complexity when used stand-alone. However, maxRPC3 has O(end) space

This paper is an extended version of [1] that appeared in the proceedings of CP-2010.

T. Balafoutis
Department of Information and Communication Systems Engineering,
University of the Aegean, University Hill, Administration Bldg., 81100,
Mytilene, Lesvos, Greece

A. Paparrizou · K. Stergiou (B)
Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Karamanli & Lygeris, 50100 Kozani, FL, Greece
e-mail: kstergiou@uowm.gr

A. Paparrizou
e-mail: apaparrizou@uowm.gr

T. Walsh
NICTA, University of New South Wales, Sydney, NSW 2052, Australia

Constraints (2011) 16:372–406 373

complexity when used during search, while the others retain the O(ed) complexity.
Experimental results demonstrate that the resulting methods constantly outperform
previous algorithms for maxRPC, often by large margins, and constitute a viable
alternative to arc consistency on some problem classes.

Keywords Constraint propagation · Binary constraints · Local consistency

1 Introduction

Max Restricted Path Consistency (maxRPC) is a strong domain filtering consistency
for binary constraints introduced in 1997 by Debruyne and Bessiere [14]. maxRPC
achieves a stronger level of local consistency than arc consistency (AC), and in
[15] it was identified, along with singleton AC (SAC), as a promising alternative
to AC. Although SAC has received considerable attention since, maxRPC has
been comparatively overlooked. Fewer new algorithms have been proposed and
their experimental evaluation has been very limited. In this paper we propose new
algorithms for maxRPC and evaluate them empirically on a wide range of problems.

The basic idea of maxRPC is to delete any value a of a variable x that has no arc
consistency (AC) or path consistency (PC) support in a variable y that is constrained
with x. A value b is an AC support for a if the two values are compatible, and it is
also a PC support for a if this pair of values is path consistent. A pair of values (a, b)

is path consistent iff for every third variable there exists at least one value, called a
PC witness, that is compatible with both a and b .

The first algorithm for maxRPC was proposed in [14], and two more algorithms
have been proposed since then [18, 28]. The algorithms of [14] and [28] have
been evaluated on random problems only, while the algorithm of [18] has not
been experimentally evaluated at all. Despite achieving stronger pruning than AC,
existing maxRPC algorithms suffer from overhead and redundancies as they can
repeatedly perform many constraint checks without triggering any value deletions.
These constraint checks occur when a maxRPC algorithm searches for an AC support
for a value and when, having located one, it checks if it is also a PC support by
looking for PC witnesses in other variables. As a result, the use of maxRPC during
search often slows down the search process considerably compared to AC, despite
the savings in search tree size.

In this paper we propose techniques to improve the applicability of maxRPC
by eliminating some of these redundancies while keeping a low space complexity.
We also investigate approximations of maxRPC that only make slightly fewer value
deletions in practice, while being significantly faster. We first demonstrate that we
can avoid many redundant constraint checks and speed up the search for AC and
PC supports through the careful and combined application of two data structures
already used by maxRPC and AC algorithms [10, 18, 22, 23, 28]. Based on this, we
propose a coarse-grained maxRPC algorithm called maxRPC3 with optimal O(end3)

time complexity. This algorithm displays good performance when used stand-alone
(e.g. for preprocessing), but is expensive to apply during search. We then propose
another maxRPC algorithm, called maxRPC3rm. This algorithm has O(en2d4) time
complexity, but a restricted version with O(end4) complexity can be very efficient
when used during search through the use of residues. Both algorithms have O(ed)

374 Constraints (2011) 16:372–406

space complexity when used stand-alone. However, maxRPC3 has O(end) space
complexity when used during search, while maxRPC3rm retains the O(ed) complexity.

We further investigate the use of residues to improve the performance of maxRPC
filtering during search. To be precise, we adapt ideas from [23] to obtain two variants
of the maxRPC3rm algorithm. The first one achieves a better time complexity but
is inferior to maxRPC3rm in practice, while the second one exploits in a simple way
information obtained in the initialization phase of maxRPC3rm to achieve competitive
performance.

Similar algorithmic improvements can be applied to light maxRPC (lmaxRPC), an
approximation of maxRPC [28]. This achieves a lesser level of consistency compared
to maxRPC, but still stronger than AC, and is more cost-effective when used during
search. Experiments confirm that lmaxRPC is indeed a considerably better option
than maxRPC when used throughout search. We also propose a number of heuristics
that can be used to order the searches for PC supports and witnesses during the
execution of a coarse-grained maxRPC algorithm, and in this way potentially save
constraint checks.

Finally, we make a detailed experimental evaluation of new and existing algo-
rithms on various problem classes. This is the first wide experimental study of al-
gorithms for maxRPC and its approximations on benchmark non-random problems.
We ran experiments with maxRPC algorithms under both a 2-way and a d-branching
scheme. Results show that our methods constantly outperform existing algorithms,
often by large margins, especially when 2-way branching is used. When applied
during search our best method offers up to one order of magnitude reduction in
constraint checks, while cpu times are improved up to three times compared to
the best existing algorithm. In addition, these speed-ups enable a search algorithm
that applies lmaxRPC to compete with or outperform MAC on some problems.
Finally, we explore a simple hybrid propagation scheme where AC and maxRPC
are interleaved under 2-way branching. Results demonstrate that instantiations of
this scheme offer an efficient alternative to the application of a fixed propagation
method (either AC or maxRPC) throughout search.

At this point we need to note that research on higher-order consistencies for
binary constraints is not only motivated by the need to solve binary CSPs faster.
Although there are some real problems that can be modeled using binary con-
straints only (e.g. frequency assignment problems), most real-life problems involve
non-binary constraints. However, binary constraints still play an important role in
Constraint Programming. First of all, some real problems include binary as well
as non-binary constraints. Since applying higher-order consistencies on binary con-
straints is generally cheaper, such problems may benefit from applying a strong con-
sistency on their binary part. Second, there are certain global constraints that can be
reformulated as collections of binary or other low-arity constraints (decomposition
methods), and indeed this is the approach taken by some solvers [9, 25]. Maintaining
a strong local consistency on these reformulations may reduce the overall resolution
time. Finally, as past experience has shown, research on binary constraints can inspire
corresponding work on non-binary ones.

The remainder of this paper is structured as follows. Section 2 reviews background
information on CSPs and related work on maxRPC algorithms. Section 3 presents
two new algorithms, maxRPC3, maxRPC3rm and their corresponding approximations,
and analyzes their complexities. Section 4 discusses the further exploitation of

Constraints (2011) 16:372–406 375

residues on two variations of the maxRPC3rm algorithm. Section 5 discusses heuristics
for (l)maxRPC algorithms, and Section 6 presents our experimental results on
benchmark problems. Finally, Section 7 concludes and discusses possible directions
for future work.

2 Background and related work

A Constraint Satisfaction Problem (CSP) is defined as a tuple (X, D, C) where: X =
{x1, . . . , xn} is a set of n variables, D = {D0(x1), . . . , D0(xn)} is a set of initial domains,
one for each variable, with maximum cardinality d, and C = {c1, . . . , ce} is a set of e
constraints. Each constraint c is a pair (var(c), rel(c)), where var(c) = {x1, . . . , xm} is
an ordered subset of X, and rel(c) is a subset of the Cartesian product D0(x1) × . . . ×
D0(xm) that specifies the allowed combinations of values for the variables in var(c).
In the following, a binary constraint c with var(c) = {xi, xj} will be denoted by ci, j,
and D(xi) will denote the current domain of variable xi.

Each tuple τ of a constraint c is an ordered list of values (a1, . . . , am) such that
aj ∈ D0(xj), j = 1, . . . , m. That is, a tuple τ ∈ rel(c) is a combination of values for
the variables in the scope of rel(c). Tuple τ satisf ies constraint c iff τ ∈ rel(c). Tuple
τ = (a1, . . . , am) is valid iff aj ∈ D(xj), for j = 1, . . . , m. In words, a valid tuple is an
assignment of values to the variables involved in the constraint such that none of
these values has been removed from the domain of the corresponding variable.

The process which verifies whether a given tuple is allowed by (i.e. satisfies) a
constraint c is called a constraint check. A constraint c can be either defined exten-
sionally by explicitly giving rel(c), or (usually) intensionally by implicitly specifying
rel(c) through a predicate or arithmetic function. A binary CSP is a CSP where each
constraint involves at most two variables and is typically represented by a constraint
graph where nodes correspond to variables and edges correspond to constraints. We
assume that binary constraint checks are performed in constant time.

In a binary CSP, a value ai ∈ D(xi) is arc consistent (AC) iff for every constraint
ci, j there exists a value aj ∈ D(xj) s.t. the pair of values (ai, aj) satisfies ci, j. In this case
aj is called an AC-support of ai. A variable is AC iff all its values are AC. A problem
is AC iff there is no empty domain in D and all the variables in X are AC.

Complete algorithms for CSPs are based on exhaustive backtracking search
interleaved with constraint propagation. Search is typically guided by variable and
value ordering heuristics and makes use of a specific branching scheme like 2-way or
d-way branching.

In the experiments presented in this paper we have used the dom/wdeg variable
ordering heuristic which is one of the most efficient general-purpose heuristics for
CSPs [12]. This heuristic assigns a weight to each constraint, initially set to one. Each
variable is associated with a weighted degree (wdeg), which is the sum of the weights
over all constraints involving the variable and at least another (unassigned) variable.
The dom/wdeg heuristic chooses the variable with minimum ratio of current domain
size to weighted degree.

The two most widely used branching schemes are 2-way and d-way. In 2-way
branching, after a variable x is chosen and a value ai ∈ D(x) is selected, two branches
are created [26]. In the left branch ai is assigned to x, namely the constraint x = ai is
added to the problem and is propagated. In the right branch the constraint x �= ai is

376 Constraints (2011) 16:372–406

added to the problem and is propagated. If the left branch fails and the propagation
of x �= ai succeeds then any variable can be selected next (not necessarily x). If both
branches fail then the algorithm backtracks. In d-way branching, after variable x is
selected, d branches are built, each one corresponding to one of the d possible value
assignments of x. If the branch corresponding to assignment x = ai fails, the next
available value assignment to x is tried (next branch), and so on. If all d branches fail
then the algorithm backtracks. In Section 6 we report results from experiments with
both branching schemes.

2.1 maxRPC

Several local consistencies stronger than AC have been proposed in the literature.
Domain filtering consistencies are especially interesting because they only filter
values from domains and as a result they do not alter either the constraint graph
by adding new constraints, or the constraints’ relations by removing inconsistent
tuples [15]. Examples of domain filtering consistencies for binary constraints include
restricted path consistency [4], path inverse consistency and neighborhood inverse
consistency [16], max restricted path consistency [14], and singleton arc consistency
[15]. The most famous local consistency that is not cast as domain filtering is path
consistency. When enforced, path consistency can remove inconsistent 2-tuples from
binary relations and/or introduce new binary constraints. Another recent example of
such a local consistency is dual consistency [21].

The detailed study of domain filtering consistencies given in [15] concluded
that maxRPC and SAC are promising strong consistencies that could be viable
alternatives to AC. SAC, which is stronger than maxRPC, has received considerable
attention since, and significant progress has been made regarding new SAC algo-
rithms [3, 6, 7, 20]. However, there is no concrete evidence yet that SAC can be
cost-effective when maintained during search.

maxRPC was introduced in [14] as an extension to Restricted Path Consistency
(RPC). A binary CSP is RPC iff it is AC and for each constraint ci, j and each value
ai ∈ D(xi) that has a single AC-support aj ∈ D(xj), the pair of values (ai, aj) is path
consistent (PC) [4]. A pair of values (ai, aj) is PC iff for any third variable xk there
exists a value ak ∈ D(xk) s.t. ak is an AC-support of both ai and aj. In this case we say
that aj is a PC-support of ai in xj and ak is a PC-witness for the pair (ai, aj) in xk.

A value ai ∈ D(xi) is max restricted path consistent (maxRPC) iff it is AC and for
each constraint ci, j there exists a value aj ∈ D(xj) that is an AC-support of ai s.t. the
pair of values (ai, aj) is path consistent [14]. A variable is maxRPC iff all its values are
maxRPC. A problem is maxRPC iff there is no empty domain in D and all variables
in X are maxRPC.

A local consistency related to maxRPC is Path Inverse Consistency (PIC) [16].
A value ai ∈ D(xi) is PIC iff for all xj, xk ∈ X, s.t. xi �= xj �= xk �= xi, there exist bj ∈
D(xj) and dk ∈ D(xk), s.t. the assignments (xi, ai), (xj, bj) and (xk, dk) satisfy the con-
straints between the three variables. Less formally, ai is PIC iff it is AC and it can be
extended to all the 3-cliques of variables containing xi. A variable is PIC iff all its val-
ues are PIC. A problem is PIC iff there is no empty domain in D and all variables in X
are PIC.

A theoretical analysis and experimental results presented in [15] demonstrated
that maxRPC is more efficient compared to RPC and PIC. Hence it was identified as

Constraints (2011) 16:372–406 377

a promising alternative to AC. This is why we focus on this local consistency in this
paper.

