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Abstract

Finite-domain constraint programming has been used with great success to tackle a wide variety of combinatorial problems in
industry and academia. To apply finite-domain constraint programming to a problem, it is modelled by a set of constraints on a set
of decision variables. A common modelling pattern is the use of matrices of decision variables. The rows and/or columns of these
matrices are often symmetric, leading to redundancy in a systematic search for solutions. An effective method of breaking this
symmetry is to constrain the assignments of the affected rows and columns to be ordered lexicographically. This paper develops an
incremental propagation algorithm, GACLexLeq, that establishes generalised arc consistency on this constraint in O(n) operations,
where n is the length of the vectors. Furthermore, this paper shows that decomposing GACLexLeq into primitive constraints
available in current finite-domain constraint toolkits reduces the strength or increases the cost of constraint propagation. Also
presented are extensions and modifications to the algorithm to handle strict lexicographic ordering, detection of entailment, and
vectors of unequal length. Experimental results on a number of domains demonstrate the value of GACLexLeq.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Constraints are a natural means of knowledge representation. For instance: the maths class must be timetabled
between 9 and 11am on Monday; the helicopter can carry up to four passengers; the sum of the variables must equal
100. This generality underpins the success with which finite-domain constraint programming has been applied to a
wide variety of disciplines [27]. To apply finite-domain constraint programming to a given domain, a problem must
first be characterised or modelled by a set of constraints on a set of decision variables, which its solutions must satisfy.
A common pattern arising in the modelling process is the use of matrices of decision variables, so-called matrix
models [9]. For example, it is simple to represent many types of functions and relations in this way [15].
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Concomitant with the selection of a matrix model is the possibility that the rows and/or columns of the matrix
are symmetric. Consider, for instance, a matrix model of a constraint problem that requires finding a relation R on
A×B where A and B are n-element and m-element sets of interchangeable objects respectively. The matrix, M , has
n columns and m rows to represent the elements of A and B. Each decision variable Ma,b can be assigned either 1 or
0 to indicate whether 〈a, b〉 ∈ A×B is in R. Symmetry has been introduced because the matrix, whose columns and
rows are indexed by A and B, distinguishes the position of the elements of the sets, whereas A and B did not. Given
a (non-)solution to this problem instance, a (non-)solution can be obtained by permuting columns of assignments
and/or permuting rows of assignments. This is known as row and column symmetry [8]. Since similar behaviour can
be found in multidimensional matrices of decision variables it is known more generally as index symmetry. As is well
documented, symmetry can lead to a great deal of redundancy in systematic search [8].

As reviewed in Section 2.5 of this paper, lexicographic ordering constraints have been shown to be an effective
method of breaking index symmetry. This paper describes a constraint propagation algorithm, GACLexLeq, that en-
forces this constraint. Given a lexicographic ordering constraint c, the propagation algorithm removes values from the
domains of the constrained variables that cannot be part of any solution to c. This paper also shows that GACLexLeq
establishes a property called generalised arc consistency,—that is it removes all infeasible values—while only re-
quiring a number of operations linear in the number of variables constrained. The GACLexLeq algorithm is also
incremental; if the domain of a variable is reduced the algorithm can re-establish generalised arc consistency without
working from scratch.

Although the examples and experiments in the paper employ the lexicographic ordering constraint to break index
symmetry, we note that lexicographic ordering can be used to break any symmetry that operates on the variables of
an instance. The lex-leader method [5] breaks all symmetry by identifying a representative among the elements of the
equivalence class of symmetries of an instance and adding a lexicographic ordering constraint for each other element
of the equivalence class to ensure that only the representative is allowed.

The paper is organised as follows. Section 2 introduces the necessary background while Section 3 describes a num-
ber of applications used to evaluate our approach. Section 4 presents a propagation algorithm for the lexicographic
ordering constraint. Then Section 5 discusses the complexity of the algorithm, and proves that the algorithm is sound
and complete. Section 6 extends the algorithm to propagate a strict ordering constraint, to detect entailment, and to
handle vectors of different lengths. Alternative approaches to propagating the lexicographic ordering constraint are
discussed in Section 7. Section 8 demonstrates that decomposing a chain of lexicographic ordering constraints into
lexicographic ordering constraints between adjacent or all pairs of vectors hinders constraint propagation. Computa-
tional results are presented in Section 9. Finally, we conclude and outline some future directions in Section 10.