Three algorithms for achieving maxRPC have been proposed in the literature so
far. The first one, called maxRPC1 [14], is a fine-grained algorithm based on AC-6
[5] and has optimal O(end3) time complexity and O(end) space complexity. The
second algorithm, called maxRPC2 [18], is a coarse-grained algorithm that uses ideas
similar to those used by the AC algorithm AC2001/3.1 to achieve O(end3) time and
O(ed) space complexity at the cost of some redundant checks compared to maxRPC1.
The third algorithm, maxRPCrm [28], is a coarse-grained algorithm based on AC3rm

[22]. The time and space complexities of maxRPCrm are O(en2d4) and O(end). Note
that in [28] the complexities are given as O(eg + ed3 + csd4) and O(ed + cd), where
c is the number of 3-cliques, g is the maximum degree of a variable and s is the
maximum number of 3-cliques that share the same single constraint in the constraint
graph. Considering that c is O(en) and s is O(n), we can derive the complexities
for maxRPCrm given here. This algorithm has a higher time complexity than the
other two, but it has some advantages compared to them because of its lighter
use of data structures during search (this is explained below and in Section 3.2).
Finally, maxRPCEn1 is a fine-grained algorithm closely related to maxRPC1 [13].
This algorithm is based on AC-7 [8] and achieves maxRPCEn, a local consistency
stronger than maxRPC.

Among the three algorithms maxRPC2 seems to be the most promising for stand-
alone use as it has a better time and space complexity than maxRPCrm without
requiring heavy data structures or complex implementation as maxRPC1 does. On
the other hand, maxRPCrm can be better suited for use during search as it avoids the
costly maintainance of data structures as explained below.

Central to maxRPC2 is the LastPC data structure, as we call it here. For each
constraint ci, j and each value ai ∈ D(xi), LastPCxi,ai,xj gives the most recently discov-
ered PC-support of ai in D(xj). maxRPC2 maintains this data structure incrementally.
This means that a copy of LastPC is made when moving forward during search
(i.e. after a successfully propagated variable assignment) and LastPC is restored to
its previous state after a failed variable assignment (or value removal in the case
of 2-way branching). Data structures with such a property are often referred to as
backtrackable. Their use implies an increased space complexity as copies need to be
made while search progresses down a branch. On a brighter note, since LastPC is
backtrackable, maxRPC2 displays the following behavior: When looking for a PC-
support for ai in D(xj), it first checks if LastPCxi,ai,xj is valid. If it is not, it searches
for a new PC-support starting from the value immediately after LastPCxi,ai,xj in D(xj).
In this way a good time complexity bound is achieved.

On the other hand, maxRPCrm uses a data structure similar to LastPC to store
residual supports or simply residues, i.e. supports that have been discovered during
execution and stored for future use, but does not maintain this structure incremen-
tally (it only needs one copy). Therefore, no additional actions need to be taken
(copying or restoration) when moving forward or after a fail. Such data structures
are often referred to as backtrack-stable. When looking for a PC-support for ai in
D(xj), if the residue LastPCxi,ai,xj is not valid then maxRPCrm searches for a new PC-
support from scratch in D(xj). This results in higher time complexity, but crucially
does not require costly maintainance of LastPC during search. The algorithm also
makes use of residues for the PC-witnesses found in every third variable for each

378 Constraints (2011) 16:372–406

pair (ai, aj). These are stored in a data structure with an O(end) space complexity.
The initialization of this structure causes an extra overhead which can be significant
on very large problems.

A major overhead of both maxRPC2 and maxRPCrm is the following. When
searching for a PC-witness for a pair of values (ai, aj) in a third variable xk, they
always start the search from scratch, i.e. from the first available value in D(xk).
As these searches can be repeated many times during search, there can be many
redundant constraint checks. In contrast, maxRPC1 manages to avoid searching from
scratch through the use of an additional data structure. This saves many constraint
checks, albeit resulting in O(end) space complexity and requiring costly maintainance
of this data structure during search. The algorithms we describe below largely
eliminate these redundant constraint checks with lower space complexity, and in the
case of maxRPC3rm with only light use of data structures.

3 New algorithms for maxRPC

We first recall the basic ideas of algorithms maxRPC2 and maxRPCrm as described
in [18] and [28]. Both algorithms use a propagation list Q where variables whose
domain is pruned are added. Once a variable xj is removed from Q all neighboring
variables are revised to delete any values that are no longer maxRPC. For any value
ai of such a variable xi there are three possible reasons for deletion:

– The first is when ai no longer has an AC-support in D(xj).
– The second, which we call PC-support loss hereafter, is when the unique PC-

support aj ∈ D(xj) for ai has been deleted.
– The third, which we call PC-witness loss hereafter, is when the unique PC-witness

aj ∈ D(xj) for the pair (ai, ak), where ak is the unique PC-support for ai on some
variable xk, has been deleted.

If any of the above cases occurs then value ai is no longer maxRPC.
We now present the pseudocodes for the new maxRPC algorithms, maxRPC3

and maxRPC3rm. Both algorithms utilize data structures LastPC and LastAC which
have the following functionalities: For each constraint ci, j and each value ai ∈ D(xi),
LastPCxi,ai,xj and LastACxi,ai,xj point to the most recently discovered PC and AC
supports of ai in D(xj) respectively. Initially, all LastPC and LastAC pointers are
set to a special value NIL, considered to precede all values in any domain. As will
be explained, algorithm maxRPC3 updates the LastPC and LastAC structures in-
crementally like maxRPC2 and AC2001/3.1 respectively do. In contrast, algorithm
maxRPC3rm uses these structures as residues like maxRPCrm and AC3rm do.

3.1 maxRPC3

The main part of maxRPC3 is described in Algorithm 1. Since maxRPC3 is coarse-
grained, it uses a propagation list Q (typically implemented as a queue) where
variables that have their domain filtered are inserted. This may happen during
initialization (explained below) or when PC-support or PC-witness loss is detected.
When a variable xj is removed from Q, at line 4, each variable xi constrained with xj

Constraints (2011) 16:372–406 379

must be checked for possible AC-support, PC-support or PC-witness loss. We now
discuss the overall function of the algorithm before moving on to explain it in detail.

For each value ai ∈ D(xi), Algorithm 1 first checks whether ai has suffered AC-
support or PC-support loss in D(xj) by calling function checkPCsupLoss, provided
that LastPCxi,ai,xj is not valid anymore (line 7). This function, which will be explained
in detail below, returns false if no new PC-support exists for ai in D(xj) and as a result
ai is deleted (line 8). If ai is not deleted, either because LastPCxi,ai,xj is still valid or
because a new PC-support for ai has been found in D(xj), then possible PC-witness
loss is examined by calling function checkPCwitLoss (line 11). If this function returns
false, then ai is deleted (line 12). If a value is deleted from D(xi) then xi is inserted to
Q (lines 9 and 13). After deleting values from the domain of a variable, the algorithm
checks whether the domain is empty (line 14). If so, the algorithm returns FAILURE.

An important remark about Algorithm 1 is the following. Assuming a value ai has
been examined in lines 6–13 and has not been deleted, then this does not necessarily
mean that ai is maxRPC. Indeed there is the possibility that LastPCxi,ai,xj is valid
but the last PC-witness of the pair (ai, LastPCxi,ai,xj) in some variable xk has been
deleted. Hence, if LastPCxi,ai,xj is the last PC-support of ai in D(xj) then ai is not
maxRPC. Such a situation will be identified at some point during the execution
of the algorithm once xk is removed from Q and its neighboring variables are
examined. This guarantees the algorithm’s completeness as will be further explained
in Section 3.4.

The initialization step of maxRPC3 (Function 2) is a brute-force function, where
each value ai of each variable xi is checked for being maxRPC. This is done by
iterating through the variables constrained with xi and looking for a PC-support for
ai in their domains. For each such variable xj and value aj ∈ D(xj), we first check if
the pair (ai, aj) is arc consistent by calling function isConsistent at line 6. isConsistent
returns true if (ai, aj) satisfies the constraint, meaning that aj AC-supports ai. In this
case LastACxi,ai,xj is set to aj (line 7). If aj is verified as an AC-support of ai, we
examine if it is also a PC-support by calling function searchPCwit. If searchPCwit
returns true (detailed analysis follows below), then LastPCxi,ai,xj is set to aj (line 10),
since aj is the most recently found PC-support for ai. Line 11 will be explained below
when algorithm maxRPC3rm is presented. Then, the next variable constrained with xi

will be considered, and so on.

Algorithm 1 maxRPC3
1: if ¬ initialization(Q, LastPC, LastAC) then
2: return FAILURE;
3: while Q �= ∅ do
4: Q ← Q−{xj};
5: for each xi ∈ X s.t. ci, j ∈ C do
6: for each ai ∈ D(xi) do
7: if LastPCxi,ai,xj /∈ D(xj) AND ¬ checkPCsupLoss(ai, xj) then

8: remove ai ;
9: Q ← Q ∪ {xi};

10: else
11: if ¬ checkPCwitLoss(xi, ai, xj) then
12: remove ai ;
13: Q ← Q ∪ {xi};
14: if D(xi) = ∅ then
15: return FAILURE;
16: return SUCCESS;

380 Constraints (2011) 16:372–406

Function 2 initialization(Q, LastPC, LastAC):boolean
1: for each xi ∈ X do
2: for each ai ∈ D(xi) do
3: for each xj ∈ X s.t. ci, j ∈ C do
4: maxRPCsupport ← FALSE;
5: for each aj ∈ D(xj) do
6: if isConsistent(ai, aj) then
7: LastACxi,ai,xj ← aj;

8: if searchPCwit(ai, aj) then
9: maxRPCsupport ← TRUE;

10: LastPCxi,ai,xj ← aj;

11: if (rm) then LastPCxj,aj,xi ← ai ;

12: break;
13: if ¬ maxRPCsupport then
14: remove ai ;
15: Q ← Q ∪ {xi};
16: break;
17: if D(xi) = ∅ then
18: return FALSE;
19: return TRUE;

If there is no AC-support in D(xj) for ai or none of the AC-supports is a PC-
support, then ai will be removed at line 14 and xi will be added to queue Q.
Eventually, ai is established to be maxRPC when a PC-support is found in each D(xj),
where xj has a constraint with xi. Finally, if function initialization causes an empty
domain (line 17), then maxRPC3 returs FAILURE in line 2 of Algorithm 1. Note that
initilization is called only when maxRPC3 is used stand-alone (e.g. for preprocessing)
and not during search, as in this case Q is initialized with the variable of the latest
decision.

Assuming the initialization phase succeeded, the propagation list Q will include
those variables that have their domain filtered. The main part of maxRPC3 (Algo-
rithm 1) starts when a variable xj is extracted from Q (line 4) in order to determine
whether a neighbouring variable (xi) has suffered PC-support or PC-witness loss due
to the filtering of the extracted variable’s domain. These checks are implemented
by calling functions checkPCsupLoss and checkPCwitLoss, at lines 7 and 11 of
Algorithm 1, for each value ai ∈ D(xi). If value LastPCxi,ai,xj is still in D(xj) line
7, then a possible PC-support has been immediately located (the PC-support will be
established later as explained in the remark about the algorithm given above) and
checkPCsupLoss is not called. In the opposite case where LastPCxi,ai,xj is not valid,
checkPCsupLoss is called to search for a new PC-support in D(xj).

3.1.1 Checking for PC-support loss

Function checkPCsupLoss (Function 3) takes advantage of the LastPC and LastAC
pointers to avoid starting the search for PC-support from scratch. Specifically, we
know that no PC-support can exist before LastPCxi,ai,xj , and also none can exist
before LastACxi,ai,xj , since all values before LastACxi,ai,xj are not AC-supports of
ai. Lines 1–4 in checkPCsupLoss take advantage of these to locate the appropriate
starting value bj. Note that maxRPC2 always starts the search for a PC-support from
the value after LastPCxi,ai,xj and thus may perform redundant constraint checks.

For every value aj ∈ D(xj), starting with bj, we first check if it is an AC-support of
ai by calling function isConsistent (line 6). If it is, then we can update LastACxi,ai,xj

Constraints (2011) 16:372–406 381

Function 3 checkPCsupLoss(ai, xj):boolean
1: if LastACxi,ai,xj ∈ D(xj) then

2: bj ← max(LastPCxi,ai,xj+1,LastACxi,ai,xj);

3: else
4: bj ← max(LastPCxi,ai,xj+1,LastACxi,ai,xj + 1);

5: for each aj ∈ D(xj), aj ≥ bj do
6: if isConsistent(ai, aj) then
7: if LastACxi,ai,xj /∈ D(xj) AND LastACxi,ai,xj > LastPCxi,ai,xj then

8: LastACxi,ai,xj ← aj;

9: if searchPCwit(ai, aj) then
10: LastPCxi,ai,xj ← aj;

11: return TRUE;
12: return FALSE;

under a certain condition (lines 7–8). Specifically, if LastACxi,ai,xj was deleted from
D(xj), then we can set LastACxi,ai,xj to aj in case LastACxi,ai,xj > LastPCxi,ai,xj .
If LastACxi,ai,xj ≤ LastPCxi,ai,xj then we cannot do this update, as there may be
AC-supports for ai between LastACxi,ai,xj and LastPCxi,ai,xj in the lexicographical
ordering. We then move on to verify the path consistency of (ai, aj) through function
searchPCwit (line 9). If no PC-support for ai is found in D(xj), checkPCsupLoss will
return false, ai will be deleted and xi will be added to Q in Algorithm 1. Otherwise,
LastPCxi,ai,xj is set to the discovered PC-support aj (line 10).

Function searchPCwit (Function 4) checks if a pair of values (ai,aj) is PC by
doing the following for each variable xk constrained with xi and xj.1 First, taking
advantage of the LastAC pointers, it makes a quick check in constant time which,
if successful, can save searching in the domain of xk. To be precise, it checks if
LastACxi,ai,xk is valid and LastACxi,ai,xk equals LastACxj,aj,xk , or if LastACxi,ai,xk is
valid and consistent with aj or if LastACxj,aj,xk is valid and consistent with ai (line 3).
The first part of the disjunction is of practical importance only, since if it is true,
then the second part will necessarily also be true and the condition will be verified.
However, including the first part of the condition saves constraint checks, and this
reflects on run times in certain problems.

If one of these conditions holds then we have found a PC-witness for (ai,aj)
without searching in D(xk) and we move on to the next variable constrained with
xi and xj. Note that neither maxRPC2 nor maxRPCrm can do this check as they do
not have the LastAC structure. In contrast, algorithm maxRPCEn1 is able to do
such reasoning. Experimental results in Section 6 demonstrate that these simple
conditions of line 3 can eliminate a very large number of redundant constraint checks.

If none of the conditions in line 3 of Function 4 holds, searching for a new PC-
witness in D(xk) is necessary. This is done by first calling function searchACsup
(Function 5), first with (ai, xk) and then with (aj, xk) as parameters. This function
locates the lexicographically smallest AC-supports for ai and aj in D(xk). More pre-
cisely, searchACsup checks if the current LastAC value exists in the corresponding
domain (line 1 of Function 5), and if not it searches for a new AC-support after that
(line 4). If it finds one, it updates LastAC accordingly (line 6).

1Since AC is enforced by the maxRPC algorithm, we only need to consider variables that form a
3-clique with xi and xj [24].

382 Constraints (2011) 16:372–406

Function 4 searchPCwit(ai, aj):boolean
1: for each xk ∈ X s.t. ci,k and c j,k ∈ C do
2: maxRPCsupport ← FALSE;
3: if ((LastACxi,ai,xk ∈ D(xk)) AND (LastACxi,ai,xk =LastACxj,aj,xk)) OR ((LastACxi,ai,xk ∈ D(xk)) AND

(isConsistent(LastACxi,ai,xk , aj))) OR ((LastACxj,aj,xk ∈ D(xk)) AND (isConsistent(LastACxj,aj,xk , ai)))
then

4: continue;
5: if ¬searchACsup(ai, xk) OR ¬searchACsup(aj, xk) then
6: return FALSE;
7: for each ak ∈ D(xk), ak ≥ max(LastACxi,ai,xk , LastACxj,aj,xk) do

8: if isConsistent(ai, ak) AND isConsistent(aj, ak) then
9: maxRPCsupport ← TRUE;

10: break;
11: if ¬ maxRPCsupport then
12: return FALSE;
13: return TRUE;

Then, going back to searchPCwit the search for a PC-witness starts from b k =
max{LastACxi,ai,xk , LastACxj,aj,xk} (line 7), exploiting the LastAC structure to save
redundant checks (a similar operation is performed by maxRPCEn1). This search
looks for a value of xk that is compatible with both ai and aj (line 8). If no AC-
support is found for either ai or aj (in which cases searchACsup returns false) or no
PC-witness is located, then subsequently searchPCwit will also return false.

3.1.2 Checking for PC-witness loss

In maxRPC3, if value ai is not removed after checking for possible PC-support loss
using checkPCsupLoss, function checkPCwitLoss (Function 6) is called to check for
PC-witness loss. This is done by iterating over the variables that are constrained
with both xi and xj. For each such variable xk, we first check if ak = LastPCxi,ai,xk

is still in D(xk) (line 3). If so then we verify if there is still a PC-witness in D(xj). As
in function searchPCwit, taking advantage of the LastAC pointers, we first make a
quick check in constant time which, if successful, can save searching in the domain of
xj. That is, we check if LastACxi,ai,xj is valid and LastACxi,ai,xj equals LastACxk,ak,xj

or if LastACxi,ai,xj is valid and consistent with ak or if LastACxk,ak,xj is valid and
consistent with ai (line 4). If none of these conditions holds then we search for a PC-
witness starting from bj = max{LastACxi,ai,xj, LastACxk,ak,xj} (line 8), after checking
the existence of AC-supports for ai and ak in D(xj), by calling searchACsup (line 7).
Right here the procedure is quite similar to searchPCwit. If there is no AC-support
in D(xj) for either ai or ak we avoid searching for a PC-witness in D(xj) and move on

Function 5 searchACsup(ai, xj):boolean
1: if LastACxi,ai,xj ∈ D(xj) then

2: return TRUE;
3: else
4: for each aj ∈ D(xj), aj > LastACxi,ai,xj do

5: if isConsistent(ai, aj) then
6: LastACxi,ai,xj ← aj;

7: return TRUE;
8: return FALSE;

Constraints (2011) 16:372–406 383

Function 6 checkPCwitLoss(xi, ai, xj):boolean
1: for each xk ∈ X s.t. ci,k and ck, j ∈ C do
2: witness ← FALSE;
3: if ak ← LastPCxi,ai,xk ∈ D(xk) then
4: if ((LastACxi,ai,xj ∈ D(xj)) AND (LastACxi,ai,xj=LastACxk,ak,xj)) OR ((LastACxi,ai,xj ∈

D(xj)) AND (isConsistent (LastACxi,ai,xj , ak))) OR ((LastACxk,ak,xj ∈ D(xj)) AND

(isConsistent(LastACxk,ak,xj , ai))) then

5: witness ← TRUE;
6: else
7: if searchACsup(xi, ai, xj) AND searchACsup(xk, ak, xj) then
8: for each aj ∈ D(xj), aj ≥ max(LastACxi,ai,xj , LastACxk,ak,xj) do

9: if isConsistent(ai, aj) AND isConsistent(ak, aj) then
10: witness ← TRUE;
11: break;
12: if ¬ witness AND ¬ checkPCsupLoss(ai, xk) then
13: return FALSE;
14: return TRUE;

to seek a new PC-support for ai in D(xk). Note that maxRPC2 does not do the check
of line 4 and always starts the search for a PC-witness from the first value in D(xj).

If LastPCxi,ai,xk has been removed or the pair (ai, ak) has no PC-witness in D(xj),
we search for a new PC-support for ai in D(xk) in line 12 by calling function
checkPCsupLoss. Search starts at an appropriate value calculated taking advantage
of LastPCxi,ai,xk and LastACxi,ai,xk (lines 1–4 in Function 3). The procedure was
explained above when describing checkPCsupLoss. If the search for a PC-support
fails for any third variable xk then false will be returned, and in the main algorithm ai

will be deleted and xi will be added to Q.
maxRPC3 terminates when Q becomes empty, meaning that all values are

maxRPC, or, when a domain of some variable becomes empty, meaning that the
problem is not consistent.

As observed above, when maxRPC3 is applied during search, the propagation
list Q is initialized with the variable at the current decision (assignment or value
removal). If propagating a decision results in an empty domain, then both the
LastAC and LastPC data structures must be restored to their state prior to the
decision.

3.2 maxRPC3rm

maxRPC3rm is a coarse-grained maxRPC algorithm that exploits backtrack-stable
data structures inspired from AC3rm (rm stands for multidirectional residues).
LastAC and LastPC are not maintained incrementally as in maxRPC3, but are only
used to store residues. As explained, a residue is a support which has been located
and stored during the execution of the procedure that proves that a given value is AC
or PC. The algorithm stores the most recently discovered AC (resp. PC) supports, but
does not guarantee that any lexicographically smaller value is not an AC (resp. PC)
support. Consequently, when we search for a new AC or PC support in a domain, we
always start from scratch. LastAC and LastPC need not be restored after a failure;
they can remain unchanged, hence a minimal overhead on the management of data.

Another difference with maxRPC3 is that since maxRPC3rm handles LastPC only
as a residue, it can exploit the bidirectionality of support. This means that when a

384 Constraints (2011) 16:372–406

Function 7 checkPCsupLossrm(ai, xj):boolean
1: for each aj ∈ D(xj) do
2: if isConsistent(ai, aj) then
3: if searchPCwitrm(ai, aj) then
4: LastPCxi,ai,xj ← LastACxi,ai,xj ← aj;

5: LastPCxj,aj,xi ← ai ;

6: return TRUE;
7: return FALSE;

PC-support aj ∈ D(xj) is located for a value ai ∈ D(xi) then ai is a PC-support for aj.
As a result, we can assign LastPCxi,ai,xj and LastPCxj,aj,xi to aj and to ai respectively.
Although the property of bidirectionality obviously also holds for AC-supports, we
do not exploit this since experiments demonstrated that it does not offer any benefits
in most cases. Moreover, LastAC is updated when a PC-support is found, since it is
also the most recent AC-support found. This assignment may speed up subsequent
searches for PC-witness as the conditions in line 3 of searchPCwitrm and line 4 of
checkPCwitLossrm are more likely to be true.

We omit presenting the main algorithm for maxRPC3rm as it is the same as
Algorithm 1 with the only difference being that we call checkPCsupLossrm and
checkPCwitLossrm instead of checkPCsupLoss and checkPCwitLoss respectively.
When maxRPC3rm is used for preprocessing, the initialization function (Function 2)
is called to initialize Q and structures LastAC and LastPC. The difference with
maxRPC3 concerns the bidirectionality of PC-supports. If the auxilary boolean
variable rm is true, denoting the use of maxRPC3rm instead of maxRPC3, we initialize
the LastPC residue exploiting bidirectionality. To be precise, when a PC-support is
found for ai in D(xj) we set LastPCxi,ai,xj to aj and additionally LastPCxj,aj,xi to ai

(line 11 of Function 2).
When a variable is extracted from Q, we first explore the case of PC-support

loss by calling function checkPCsupLossrm, after verifying that value LastPCxi,ai,xj

is not in D(xj) anymore. checkPCsupLossrm (Function 7) searches for a new PC-
support starting from scratch (line 1). In contrast, maxRPC3 would start from
bj = max(LastPC(xi, ai, xj), LastAC(xi, ai, xj)) and maxRPC2 from the value after
LastPCxi,ai,xj . When an AC-support aj is confirmed from isConsistent in line 2,

Function 8 searchPCwitrm(ai, aj):boolean
1: for each xk ∈ X s.t. ci,k and c j,k ∈ C do
2: maxRPCsupport ← FALSE;
3: if ((LastACxi,ai,xk ∈ D(xk)) AND (LastACxi,ai,xk = LastACxj,aj,xk)) OR ((LastACxi,ai,xk ∈

D(xk)) AND (isConsistent(LastACxi,ai,xk , aj))) OR ((LastACxj,aj,xk ∈ D(xk)) AND

(isConsistent(LastACxj,aj,xk , ai))) then

4: continue;
5: for each ak ∈ D(xk) do
6: if isConsistent(ai, ak) AND isConsistent(aj, ak) then
7: maxRPCsupport ← TRUE;
8: LastACxi,ai,xk ← LastACxj,aj,xk ← ak;

9: break;
10: if ¬ maxRPCsupport then
11: return FALSE;
12: return TRUE;

Constraints (2011) 16:372–406 385

Function 9 checkPCwitLossrm(ai, xj):boolean
1: for each xk ∈ X s.t. ci,k and ck, j ∈ C do
2: witness ← FALSE;
3: if ak ← LastPCxi,ai,xk ∈ D(xk) then
4: if ((LastACxi,ai,xj ∈ D(xj)) AND (LastACxi,ai,xj = LastACxk,ak,xj)) OR ((LastACxi,ai,xj ∈

D(xj)) AND (isConsistent(LastACxi,ai,xj , ak))) OR ((LastACxk,ak,xj ∈ D(xj)) AND

(isConsistent(LastACxk,ak,xj , ai))) then

5: witness ← TRUE;
6: else
7: for each aj ∈ D(xj) do
8: if isConsistent(ai, aj) AND isConsistent(ak, aj) then
9: LastAC(xi, ai, xj) ← LastAC(xk, ak, xj) ← aj;

10: witness ← TRUE;
11: break;
12: if ¬ witness AND ¬ checkPCsupLossrm(ai, xk) then
13: return FALSE;
14: return TRUE;

function searchPCwitrm is called to determine if aj is also a PC-support for ai. If
searchPCwitrm returns true, we assign LastPCxi,ai,xj and LastPCxj,aj,xi to aj and to ai

respectively to exploit bidirectionality, and LastACxi,ai,xj is set to aj (lines 4–5), since
the discovered PC-support is also an AC-support.