2. Background

An instance of the finite-domain constraint satisfaction problem (CSP) consists of:

• a finite set of variables X ;
• for each variable X ∈ X , a finite set D(X) of values (its domain); and
• a finite set C of constraints on the variables, where each constraint c(X1, . . . ,Xn) ∈ C is defined over the variables

X1, . . . ,Xn by a subset of D(X1) × · · · × D(Xn) giving the set of allowed combinations of values. That is, c is
an n-ary relation.

A variable assignment maps every variable in a given instance of CSP to a member of its domain. A variable
assignment A is said to satisfy a constraint c(X1, . . . ,Xn) if and only if 〈A(X1), . . . ,A(Xn)〉 is in the relation denoted
by c. A solution to an instance of CSP is a variable assignment that satisfies all the constraints. An instance is said to be
satisfiable if it has a solution; otherwise it is unsatisfiable. Typically, we are interested in finding one or all solutions,
or an optimal solution given some objective function. In the presence of an objective function, a CSP instance is an
instance of the constraint optimisation problem.

To impose total ordering constraints on variables and vectors of variables there must be an underlying total ordering
on domains. If the domain of interest is not totally ordered, a total order can be imposed. And now, since domains
are always finite, every domain is isomorphic to a finite set of integers. So we shall simplify the presentation by
considering all domains to be finite sets of integers.
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The minimum element in the domain of variable X is min(X), and the maximum is max(X). Throughout, vars(c)
is used to denote the set of variables constrained by constraint c.

If a variable X has a singleton domain {v} we say that v is assigned to X, or simply that X is assigned. If two
variables X and X′ are assigned the same value, then we write X

.= X′, otherwise we write ¬(X
.= X′). If v is

assigned to X and v′ is assigned to X′ and v < v′ then we write X � X′.
A constraint c is entailed if all assignments of values to vars(c) satisfy c. If a constraint can be shown to be entailed

then running the (potentially expensive) propagation algorithm can be avoided. Similarly, a constraint c is disentailed
when all assignments of values to vars(c) violate c. Observe that if a constraint in a CSP instance can be shown to be
disentailed then the instance has no solution.

2.1. Generalised arc consistency

This paper focuses on solving the CSP by searching for a solution in a space of assignments to subsets of the
variables. Solution methods of this type use propagation algorithms that make inferences based on the domains of
the constrained variables and the assignments that satisfy the constraint. These inferences are typically recorded
as reductions in variable domains, where the elements removed cannot form part of any assignment satisfying the
constraint, and therefore any solution. At each node in the search, constraint propagation algorithms are used to
establish a local consistency property. A common example is generalised arc consistency (see [19]).

Definition 1 (Generalised arc consistency). A constraint c is generalised arc consistent (or GAC), written GAC(c), if
and only if for every X ∈ vars(c) and every v ∈ D(X), there is at least one assignment to vars(c) that assigns v to X

and satisfies c. Values for variables other than X participating in such assignments are known as the support for the
assignment of v to X.

Generalised arc consistency is established on a constraint c by removing elements from the domains of variables
in vars(c) until the GAC property holds. For binary constraints, GAC is equivalent to arc consistency (AC, see [18]).

2.2. Vectors and lexicographic ordering

A one-dimensional matrix, or vector, is an ordered list of elements. We denote a vector of n variables as
�X = 〈X0, . . . ,Xn−1〉, while we denote a vector of n integers as �x = 〈x0, . . . , xn−1〉. In either case, a sub-vector
from index a to index b inclusive is denoted by the subscript a..b, such as: �xa..b. We define min(〈X0, . . . ,Xn−1〉)
to be 〈min(X0), . . . ,min(Xn−1)〉 and, similarly, max(〈X0, . . . ,Xn−1〉) to be 〈max(X0), . . . ,max(Xn−1)〉. We de-
fine 〈x0, . . . , xn−1〉 ∈ 〈X0, . . . ,Xn−1〉 to be true if and only if xi ∈ D(Xi) for all i ∈ [0, n − 1]. Finally, we define
〈X0, . . . ,Xn−1〉 .= 〈Y0, . . . , Yn−1〉 to be true if and only if Xi