Function searchPCwitrm (Function 8) checks if a pair of values (ai,aj) is PC by
iterating over the variables xk constrained with xi and xj. First, it checks the same
conditions in line 3 as searchPCwit to locate, if possible, a PC-witness without
searching. If none of these conditions holds, it searches for a new PC-support starting
from the first value in D(xk) (line 5). If a PC-witness ak is found (line 7) then both
residues, LastACxi,ai,xk and LastACxj,aj,xk , are set to ak as they are the most recently
discovered AC-supports (line 8). If no PC-witness is found we have determined that
the pair (ai,aj) is not PC and as a result false will be returned and checkPCsupLossrm

will move to check if the next available value in D(xj) is a PC-support for ai.
In maxRPC3rm, if value ai is not removed after checking for possible PC-support

loss using checkPCsupLossrm, function checkPCwitLossrm (Function 9) is called to
check for PC-witness loss. This is done by iterating again, over the variables that
are constrained with both xi and xj. For each such variable xk, we first check if ak =
LastPCxi,ai,xk remains in D(xk) (line 3) and if so, if any of the three conditions in
line 4 is satisfied in order to avoid searching. In case each of these conditions fails,
we search for a new PC-witness in D(xj) starting from the first value (line 7). For
each value aj ∈ D(xj), checkPCwitLossrm checks if it is compatible with ai and ak and
moves the LastAC pointers accordingly (line 9), exploiting the bidirectionality of
residues.

If LastPCxi,ai,xk is not valid or the pair (ai, ak) fails to find a PC-witness in D(xj), we
search for a new PC-support for ai in D(xk) in line 12, by calling checkPCsupLossrm.
If the search for a PC-support fails then false will be returned (line 13), ai will be
deleted, and xi will be added to Q in the main algorithm.

3.3 Light maxRPC

Light maxRPC (lmaxRPC) is an approximation of maxRPC that only propagates the
loss of AC-supports and not the loss of PC-witnesses [28]. That is, when removing a

386 Constraints (2011) 16:372–406

variable xj from Q, for each ai ∈ D(xi), where xi is constrained with xj, lmaxRPC
only checks if there is a PC-support of ai in D(xj). This ensures that the obtained
algorithm enforces a consistency property that is at least as strong as AC.

lmaxRPC is a procedurally defined local consistency, meaning that its description
is tied to a specific maxRPC algorithm. Hence when applying this consistency a
fixed point is dependent on the particularities of the specific algorithm used, like
the order in which the algorithm processes revisions of variables/constraints, and
the order in which values are processed and supports as seeked. Light versions of
algorithms maxRPC3 and maxRPC3rm, simply noted lmaxRPC3 and lmaxRPC3rm

respectively, can be obtained by omitting the call to the checkPCwitLoss (resp.
checkPCwitLossrm) function (lines 10–13 of Algorithm 1). In a similar way, we can
obtain light versions of algorithms maxRPC2 and maxRPCrm.

As already noted in [28], the light versions of different maxRPC algorithms may
not be equivalent in terms of the pruning they achieve. To give an example, a brute-
force algorithm for lmaxRPC that does not use any of the data structures described
here can achieve more pruning than algorithms lmaxRPC2, lmaxRPC3, lmaxRPCrm,
and lmaxRPC3rm, albeit being much slower in practice. This is because when looking
for a PC-support for a value ai ∈ D(xi) in a variable xj, the brute-force algorithm
will always search in D(xj) from scratch. In contrast, consider that any of the four
more sophisticated algorithms will return true in case LastPCxi,ai,xj is valid. However,
although aj = LastPCxi,ai,xj is valid, it may no longer be a PC-support because the
PC-witness for the pair (ai, aj) in some third variable may have been deleted, and it
may be the last one. In a case where aj was the last PC-support in xj for value ai,
the four advanced algorithms will not delete ai while the brute-force one will. This
is because it will exhaustively check all values of xj for PC-support, concluding that
there is none.

The worst-case time and space complexities of algorithm lmaxRPC2 are the same
as maxRPC2 . Algorithm lmaxRPCrm has O(end4) time and O(ed) space complexities,
which are lower than those of maxRPCrm. Experiments with random problems using
algorithms lmaxRPCrm and maxRPCrm showed that the pruning power of lmaxRPC
is only slightly weaker than that of maxRPC [28]. At the same time, it can offer
significant gains in run times when used during search. These results were also
verified by us through a series of experiments on various problem classes.

3.4 Correctness and complexities

We now prove the correctness of algorithms maxRPC3 and maxRPC3rm and analyze
their worst-case time and space complexities.

Proposition 1 Algorithm maxRPC3 is sound and complete.

Proof (Soundness) To prove the soundness of maxRPC3 we must prove that any
value that is deleted by maxRPC3 is not maxRPC. Let ai ∈ D(xi) be a value that is
deleted by maxRPC3. It is either removed from D(xi) during the initialization phase
(line 14 Function 2) or in line 8 of Algorithm 1, after checkPCsupLoss has returned
false, or in line 12, after checkPCsupLoss has returned true and checkPCwitLoss has
returned false.

Constraints (2011) 16:372–406 387

In the first case, since function initilization checks all values in a brute-force
manner, it is clear that any deleted value ai either has no AC-support or none of its
AC-supports is a PC-support in some variable xj. The non-existence of a PC-support
is determined using function searchPCwit whose correctness is discussed below.

In the second case, since checkPCsupLoss returns false, as long as LastPCxi,ai,xj

is not valid in Algorithm 1, a new PC-support in D(xj) is sought (lines 5–11 in
Function 3). This search starts with the value at max(LastPCxi,ai,xj+1, LastACxi,ai,xj)
or at max(LastPCxi,ai,xj+1, LastACxi,ai,xj+1), depending on whether LastACxi,ai,xj is
valid or not. This is correct since any value before LastPCxi,ai,xj+1 and any value
before LastACxi,ai,xj is definitely not an AC-support for ai (similarly for the other
case). checkPCsupLoss will return false either because no AC-support for ai can
be found in D(xj), or because for any AC-support found, searchPCwit returned
false. In the former case there is no PC-support for ai in D(xj) since there is no
AC-support. In the latter case, for any AC-support aj found there must be some
third variable xk for which no PC-witness for the pair (ai, aj) exists. For each third
variable xk searchPCwit correctly identifies a PC-witness if one of the conditions
in line 3 holds. In none holds then searchPCwit searches for a PC-witness starting
from max(LastACxi,ai,xk , LastACxj,aj,xk). This is correct since LastACxi,ai,xk and
LastACxj,aj,xk are updated with the lexicographically smallest support of ai (resp.
aj) in D(xk) by calling function searchACsup, meaning that any value smaller than
max(LastACxi,ai,xk , LastACxj,aj,xk) is incompatible with either ai or aj. Therefore, if
searchPCwit returns false then there is no PC-witness for some third variable xk.
Hence, if checkPCsupLoss returns false, it means no PC-support for ai can be found
in D(xj) and it is thus correctly deleted.

Now assume that LastPCxi,ai,xj is valid in Algorithm 1 and ai was removed after
checkPCwitLoss returned false. This means that for some variable xk, constrained
with both xi and xj, both the first part (lines 3–11) and the second part (line 12) in
Function 6 of checkPCwitLoss failed to set the boolean witness to true. Regarding
the first part, the failure means that the pair of values (ai, ak), where ak is the last
PC-support of ai in D(xk) found, has no PC-witness in D(xj). In more detail, the
search for a PC-witness correctly starts from max(LastACxi,ai,xj , LastACxj,aj,xj), after
both LastAC pointers have been updated by searchACsup. The condition in line
4 is similar to the corresponding condition in searchPCwit and thus, if it is true,
the search for PC-witness is correctly overriden. Regarding the second part, the
failure means that no alternative PC-support for ai in D(xk) was found. In more
detail when calling checkPCsupLoss(ai,xk), the search for a PC-support starts from
max(LastPCxi,ai,xk+1, LastACxi,ai,xk) or max(LastPCxi,ai,xk+1, LastACxi,ai,xk +1),
depending on the existence of LastACxi,ai,xk . This is correct since no earlier value
can be a PC-support. If there is no consistent (ai, ak) pair or searchPCwit returns
false for all consistent pairs found, then ai has no PC-support in D(xk) and is thus
correctly deleted.

Completeness To prove the completeness of maxRPC3 we need to show that if a
value is not maxRPC then the algorithm will delete it. The initialization function
checks all values of all variables one by one in a brute-force manner and removes
any value that is not maxRPC. Values that are maxRPC have their LastPC pointers
set to the discovered PC-supports. Thereafter, the effects of such removals are
propagated by calling Algorithm 1 and as a result new value deletions may occur.

388 Constraints (2011) 16:372–406

Now consider a value ai ∈ D(xi) that was not removed by the initialization function
but after propagation is no longer maxRPC. This is either because of PC-support or
PC-witness loss.

In the first case assume that xj is the variable in which ai no longer has a PC-
support. Since the previously found PC-support of ai has been deleted, xj must
have been added to Q at some point. When xj is removed from Q all neighboring
variables, including xi will be checked. Since LastPCxi,ai,xj is no longer valid function
checkPCsupLoss will be called to search for a new PC-support concluding that there
is none. Therefore, it will return false and ai will be deleted.

In the second case assume that the pair of values (ai,aj), where aj is the last PC-
support of ai in D(xj), has lost its last PC-witness ak in variable xk. If LastPCxi,ai,xj

is not valid, which means that xj was added to Q, then we have the same case as
above. Therefore, after xj is removed from Q, checkPCsupLoss will find out that
there is no PC-support for ai in D(xj) and will delete it. If LastPCxi,ai,xj is valid
then checkPCsupLoss will be omitted (line 7 of Algorithm 1). Since ak was deleted,
xk was added to Q at some point. When xk is removed from Q all neighboring
variables, including xi will be checked. If ai has no longer a PC-support in D(xk),
this will be detected by checkPCsupLoss and ai will be deleted. Otherwise, function
checkPCwitLoss will be called. The for loop in line 1 will go through every variable
constrained with both xi and xk, including xj. Since LastPCxi,ai,xj is valid, a new PC-
witness for (ai,aj) in D(xk) will be sought (lines 3–11). Since ak was the last PC-
witness, none will be found and as a result a new PC-support for ai in D(xj) will be
sought (line 12). Since aj was the last PC-support for ai in D(xj), none will be found,
checkPCwitLoss will return false, and ai will be deleted. 	

Proposition 2 Algorithm maxRPC3rm is sound and complete.

Proof The proof is very similar to the corresponding proof for maxRPC3. As
explained, the main difference between the two algorithms concerns the use of
the LastAC and LastPC structures. As maxRPC3rm does not maintain these
structures incrementally, the searches for PC-supports in checkPCsupLossrm

and checkPCwitLossrm and the searches for PC-witnesses in searchPCwitrm and
checkPCwitLossrm start from scratch. Clearly, this has no effect on the soundness
or completeness of the algorithm since it guarantees that all potential PC-supports
and PC-witnesses are checked. Furthermore, the conditions for avoiding redundant
searches using residues are the same as in maxRPC3. Finally, another difference
between the two algorithms is the exploitation of bidirectionality by maxRPC3rm.
By the definition of path and arc consistency, bidirectionality holds. That is, when a
PC-support (AC-support) aj ∈ D(xj) is located for a value ai ∈ D(xi) then ai is a PC-
support (AC-support) for aj. Since the property of bidirectionality is exploited only
to update residues, it does not affect the correctness of the algorithm. 	

We now discuss the complexities of algorithms maxRPC3 and maxRPC3rm and
their light versions. To directly compare with existing algorithms for (l)maxRPC, the
time complexities give the asymptotic number of constraint checks.2 Following [23],

2However, constraint checks do not always reflect run times as other operations may have an equal
or even greater effect.

Constraints (2011) 16:372–406 389

the node time (resp. space) complexity of a (l)maxRPC algorithm is the worst-case
time (resp. space) complexity of invoking the algorithm after a decision has been
made (e.g. a variable assignment or a value removal). The corresponding branch
complexities of an (l)maxRPC algorithm are the worst-case complexities of any
incremental sequence of k ≤ n invocations of the algorithm. That is, the complexities
of incrementally running the algorithm down a branch of the search tree until a fail
occurs.

Proposition 3 The node and branch time complexity of (l)maxRPC3 is O(end3).

Proof The complexity is determined by the total number of calls to function isCon-
sistent in checkPCsupLoss, checkPCwitLoss, and mainly searchPCwit where most
checks are executed.

Each variable can be inserted and extracted from Q every time a value is deleted
from its domain, giving O(d) times in the worst case. Each time a variable xj is
extracted from Q, checkPCsupLoss will look for a PC-support in D(xj) for all values
ai ∈ D(xi), s.t. ci, j ∈ C. For each variable xi, O(d) values are checked. Checking if
a value aj ∈ D(xj) is a PC-support involves first checking in O(1) if it is an AC-
support (line 6 in checkPCsupLoss) and then calling searchPCwit (line 9). The cost
of searchPCwit is O(n + nd) since there are O(n) variables constrained with both xi

and xj and, after making the checks in line 3, their domains must be searched for a
PC-witness, each time from scratch with cost O(nd). Through the use of LastPC no
value of xj will be checked more than once over all the O(d) times xj is extracted
from Q, meaning that for any value ai ∈ D(xi) and any variable xj, the overall cost
of searchPCwit will be O(dn + nd2) = O(nd2). Hence, checkPCsupLoss will cost
O(nd2) for one value of xi, giving O(nd3) for d values. Since, in the worst case, this
process will be repeated for every pair of variables xi and xj that are constrained,
the total cost of checkPCsupLoss will be O(end3). This is the node complexity of
lmaxRPC3.

In checkPCwitLoss the algorithm iterates over the variables in a triangle with
xj and xi. In the worst case, for each such variable xk, D(xj) will be searched from
scratch for a PC-witness of ai and its current PC-support in xk. As xj can be extracted
from Q O(d) times and each search from scratch costs O(d), the total cost of
checking for a PC-witness in D(xj), including the checks of line 4 in checkPCwitLoss,
will be O(d + d2). For d values of xi this will be O(d3). As this process will be
repeated for all triangles of variables, whose number is bounded by en, its total
cost will be O(end3). If no PC-witness is found then a new PC-support for ai in
D(xk) is sought through searchPCwit. This costs O(nd2) as explained above but it is
amortized with the cost incurred by the calls to searchPCwit from checkPCsupLoss.
Therefore, the cost of checkPCwitLoss is O(end3). This is also the node complexity of
maxRPC3.

The branch complexity of (l)maxRPC3 is also O(end3). This is because the use of
LastPC ensures that for any constraint ci, j and a value ai ∈ D(xi), each value of xj will
be checked at most once for PC-support while going down the branch. Therefore, the
cost of searchPCwit is amortized. 	

Proposition 4 The node and branch time complexities of lmaxRPC3rm and
maxRPC3rm are O(end4) and O(en2d4) respectively.

390 Constraints (2011) 16:372–406

Proof The proof is similar to that of Proposition 3. The main difference with
lmaxRPC3 is that since lastPC is not updated incrementally, each time we seek a PC-
support for a value ai ∈ D(xi) in xj, D(xj) will be searched from scratch in the worst
case. This incurs an extra O(d) cost to checkPCsupLossrm and searchPCwitrm. Hence,
the node complexity of lmaxRPC3rm is O(end4). Also, the total cost of searchPCwitrm

in one node cannot be amortized. This means that the cost of searchPCwitrm

when called within checkPCwitLossrm is O(nd2). Hence, the node complexity of
maxRPC3rm is O(en2d4). The branch complexities are the same because the calls to
searchPCwitrm are amortized. 	

The space complexities of the algorithms are determined by the space required for
data structures LastPC and LastAC. Since both require O(ed) space, this is the node
space complexity of (l)maxRPC3 and (l)maxRPC3rm. (l)maxRPC3 has O(end)

branch space complexity because of the extra space required for the incremental
update and restoration of the data structures. As (l)maxRPC3rm avoids this, its
branch space complexity is O(ed).

4 Further exploitation of residues in maxRPC algorithms

As detailed above, the use of the LastPC and LastAC data structures by algorithms
such as maxRPC2, maxRPC3, and AC2001/3.1 can give optimal time complexity
bounds. However, the overhead for maintaining the required data structures during
search can outweigh the benefit of the optimal theoretical results. On the other
hand, the use the LastPC and LastAC structures as residues by algorithms such as
maxRPCrm, maxRPC3rm, and AC3rm sacrifices the optimal time complexity to achieve
better average performance in practice.3

In this section we investigate variants of maxRPC3rm that offer a compromise
between maxRPC3rm and maxRPC3 by exploring ideas presented in [23] regarding
the use of residues in AC algorithms. The first variant of maxRPC3rm, called
maxRPC3-resOpt, uses an extra data structure to record the current PC-supports
before the invocation of the maxRPC algorithm at each node of the search tree.
As explained below, by exploiting this data structure we can achieve an improved
node time complexity. The second variant, called maxRPC3-start, also introduces
an additional data structure, but only makes use of information obtained during the
initialization phase of the maxRPC algorithm. This does not improve the asymptotic
time complexity, but results in better average performance in practice.

4.1 maxRPC3-resOpt

Algorithm maxRPC3-resOpt is inspired from the ACS-resOpt algorithm of [23].
Adapting the main idea of ACS-resOpt to maxRPC, we use a data structure, called
Stop, to copy and remember the residues in LastPC each time a node is visited
right before the maxRPC algorithm is invoked. Also, we view each domain as being
“circular”. That is, the last value in the initial domain of a variable is followed

3This is verified by experimental results given in [22, 23, 28] and also in Section 6 here.

Constraints (2011) 16:372–406 391

Function 10 checkPCsupLoss-resOpt(ai, xj):boolean
1: aj ← LastPCxi,ai,xj+1;

2: while aj �= Stopxi,ai,xj do

3: if isConsistent(ai, aj) then
4: if searchPCwitrm(ai, aj) then
5: LastPCxi,ai,xj ← aj;

6: LastACxi,ai,xj ← aj;

7: return TRUE;
8: aj ← next value in D(xj);
9: return FALSE;

by the first value. Once a branching decision is made (e.g. variable assignment),
maxRPC3-resOpt copies all the LastPC residues to the Stop data structure. Then,
as maxRPC3-resOpt is executed at this specific node, the search for a new PC-
support for ai ∈ D(xi) in D(xj) starts from the value immediately after LastPCxi,ai,xj ,
continues through the end of the domain, if no PC-support is found, and back to the
start of the domain until it encounters Stopxi,ai,xj . This may save many checks since,
unlike maxRPC3rm, each value in D(xj) can be checked for PC-support at most once.

We now explain in detail functions checkPCsupLoss-resOpt and checkPCwitLoss-
resOpt, that replace functions checkPCsupLossrm and checkPCwitLossrm. In function
checkPCsupLoss-resOpt (Function 10), we set aj to the next value after LastPCxi,ai,xj ,
which is the first value to be checked for being a PC-support in line 1. When the
search for PC-support encounters Stopxi,ai,xj (line 2), all possible PC-supports will
have been examined. Note that since we consider the domains to be circular, once
the last available value in D(xj) has been unsuccessfuly checked, the search for PC-
support will continue from the start of D(xj). That is, in line 8 aj will be set to the first
available value in D(xj).

A significant difference from maxRPC3rm is that maxRPC3-resOpt cannot ex-
ploit the bidirectionality of LastPC. When a PC-support aj ∈ D(xj) is found for
ai ∈ D(xi) then only LastPCxi,ai,xj is set to aj. We do not set LastPCxj,aj,xi to ai, as
done in maxRPC3rm, because bidirectionality no longer holds. To demonstrate this,
assume that during the application of maxRPC3-resOpt at some node, we discover
the PC-support aj ∈ D(xj) for ai ∈ D(xi) and through bidirectionality LastPCxj,aj,xi is
set to ai. Now a later point in search when maxRPC3rm is invoked we set Stopxj,aj,xi to
ai and continue propagation. If during the search for PC-support for value a′

i ∈ D(xi),
a′

i �= ai, in D(xj) we discover aj then LastPCxj,aj,xi will be set to a′
i. Now assume that

later we seek a PC-support for aj in D(xi) and a′
i is no longer valid. Then all values

located between ai and a′
i will be skipped because the search will start at a′

i+1 and
will terminate when ai = Stopxj,aj,xi is reached. Consequently, bidirectionality cannot
be exploited. To this end, the auxilary variable rm, used in initialization function is
set to false to skip line 11.

On the other hand, LastAC is used as in maxRPC3rm and thus it is updated when a
PC-support is found, since this is also an AC-support. Furthermore, the search for a
PC-witness for a pair of values is conducted by searchPCwitrm, as the changes concern
LastPC and do not affect LastAC.

Function checkPCwitLoss-resOpt is called when aj is not removed by
checkPCsupLoss-resOpt. The pseudocode is simply described in textual form, since
it is the same as in checkPCwitLossrm (Function 9) until line 11. The second part of

392 Constraints (2011) 16:372–406

the function (line 12) is executed when LastPCxi,ai,xk is not valid (line 3), or because
there is no PC-witness for the pair (ai, ak) in D(xj). In these cases a new PC-support
for ai is sought in D(xk), and this is done essentially in the same way as in function
checkPCsupLoss-resOpt (Function 10).

Comparing with previous algorithms, maxRPC3-resOpt is sound and complete,
as no supports nor witnesses can be overlooked and thus the proof of correctness
is very similar to the one given for maxRPC3rm. The node time complexity of
(l)maxRPC3-resOpt is O(end3), the same as maxRPC3, since the search for a new
PC-support starts from LastPC+1 and not from scratch as in maxRPC3rm. Before
maxRPC3-resOpt is invoked, we setStop=LastPC and thus for any constraint ci, j

and a value ai ∈ D(xi), each value of xj will be checked at most nd times for PC-
support while going down the branch. As a result the branch complexity is O(en2d4).
The node space complexity is determined by the space required for storing the
LastAC, LastPC, and Stop structures, which is O(ed). The branch space complexity
is also O(ed), because the data structures are not copied/restored.

Although maxRPC3-resOpt achieves a better node complexity than maxRPC3rm,
it carries the additional overhead of having to initialize the Stop data structure at
each node of the search tree. Experiments in Section 6 show that this is indeed an
important drawback. The copying of LastPC to Stop at each node (in O(ed) time)
results in higher cpu times, despite the savings in constraint checks.

4.2 maxRPC3-start

A simple way to reduce the number of constraint checks, when a value in LastPC is
not valid, is to keep track of the first PC-support found after preprocessing. The
version of maxRPC3rm presented here, called maxRPC3-start, stores this value
in a structure we call Lef tMostPC, with O(ed) size. In case of PC-support loss,
instead of searching from scratch, we start from the value stored in Lef tMostPC that
contains the first PC-support found in the initialization function. Thus, we omit values
between the first value in a domain and the Lef tMostPC value to save redundant
checks. For every value ai ∈ D(xi) and constraint ci, j, Lef tMostPCxi,ai,xj is initialized
to NIL, like the LastPC and LastAC structures, and it is updated in the initialization
function, exactly when LastPC is updated. To obtain algorithm maxRPC3-start
from maxRPC3rm, we make the following simple changes.

– We insert in line 11 of initialization the assignment:

Lef tMostPCxi,ai,xj ← aj;
Note that while we still exploit the bidirectionality of LastPC, this property does
not hold for Lef tMostPC. That is, if the first PC-support for ai in D(xj) is value
aj, this does not necessarily mean that the first PC-support for aj in D(xi) is ai.

– In order to start the search for a new PC-support from the first PC-support found,
we replace line 1 in checkPCsupLossrm with:

1: for each aj ∈ D(xj), aj ≥ Lef tMostPCxi,ai,xj do

This change will affect also the checkPCwitLossrm function which calls
checkPCsupLossrmin line 12.

Constraints (2011) 16:372–406 393

Table 1 Time and space complexities of (l)maxRPC algorithms

Algorithm Time Space Maintains
complexity complexity structures

maxRPC1 O(end3) O(end) Yes
maxRPC2 O(end3) O(end) Yes
maxRPC3 O(end3) O(end) Yes
maxRPCrm O(en2d4) O(end) No
maxRPC3rm O(en2d4) O(ed) No
maxRPC3-resOpt O(en2d4) O(ed) No
maxRPC3-start O(en2d4) O(ed) No
lmaxRPC2 O(end3) O(end) Yes
lmaxRPC3 O(end3) O(end) Yes
lmaxRPCrm O(end4) O(ed) No
lmaxRPC3rm O(end4) O(ed) No
lmaxRPC3-resOpt O(end4) O(ed) No
lmaxRPC3-start O(end4) O(ed) No

maxRPC3-start is sound and complete as it is guaranteed than no value earlier
than the corresponding Lef tMostPC value can be a potential PC-support for some
value ai ∈ D(xi). The node and branch time complexity of maxRPC3-start is
O(en2d4), the same as maxRPC3rm, as in the worst case, the Lef tMostPC values
are the first values in each variable’s domain. lmaxRPC3-start is the light version
that results from removing the corresponding checkPCwitLoss-start function. Its
complexity is O(end4), the same as lmaxRPC3rm.

Table 1 summarises the asymptotic branch time and space complexities of the
available (l)maxRPC algorithms. Under the column “maintains structures” we in-
dicate whether a given algorithm requires to incrementally maintain some data
structure or not.

5 Heuristics for maxRPC algorithms

Numerous heuristics for ordering constraint or variable revisions have been pro-
posed and used within AC algorithms [2, 11, 17, 29]. Generally, many constraint
solvers employ heuristics to order the application of propagators or/and the revision
of variables and constraints [27]. Heuristics such as the ones used by AC algorithms
can be also used within a maxRPC algorithm to efficiently select the next variable
to be removed from the propagation list. In addition to this, maxRPC and lmaxRPC
algorithms can benefit from the use of heuristics elsewhere in their execution. Once
a variable xj has been removed from the propagation list, heuristics can be applied
in many ways in either a maxRPC or a lmaxRPC algorithm. In the following we
summarize the possibilities of heuristic using algorithm (l)maxRPC3 for illustration.

H1 A heuristic can be used to select the next variable xj to remove from the
propagation list Q (line 4 of Algorithm 1). Such heuristics are successfully used
within AC algorithms.

H2 After a variable xj is removed from Q all neighboring variables xi are revised.
lmaxRPC (resp. maxRPC) will detect a failure if the condition of PC-support
loss (resp. either PC-support or PC-witness loss) occurs for all values of xi. In

394 Constraints (2011) 16:372–406

such situations, the sooner xi is considered and the failure is detected, the more
constraint checks will be saved. Hence, the order in which the neighboring
variables of xj are considered can be determined using a fail-first type of
heuristic (line 5 of Algorithm 1).

H3 Once an AC-support aj ∈ D(xj) has been found for a value ai ∈ D(xi), we try
to establish if it is a PC-support. If there is no PC-witness for the pair (ai, aj) in
some variable xk then aj is not a PC-support. Therefore, we can again use fail-
first heuristics to determine the order in which the variables forming a triangle
with xi and xj are considered (line 1 of Function searchPCwit).

The above cases apply to both lmaxRPC and maxRPC algorithms. In addition, a
maxRPC algorithm can employ heuristics as follows:

H4 For each value ai ∈ D(xi) and each variable xk constrained with both xi and
xj, Function checkPCwitLoss checks if the pair (ai, ak) still has a PC-witness
in D(xj). Again heuristics can be used to determine the order in which the
variables constrained with xi and xj are considered (line 1 of checkPCwitLoss).

H5 In Function checkPCwitLoss, a new PC-support for ai in D(xk) may be seeked.
The order in which variables constrained with both xi and xk are considered
can be determined heuristically as in the case of H3 above (within the call to
searchPCwit).

As explained, the purpose of such ordering heuristics will be to “fail-first” [19].
That is, to quickly discover potential failures (in the case of H2 above), refute values
that are not PC-supports (H3 and H5) and delete values that have no PC-support
(H3). Such heuristics can be applied within any coarse-grained maxRPC algorithm
to decide the order in which variables are considered. Examples of heuristics that can
be used are the following.

dom Consider the variables in ascending domain size. This heuristic can be
applied in any of the five cases.

del_ratio Consider the variables in ascending ratio of the number of remaining
values to the initial domain size. This heuristic can be applied in any of
the five cases.

wdeg For H1 consider the variables in descending weighted degree. For H2
consider the variables xi in descending weight for the constraint ci, j. In
the case of H3 consider the variables xk in descending average weight
for the constraints ci,k and c j,k. Similarly for H4 and H5.

dom/wdeg Consider the variables in ascending value of dom/wdeg. This heuristic
can be applied in any of the five cases.

Experiments demonstrated that applying heuristics H1 and H2 can sometimes
be effective, while doing so for H3, H4, and H5 may save constraint checks but
usually penalizes cpu times because of the overhead involved in computating the
heuristics. Although the primal purpose of the heuristics is to save constraint checks,
it is interesting to note that some of the heuristics can also divert search to different
areas of the search space when a variable ordering heuristic like dom/wdeg is used,
resulting in fewer node visits. For example, two different orderings of the variables
in the case of H2 may result in different constraints causing a failure. As dom/wdeg
increases the weight of a constraint each time it causes a failure and uses the weights

Constraints (2011) 16:372–406 395

to select the next variable, this may later result in different branching choices. This is
explained for the case of AC in [2].

6 Experiments

To evaluate the various maxRPC algorithms, we experimented with several classes
of structured and random binary CSPs taken from C.Lecoutre’s XCSP repository.
Excluding instances that were very hard for all algorithms, our evaluation was done
on 200 instances in total from various problem classes (see Table 2). More details
about these instances can be found in C.Lecoutre’s homepage.4

All algorithms used the dom/wdeg heuristic for variable ordering [12] and lexico-
graphic value ordering. As explained in Section 2, dom/wdeg increases the weight
of a constraint when this constraint causes a value removal. This process is rather
straightforward when AC is used for constraint propagation, but perhaps not so
when stronger local consistencies are used. For the case of maxRPC we chose to
increase constraint weights in the following way. When a failure occurs, the weight
of constraint ci, j is updated, right after line 7 and 11 of Algorithm 1 and after line 13
in the initialization function.

In all following tables, the results of the best algorithm, with respect to run-time,
are highlighted with bold. If not explicitly mentioned, the propagation list Q was
implemented as a FIFO queue and no heuristic from Section 5 was used.

Table 2 compares the performance of stand-alone algorithms used for preprocess-
ing. We give average results for all the instances, grouped into specific problem
classes. We include results from coarse-grained maxRPC algorithms, maxRPC2,
maxRPC3, maxRPCrm, maxRPC3rm and from their corresponding light versions.

Regarding existing algorithms, results demonstrate that maxRPCrm is particularly
costly on large instances because of the penalties associated in initializing its data
structures. Specifically, this algorithm timed out on some large instances of the
Queens problem class, which explains the empty data entries in the table. In
comparison, maxRPC2 displays a better average performance which is not surprising
given its lower complexity. The new algorithm maxRPC3 is very close to maxRPC2
in run times, apart from the first and last classes where it is notably faster. The same
holds for maxRPC3rm with the exception of the geometric class where it is clearly
worse than the rest of the algorithms. Any gain in performance displayed by the
new algorithms is due to the elimination of many redundant constraint checks as the
corresponding numbers show.

Comparing light to full maxRPC algorithms it is perhaps surprising that the
light versions typically achieve the same number of value deletions as their full
counterparts. This means that approximation algorithms for maxRPC are quite
effective. Any differences in value deletions among maxRPC algorithms are caused
by the different order of operations in which inconsistency is discovered for some
instances. In classes where the constraints checks for a maxRPC and a corresponding
lmaxRPC algorithm are the same or very close, there are very few, if any, value
deletions.

4http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

396 Constraints (2011) 16:372–406

T
ab

le
2

M
ea

n
st

an
d-

al
on

e
pe

rf
or

m
an

ce
in

al
l2

00
in

st
an

ce
s

gr
ou

pe
d

by
pr

ob
le

m
cl

as
s

P
ro

bl
em

cl
as

s
m

ax
R

P
C

2
m

ax
R

P
C

3
m

ax
R

P
C

rm
m

ax
R

P
C

3rm
lm

ax
R

P
C

2
lm

ax
R

P
C

3
lm

ax
R

P
C

rm
lm

ax
R

P
C

3rm

R
L

F
A

P
t

1.
58

1
1.

12
5

5.
75

4
1.

06
4

0.
94

2
0.

92
8

0.
92

9
0.

93
1

(s
ce

n,
gr

ap
h)

rm
3,

45
8

3,
45

8
3,

45
6

3,
45

8
3,

45
8

3,
45

8
3,

45
8

3,
45

8
cc

15
.2

M
8.

9M
14

.9
M

8.
2M

7.
2M

7.
1M

6.
6M

7.
2M

R
an

do
m

t
0.

14
9

0.
15

3
0.

12
1

0.
14

6
0.

14
8

0.
15

1
0.

15
6

0.
14

9
(m

od
el

B
,f

or
ce

d)
rm

20
20

21
21

25
25

25
31

cc
0.

18
1M

0.
17

9M
0.

18
1M

0.
17

9M
0.

17
8M

0.
17

7M
0.

17
8M

0.
17

8M
G

ra
ph

co
lo

ri
ng

t
1.

07
6

1.
00

1
1.

14
6

1.
00

9
0.

98
1

0.
98

7
0.

98
8

0.
98

0
rm

25
5

25
5

25
5

25
5

25
5

25
5

25
5

25
5

cc
17

M
16

.1
M

16
.9

M
16

M
15

.8
M

15
.8

M
15

.8
M

15
.8

M
Q

ua
si

gr
ou

p
t

0.
21

1
0.

20
1

0.
27

6
0.

21
5

0.
17

3
0.

16
6

0.
17

3
0.

17
4

(q
cp

,q
w

h
bq

w
h)

rm
1,

16
7

1,
16

7
1,

16
7

1,
16

7
1,

16
7

1,
16

7
1,

16
7

1,
16

7
cc

0.
67

M
0.

43
M

0.
62

M
0.

42
M

0.
43

M
0.

38
M

0.
41

M
0.

38
M

G
eo

m
et

ri
c

t
0.

21
7

0.
21

4
0.

16
3

0.
33

6
0.

22
2

0.
21

3
0.

21
4

0.
21

8
rm

0
0

0
0

0
0

0
0

cc
0.

33
M

0.
33

M
0.

33
M

0.
33

M
0.

33
M

0.
33

M
0.

33
M

0.
33

M
Q

ue
en

sK
ni

gh
ts

t
30

.7
05

29
.7

24
–

29
.3

10
27

.8
27

28
.0

73
27

.7
91

27
.7

32
Q

ue
en

s,
rm

96
96

–
96

96
96

96
96

Q
ue

en
A

tt
ac

k
cc

42
6M

39
0M

–
38

9M
36

6M
36

6M
36

6M
36

6M
D

ri
ve

r,
ha

ys
ta

ck
s

t
1.

44
9

1.
10

7
1.

78
1

1.
08

6
0.

99
6

0.
93

1
0.

97
9

1.
00

2
bl

ac
kH

ol
e

rm
24

7
24

7
24

7
24

7
24

7
24

7
24

7
24

7
jo

b-
sh

op
cc

14
.4

M
10

M
13

.5
M

9.
9M

9.
3M

8.
9M

9.
3M

8.
9M

C
pu

ti
m

es
(t

)
in

se
cs

,r
em

ov
ed

va
lu

es
(r

m
)

an
d

co
ns

tr
ai

nt
ch

ec
ks

(c
c)

ar
e

gi
ve

n

Constraints (2011) 16:372–406 397

Table 3 compares the performance of search algorithms that apply lmaxRPC
throughout search on several problem classes including instances from RLFAPs,
random, Quasigroup, geometric, and Queen problems. These instances have been
selected to demonstrate cases where either the new algorithms achieve a clear
improvement making the best algorithm among them outperform or compete with
MAC, or cases where, despite the improvement, the maxRPC-based algorithms
are still significantly inferior to MAC. Hence, we present some extreme behav-
iors for both situations. The algorithms compared are lmaxRPCrm, lmaxRPC3rm,
lmaxRPC3-resOpt and lmaxRPC3-start. We do not present results from

Table 3 Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various instances

Instance AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-resOpt lmaxRPC3-start

scen11-f7 t 109.3 482.6 186.6 214 159.4
n 353,901 76,954 76,954 57,037 76,954
cc 467M 5,184M 1,596M 1,011M 1,323M

graph9-f9 t 8.7 54.5 21 45.6 17.5
n 46,705 16,839 16,839 14,838 16,839
cc 25M 458M 184M 145M 153M

rand-2-40-11- t 14.1 17.6 11.6 8.9 11.5
414-200-30 n 164,958 28,655 28,655 21,105 28,655

cc 61M 249M 98M 70M 97M
will199GPIA-6 t 1.6 5.9 2.5 7.9 2.7

n 6,996 3,316 3,316 4,300 3,316
cc 6M 53M 21M 22M 20M

qcp150-120-5 t 22.9 29.3 15.5 73.8 15.7
n 525,629 130,384 130,384 237,644 130,384
cc 37M 265M 43M 69M 42M

qcp150-120-9 t 95.2 120.6 57.7 157.4 59
n 2,437,173 627,679 627,679 617,662 627,679
cc 157M 1,060M 163M 151M 162M

qwh20-166-1 t 15.3 21.7 12.2 42.7 12.8
n 234,095 54,286 54,286 31,346 54,286
cc 19M 156M 18M 10M 18M

qwh20-166-6 t 758.3 462.5 245.9 3,342.5 256.2
n 10,691,633 984,555 984,555 2,364,104 984,555
cc 911M 3,381M 377M 921M 372M

qwh20-166-7 t 64.5 46.2 24.7 319.3 26.3
n 1,050,144 124,212 124,212 241,184 124,212
cc 85M 342M 40M 75M 39M

geo50-20-d4-75-1 t 54.4 248.2 140.5 143.7 145.7
n 260,996 122,750 122,750 124,535 122,750
cc 6M 1,454M 377M 1,376M 375M

queenAttacking6 t 32.9 60.8 23.9 94 24.3
n 234,759 18,488 18,488 137,731 18,488
cc 104M 888M 242M 860M 238M

queensKnights- t 3.1 27.6 16.5 13.4 11.6
15-5-mul n 5,819 3,5862 3,586 2,924 3,586

cc 23M 462M 233M 174M 183M
haystacks-05 t 4.5 2.6 2 2.8 1.8

n 1,182,023 167,629 167,629 223,547 167,629
cc 13M 13M 7M 10M 6M

398 Constraints (2011) 16:372–406

maxRPCrm and maxRPC3rm, since these two algorithms, and especially maxRPCrm,
are inferior to the light versions when used during search. To be precise, maxRPC3rm

is competitive on some instances but clearly worse on average. On the other
hand, maxRPCrm is substantially slower on all the tested instances and exceeds
the time limit of two hours on the hardest among them. Algorithms (l)maxRPC2
and (l)maxRPC3 are even less competitive when used during search, because of
the overheads for the copying and restoration of the LastPC and LastAC data
structures. (l)maxRPC3 is typically more efficient than (l)maxRPC2.

In general, any maxRPC algorithm is clearly inferior to the corresponding light
version when applied during search. The reduction in visited nodes achieved by
the former is relatively small and does not compensate for the higher run times
of enforcing maxRPC. To put the performance of the lmaxRPC algorithms in
perspective, we include results from MAC3rm which is considered one of the most
efficient versions of MAC [22, 23]. All of the algorithms used a 2-way branching
scheme.5

Experiments showed that lmaxRPCrm is the most efficient among existing algo-
rithms when applied during search, which confirms the results given in [28]. Accord-
ingly, lmaxRPC3rm is the most efficient among our algorithms. It is over two times
faster than lmaxRPCrm on hard instances, while algorithms lmaxRPC3-resOpt and
lmaxRPC3-start are also competitive in many instances. The overhead of copying
LastPC to Stop causes lmaxRPC3-resOpt to slow down search in many cases,
despite the reduction in the number of constraint checks.

Instance qwh20-166-6 is a pathological case for lmaxRPC3-resOpt as this algo-
rithm requires considerable effort compared to the other algorithms. Recall that this
algorithm does not exploit the bidirectionality of support, as explained in Section 4.1,
meaning that variable revisions, constraint checks, and failures may occur in different
orders compared to other algorithms. Through the interaction with the dom/wdeg
variable ordering heuristic this may cause a different search direction (see discussion
at the end of Section 5), explaining the pathological case.
lmaxRPC3-start and lmaxRPC3rm have similar performance when the num-

bers of constraint checks are similar. More precisely, lmaxRPC3-start is better
only when the PC-support found in preprocessing is lexicographically bigger from
the first value in any domain. Since this case does not occur very often, there are
no significant benefits when compared to lmaxRPC3rm that starts searching from
scratch.

Importantly, the speed-ups obtained can make a search algorithm that efficiently
applies lmaxRPC competitive with MAC on many instances. For instance, in qwh20-
166-6 lmaxRPC3rm achieves a better run time than MAC by a factor of three while
lmaxRPCrm is 2 times slower compared to lmaxRPC3rm.

We can see that our methods can reduce the numbers of constraint checks by as
much as one order of magnitude (e.g. in quasigroup problems qcp and qwh). This
is mainly due to the elimination of redundant checks inside function searchPCwit.
Cpu times are not cut down by as much, but a speed-up of more than 2 times can
be obtained (e.g. qcp150-120-9 and qwh20-166-6). However, there are still many
instances where MAC remains considerably faster despite the improvements (e.g.
graph9-f9, geo50-20-d4-75-1).

5The results reported in [1] were obtained using a d-way branching scheme.

Constraints (2011) 16:372–406 399

Table 4 Mean search performance in all 200 instances grouped by class

Problem class AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-resOpt lmaxRPC3-start

RLFAP t 13.5 61.7 21.7 26.7 18.8
(scen, graph) n 42,250 8,727 8,727 7,326 8,727

cc 56M 625M 201M 139M 166M
Random t 2.7 5.8 3.6 3.9 3.6

(modelB, forced) n 29,538 7,385 7,385 7,835 7,385
cc 11M 82M 30M 31M 30M

Graph coloring t 4.8 61 25 45.9 29.7
n 3,910 2,225 2,225 2,866 2,225
cc 12M 984M 284M 303M 283M

Quasigroup t 55.6 47.8 22 231.7 22.8
(qcp, qwh, bqwh) n 866,099 117,974 117,974 204,407 117,974

cc 70M 315M 39M 71M 38M
Geometric t 11.3 50.6 29.1 30.3 30.1

n 55,825 26,687 26,687 27,656 26,687
cc 55M 721M 314M 314M 313M

QueensKnights, t 7.1 133.6 42.7 56.3 42.5
Queens, n 38,663 4,829 4,829 22,321 4,829
QueenAttack cc 27M 1,583M 563M 655M 552M

Driver, blackHole, t 1.6 14.7 5.6 15.5 5.7
haystacks, n 115,717 28,750 28,750 34,001 28,750
job-shop cc 3M 141M 33M 35M 32M

In Table 4 we summarize the results of our experiments by giving averages over
different problem classes. These results demonstrate that lmaxRPC3rm outperforms
lmaxRPCrm in all problem classes, often considerably. This was the case in all 200
instances tried. Algorithms lmaxRPC3-resOpt and especially lmaxRPC3-start
display similar performance to lmaxRPC3rm. lmaxRPC3-resOpt displays its worst
performance in quasigroup problems where it performs twice as much constraint
checks on average. Taking also into account that lmaxRPC3-resOpt copies LastPC
to Stop explains the variance in the results given in Tables 3 and 4. In general,
lmaxRPC3rm is competitive with MAC on RLFAP and random instances and
outperforms it on the Quasigroup classes. In contrast, lmaxRPC3rm is clearly inferior
to AC3rm on Queens class and in the last category that includes instances from various
other structured problem classes.

6.1 d-way branching

We have also experimented with the above search algorithms under the d-way
branching scheme using again the dom/wdeg heuristic for variable ordering. Table 5
reports results from the same instances as Table 3, in order to directly compare our
algorithms on the two different branching schemes. We exclude lmaxRPC3-resOpt
which is the less competitive among the algorithms of Table 3. We can observe
that lmaxRPC3rm is faster by a factor of two on the RLFAP instance graph9-
f9, while with 2-way branching AC3rm was superior. Differences in the relative
performance of AC and maxRPC occur in other problems as well (e.g. random,
quasigroup and queensAttacking). For example, in qwh instances lmaxRPC3rm has
better run-time results against AC3rm but not by as large margins as under 2-way

400 Constraints (2011) 16:372–406

Table 5 Cpu times (t) in secs, nodes (n) and constraint checks (cc) from various problem instances
when d-way branching is used

Instance AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-start

scen11-f7 t 981.9 3,338 1,128 870
n 3,696,154 552,907 552,907 552,907
cc 4,287M 31,098M 9,675M 8,193M

graph9-f9 t 57.1 85.3 33.3 30.9
n 273,766 26,276 26,276 26,276
cc 158M 729M 290M 242M

rand-2-40-11- t 11.3 33.4 26.9 21.5
414-200-30 n 110,091 49,100 49,100 49,100

cc 51M 484M 189M 187M
will199GPIA-6 t 3 11.7 4.8 5.1

n 13,243 4,971 4,971 4,971
cc 13M 108M 42M 41M

qcp150-120-5 t 15.9 34.8 17.8 18.6
n 233,311 100,781 100,781 100,781
cc 27M 330M 54M 53M

qcp150-120-9 t 66.5 162.9 78.4 81.2
n 2,437,173 627,679 627,679 627,679
cc 157M 1,060M 163M 162M

qwh20-166-1 t 14.6 28.2 15.7 16.4
n 234,095 54,286 54,286 54,286
cc 19M 156M 18M 18M

qwh20-166-6 t 462.7 674.3 346.2 367
n 4,651,632 919,861 919,861 919,861
cc 633M 5,089M 566M 558M

qwh20-166-7 t 30 51.9 27.8 29.1
n 263,713 76,624 76,624 76,624
cc 42M 392M 45M 44M

geo50-20-d4-75-1 t 38.7 144.8 81.9 82.3
n 181,560 79,691 79,691 79,691
cc 192M 2,045M 880M 876M

queenAttacking6 t 54.7 406.8 153.9 146.6
n 262,087 103,058 103,058 103,058
cc 211M 6,035M 1,640M 1,623M

queensKnights- t 18.2 82.6 40.4 23.5
15-5-mul n 35,445 13,462 13,462 13,462

cc 154M 963M 387M 282M
haystacks-05 t 0.7 0.7 0.8 0.7

n 110,638 20,278 20,278 20,278
cc 1.4M 1.9M 1.1M 1.0M

branching. In comparison to lmaxRPCrm, lmaxRPC3rm remains advantageous in all
instances.

Table 6 summarizes results from the application of lmaxRPC during search using
d-way branching. We give average results for all the tested instances, grouped
into specific problem classes, as in Table 4. As can be seen, lmaxRPC3rm and
lmaxRPC3-start improve on the existing best algorithm considerably, making
lmaxRPC outperform MAC on the quasigroup problem classes and be quite compet-
itive on the RLFAP class. As expected, when comparing the same (AC or maxRPC)

Constraints (2011) 16:372–406 401

Table 6 Mean search performance in all 200 instances grouped by class, when d-way branching is
used

Problem class AC3rm lmaxRPCrm lmaxRPC3rm lmaxRPC3-start

RLFAP t 124 157.3 157.3 123.2
(scen, graph) n 424,128 74,083 73,083 73,083

cc 559M 4,394M 1,387M 1,092M
Random t 2.2 7.7 5.3 4.8

(modelB, forced) n 19,809 9,270 9,270 9,270
cc 9M 110M 40M 40M

Graph coloring t 8.9 110.3 46.9 43.4
n 5,919 2,983 2,983 2,983
cc 23M 1,735M 455M 454M

Quasigroup t 35.5 57.4 29.6 31.2
(qcp,qwh,bqwh) n 387,495 103,994 103,994 103,994

cc 51M 458M 56M 55M
Geometric t 8.2 29.7 17.2 17.3

n 39,879 17,273 17,273 17.273
cc 39M 418M 180M 179M

QueensKnights, t 14.7 206.1 73.6 67.6
Queens, n 67,019 24,859 24,859 24,859
QueenAttack cc 73M 2,796M 839M 807M

Driver,blackHole, t 0.8 13.2 5.2 5.3
haystacks, n 13,075 11,349 11,349 11,349
job-shop cc 1M 121M 25M 25M

algorithm under the two different branching schemes, 2-way branching is typically
superior.

Overall, our results demonstrate that the efficient application of a maxRPC
approximation throughout search can give an algorithm that is quite competitive
with MAC on some classes of binary CSPs with either of the two standard branching
schemes. This confirms the conjecture of [15] about the potential of maxRPC as
an alternative to AC. In addition, our results, along with ones in [28], show that
approximating strong and complex local consistencies can be very beneficial.

6.2 Heuristics

We have also run experiments to evaluate several of the heuristics described in
Section 5. In these experiments we have mainly used the best algorithm,
lmaxRPC3rm, under 2-way braching. Intuitively, the use of heuristics may improve
the algorithm’s performance as explained in Section 5. Since only light versions
of maxRPC are practical for use during search, we have only tested heuristics H1,
H2 and H3. Recall that heuristics H4 and H5 are not applicable for light maxRPC
algorithms.

With respect to the specific strategy for ordering variables under the different
heuristics, we have tried all the “fail-first” methods analyzed in Section 5 (i.e.
dom, del_ratio, wdeg, dom/wdeg). dom and wdeg were not as efficient as the other
methods and are thus ommitted from Table 7. The algorithm used is lmaxRPC3rm,
except from the last column where we report results from lmaxRPC3-start. Apart

402 Constraints (2011) 16:372–406

T
ab

le
7

M
ea

n
se

ar
ch

pe
rf

or
m

an
ce

in
al

l2
00

in
st

an
ce

s
gr

ou
pe

d
by

cl
as

s,
w

he
n

di
ff

er
en

th
eu

ri
st

ic
s

ar
e

us
ed

P
ro

bl
em

cl
as

s
A

C
3rm

lm
ax

R
P

C
3rm

H
1

H
2

H
1+

H
2

H
1+

H
2+

H
3

H
1+

H
2(

de
l_

ra
tio

)
lm

ax
R

P
C

3-
st

ar
t+

H
1+

H
2

R
L

F
A

P
t

13
.5

21
.7

18
.8

18
.5

18
22

.6
22

.5
13

.9
(s

ce
n,

gr
ap

h)
n

42
,2

50
8,

72
7

7,
99

3
9,

05
9

7,
94

0
7,

94
0

8,
62

4
7,

94
0

cc
56

M
20

1M
15

7M
14

3M
15

2M
16

3M
20

0M
13

0M
R

an
do

m
t

2.
7

3.
6

3.
3

7.
1

5.
4

9.
7

5.
1

5.
4

(m
od

el
B

,f
or

ce
d)

n
29

,5
38

7,
38

5
7,

50
8

15
,4

31
11

,4
52

11
,4

52
10

,3
69

11
,4

52
cc

11
M

30
M

25
M

55
M

38
M

37
M

39
M

38
M

G
ra

ph
co

lo
ri

ng
t

4.
8

25
24

.7
25

.9
28

.5
25

9.
9

25
27

.7
n

3,
91

0
2,

22
5

2,
16

3
2,

17
5

2,
04

3
2,

04
3

2,
07

9
2,

04
3

cc
12

M
28

4M
24

8M
25

4M
23

6M
23

6M
21

8M
25

8M
Q

ua
si

gr
ou

p
t

55
.6

22
20

.6
37

.2
34

.9
10

1.
1

26
.8

35
.9

(q
cp

,q
w

h,
bq

w
h)

n
86

6,
09

9
11

7,
97

4
10

9,
94

5
15

9,
44

0
14

3,
20

6
14

3,
20

6
12

2,
29

1
14

3,
20

6
cc

70
M

39
M

35
M

54
M

47
M

47
M

38
M

46
M

G
eo

m
et

ri
c

t
11

.3
29

.1
21

.8
18

.2
17

.5
30

.9
31

.1
17

.5
n

55
,8

25
26

,6
87

24
,9

38
17

,1
84

18
,2

95
18

,2
95

26
,5

80
18

,2
95

cc
55

M
31

4M
22

4M
17

8M
16

4M
15

9M
31

0M
16

4M
Q

ue
en

sK
ni

gh
ts

,
t

7.
1

42
.7

50
.7

46
.8

53
.1

15
4.

3
44

.1
51

Q
ue

en
s,

n
38

,6
63

4,
82

9
13

,4
52

8,
46

9
10

,0
34

10
,0

34
4,

84
9

10
,0

34
Q

ue
en

A
tt

ac
k

cc
27

M
56

3M
62

4M
58

8M
64

9M
64

0M
56

3M
61

6M
D

ri
ve

r,
bl

ac
kH

ol
e,

t
1.

6
5.

6
6.

7
7

6.
4

27
.3

7.
3

5.
9

ha
ys

ta
ck

s,
n

11
5,

71
7

28
,7

50
51

,5
11

53
,6

85
56

,1
48

56
,1

48
29

,7
61

56
,1

48
jo

b-
sh

op
cc

3M
33

M
30

M
31

M
31

M
32

M
33

M
31

M

Constraints (2011) 16:372–406 403

from column H1 + H2(del_ratio), where the heuristic is mentioned explicitly, in the
rest of the columns we use dom/wdeg.

Considering the results in Table 7 compared to results in Table 4 it seems that the
application of heuristics does not offer any benefits as the algorithm’s performance is
marginally improved, if at all. In some problem classes using no heuristic at all is the
best choice. These results, obtained using 2-way branching, are in contrast to results
from [1] where it was shown that heuristics H1 and H2 are mildly beneficial when
d-way branching is used.

The most promising is the application of both H1 and H2 (H1+H2), where xj

extracted from Q and xi, which is the neighbouring variable of xj, are ordered
in ascending order of the dom/wdeg value. The less efficient combination is the
H1+H2+H3 because of the run-time overhead caused by the often computation of
all three heuristics. Comparing del_ratio and dom/wdeg on H1+H2 we conclude that
the former is preferable on Quasigroup and Queen problems while the latter is better
on RLFAP and Geometric problems. On the rest of the problem classes they display
similar performance.

6.3 Interleaving AC and maxRPC

Since there are problem classes where either an algorithm that maintains AC or
one that maintains lmaxRPC is preferable, we have experimented with hybrid
propagation schemes that interleave lmaxRPC3rm and AC3rm. Specifically, we have
considered the following simple ways to interleave the two algorithms under 2-way

Table 8 Mean hybrid search performance in all 200 instances grouped by class

Problem class AC3rm lmaxRPC3rm (x = a)
∧

(x �= a)

lmaxRPC3rm ∧
AC3rm AC3rm ∧

lmaxRPC3rm

RLFAP t 13.5 21.7 21.9 19.5
(scen,graph) n 42,250 8,727 17,231 25,748

cc 56M 201M 193M 103M
Random t 2.7 3.6 3.2 4.1

(modelB,forced) n 29,538 7,385 11,488 16,668
cc 11M 30M 24M 30M

Graph coloring t 4.8 25 21.6 5.9
n 3,910 2,225 2,745 2,654
cc 12M 284M 240M 58M

Quasigroup t 55.6 22 30.2 40.9
(qcp,qwh,bqwh) n 866,099 117,974 233,919 324,373

cc 70M 39M 43M 60M
Geometric t 11.3 29.1 16.6 15.3

n 55,825 26,687 25,042 28,785
cc 55M 314M 164M 140M

QueensKnights, t 7.1 42.7 42.2 9.9
Queens, n 38,663 4,829 9,645 11,648
QueenAttack cc 27M 563M 535M 211M

Driver, blackHole t 1.6 5.6 2.1 1.8
haystacks, job-shop n 115,717 28,750 64,891 86,446

cc 3M 33M 30M 31M

404 Constraints (2011) 16:372–406

branching: At any left branch we run lmaxRPC3rm (respectively AC3rm) after a
value assigment, while at any right branch we run AC3rm (respectively lmaxRPC3rm)
after a value removal. Table 8 summarizes the results of our experiments with these
methods.

Given the results in Table 8, the first observation we can make is that none of
the two hybrid propagation schemes is substantially worse than both lmaxRPC3rm

and AC3rm on any problem class. In contrast, there are problem classes where
the hybrids outperform either maxRPC (e.g. geometric) or AC (quasigroups) by
substantial margins. This means that, as expected, the hybrid methods achieve a
compromise between maxRPC and AC, which is evident by looking at both cpu times
and node visits. Applying maxRPC at left branches results in performance closer to
maintaining maxRPC, while when AC is applied at left branches the performance
is closer to MAC. This is not surprising since the effects of constraint propagation
are stronger after variable assignments compared to value removals. Therefore, the
local consistency applied at left branches is the “dominant” one that determines
the behaviour of the algorithm. As a result, the former hybrid method is better on
quasigroup problems but worse on graph coloring and queens instances, while the
two are close on the rest of the problem classes.

The preliminary results presented here give a strong indication that interleaving
AC and stronger local consistencies, such as maxRPC, during search can be quite
beneficial. Further research is certainly required to develop more informed and
efficient ways of interleaving different local consistencies.

7 Conclusion

Although maxRPC has been identified as a promising strong local consistency for
binary constraints, it has received rather narrow attention since it was introduced.
Only two new algortihms have been proposed since the introduction of maxRPC1,
the first algorithm for maxRPC, and they have only been evaluated on random
problems, if at all.

In this paper we have identified sources of redundancies in the existing maxRPC
algorithms which largely contribute to the high cost of maintaining maxRPC during
search. Based on this, we presented new algorithms for maxRPC, and their light
versions that approximate maxRPC. These algorithms build on and improve existing
maxRPC algorithms, achieving the elimination of many redundant constraint checks.
We also investigated heuristics that can be used to order certain operations within
maxRPC algorithms.

Experimental results from various problem classes demonstrate that our best
method, lmaxRPC3rm, constantly outperforms existing algorithms, often by large
margins. Significantly, the speed-ups obtained allow lmaxRPC3rm to compete with
and outperform MAC on some problems, justifying the conjecture of [15] about the
potential of maxRPC as an alternative to AC.

In the future it would be interesting to investigate the applicability of similar
methods to efficiently achieve or approximate other local consistencies related to
maxRPC such as PIC or maxRPCEn. Also, a very interesting direction is the efficient
interleaved application of stronger consistencies, like maxRPC, and weaker but

Constraints (2011) 16:372–406 405

cheaper ones, like AC. We have presented some initial results towards this, but
further research is certainly required.

Acknowledgements We would like to thank the anonymous reviewers for their insightful com-
ments that helped improve this paper.

References

1. Balafoutis, T., Paparrizou, A., Stergiou, K., & Walsh, T. (2010). Improving the performance of
maxRPC. In Proceedings of CP-2010 (pp. 69–83).

2. Balafoutis, T., & Stergiou, K. (2008). Exploiting constraint weights for revision ordering in
arc consistency algorithms. In ECAI-08 workshop on modeling and solving problems with con-
straints.

3. Bartak, R., & Erben, R. (2004). A new algorithm for singleton arc consistency. In Proceedings of
FLAIRS conference-2004.

4. Berlandier, P. (1995). Improving domain filtering using restricted path consistency. In Proceed-
ings of IEEE CAIA-95 (pp. 32–37).

5. Bessiere, C. (1994). Arc-consistency and arc-consistency again. Artif icial Intelligence, 65, 179–
190.

6. Bessiere, C., Cardon, S., Debruyne, R., & Lecoutre, C. (2011). Efficient algorithms for singleton
arc consistency. Constraints, 16, 25–53.

7. Bessiere, C., & Debruyne, R. (2005). Optimal and suboptimal singleton arc consistency algo-
rithms. In Proceedings of IJCAI-2005 (pp. 54–59).

8. Bessière, C., Freuder, E. C., & Régin, J. C. (1995). Using inference to reduce arc consistency
computation. In Proceedings of IJCAI’95 (pp. 592–599).

9. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C. G., & Walsh, T. (2009). Decompositions
of all different, global cardinality and related constraints. In Proceedings of IJCAI-2009 (pp. 419–
424).

10. Bessière, C., Régin, J. C., Yap, R., & Zhang, Y. (2005). An optimal coarse-grained arc consistency
algorithm. Artif icial Intelligence, 165(2), 165–185.

11. Boussemart, F., Hemery, F., & Lecoutre, C. (2004). Revision ordering heuristics for the con-
straint satisfaction problem. In CP-2004 workshop on constraint propagation and implementation,
Toronto, Canada.

12. Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search by
weighting constraints. In Proceedings of ECAI-2004 (pp. 482–486). Valencia, Spain.

13. Debruyne, R. (1999). A strong local consistency for constraint satisfaction. In Proceedings of
ICTAI-99 (pp. 202–209).

14. Debruyne, R., & Bessière, C. (1997). From restricted path consistency to max-restricted path
consistency. In Proceedings of CP-97 (pp. 312–326).

15. Debruyne, R., & Bessière, C. (2001). Domain filtering consistencies. Journal of Artif icial Intelli-
gence Research, 14, 205–230.

16. Freuder, E., & Elfe, C. (1996). Neighborhood inverse consistency preprocessing. In Proceedings
of AAAI’96 (pp. 202–208).

17. Gent, I. P., MacIntyre, E., Prosser, P., Shaw, P., & Walsh, T. (1997). The constraindedness of arc
consistency. In Proceedings of CP-97 (pp. 327–340).

18. Grandoni, F., & Italiano, G. (2003). Improved algorithms for max-restricted path consistency.
In Proceedings of CP’03 (pp. 858–862).

19. Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfac-
tion problems. Artif icial Intelligence, 14, 263–314.

20. Lecoutre, C., & Cardon, S. (2005). A greedy approach to establish singleton arc consistency. In
Proceedings of IJCAI-2005 (pp. 199–204).

21. Lecoutre, C., Cardon, S., & Vion, J. (2007). Conservative dual consistency. In Proceedings of
AAAI-07 (pp. 237–242).

22. Lecoutre, C., & Hemery, F. (2007). A study of residual supports in arc consistency. In Proceed-
ings of IJCAI-2007 (pp. 125–130).

23. Likitvivatanavong, C., Zhang, Y., Bowen, J., Shannon, S., & Freuder, E. (2007). Arc consistency
during search. In Proceedings of IJCAI-2007 (pp. 137–142).

406 Constraints (2011) 16:372–406

24. Montanari, U. (1974). Network of constraints: Fundamental properties and applications to pic-
ture processing. Information Science, 7, 95–132.

25. Quimper, C. G., & Walsh, T. (2006). Global grammar constraints. In Proceedings of CP-2006
(pp. 751–755).

26. Sabin, D., & Freuder, E. C. (1997). Understanding and improving the MAC algorithm.
In Proceedings of CP-1997 (pp. 167–181).

27. Schulte, C., & Stuckey, P. J. (2008). Efficient constraint propagation engines. ACM Transactions
on Programming Languages and Systems, 31(1), 1–43.

28. Vion, J., & Debruyne, R. (2009). Light algorithms for maintaining max-RPC during search.
In Proceedings of SARA-2009.

29. Wallace, R., & Freuder, E. (1992). Ordering heuristics for arc consistency algorithms.
In AI/GI/VI (pp. 163–169). Vancouver, British Columbia, Canada.

	New algorithms for max restricted path consistency
	Abstract
	Introduction
	Background and related work
	maxRPC

	New algorithms for maxRPC
	maxRPC3
	Checking for PC-support loss
	Checking for PC-witness loss

	maxRPC3rm
	Light maxRPC
	Correctness and complexities

	Further exploitation of residues in maxRPC algorithms
	maxRPC3-resOpt
	maxRPC3-start

	Heuristics for maxRPC algorithms
	Experiments
	d-way branching
	Heuristics
	Interleaving AC and maxRPC

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