.= Yi for all i ∈ [1, n).
A vector of distinct variables is displayed by a vector of the domains of the corresponding variables. For in-

stance, �X = 〈{1,3,4}, {1,2,3,4,5}, {1,2}〉 denotes the vector of three distinct variables, whose domains are {1,3,4},
{1,2,3,4,5}, and {1,2}, respectively.

Lexicographic ordering is a total ordering on vectors and is used, for instance, to order the words in a dictionary.
Lexicographic ordering is defined on equal-sized vectors as follows.

Definition 2. Strict lexicographic ordering �x <lex �y between two length n vectors of integers �x and �y holds if and only
if for some k ∈ [0, n) it is the case that �x0..k−1 = �y0..k−1 and xk < yk .

This ordering can be weakened to include equality.

Definition 3. Two equal-length vectors of integers �x and �y are lexicographically ordered �x �lex �y if and only if
�x <lex �y or �x = �y.

Given two equal-length vectors of variables �X and �Y , we write a lexicographic ordering constraint as �X �lex �Y and
a strict lexicographic ordering constraint as �X <lex �Y . These constraints are satisfied by an assignment if the vectors
�x and �y assigned to �X and �Y are ordered according to Definitions 3 and 2, respectively.
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2.3. Variable symmetry

Various types of symmetries arise in instances of the CSP. All of the symmetries considered in this paper are
variable symmetries. A variable symmetry for an instance I of the CSP is a bijection σ on the variables of I such that
any total variable assignment A is a solution to I if and only if A · σ (the functional composition of A and σ ) is. This
has the obvious consequence that the identity function is a variable symmetry. It also means that every variable X has
the same domain as σ(X); otherwise, not every assignment would be mapped to an assignment.

As is the usual practice, we consider a set of symmetries on a problem instance, and the set always forms a group.
This means that the inverse of a symmetry is also a symmetry and so is the composition of two symmetries. Such
a set of symmetries is called a symmetry group. Two assignments, A and A′, are said to be symmetric if, for some
symmetry σ in the symmetry group, A · σ = A′. A symmetry group partitions the set of total assignments for a CSP
instance into equivalence classes, called symmetry classes, where the members of each equivalence class are pairwise
symmetric. Notice that either all members of a symmetry class are solutions or none are.

Symmetry in a CSP instance introduces symmetry in its search space of partial assignments. The subtrees rooted at
two symmetric partial assignments are symmetric to each other1 and the solutions, if any, in one subtree are symmetric
to those in the other subtree. Since the two symmetric subtrees contain symmetric solutions, there is no need to search
both; any solutions found in one can be transformed into the solutions of the other simply by applying the relevant
symmetry to it. It is important to note that a search space can contain symmetric subtrees that contain no solutions.
Thus, even in cases where an instance has no solutions or where we are searching for only a single solution, subtrees
that are symmetric to each other can be encountered.

The search of a space of partial assignments can be sped up by employing some method that avoids searching
some or all parts of the space that are symmetric with parts that are searched. Such a method is often referred to as
symmetry breaking. Symmetry is often broken “statically” by transforming a problem instance into one that has fewer
symmetries. This is achieved by adding to the instance a constraint, called a symmetry-breaking constraint, that is true
of some, but not all, symmetric assignments [22]. For example, consider a CSP instance with the variable symmetry
that swaps X and Y . Adding the constraint X � Y to the instance breaks the symmetry—that is, the resulting instance
does not have the symmetry. We often talk of a set of symmetry-breaking constraints, which can be considered as the
constraint consisting of the conjunction of all the members of the set.

We say that a symmetry-breaking constraint c is consistent for a CSP instance with a symmetry group if c is
satisfied by at least one assignment in every symmetry class. The constraint c is complete if it is satisfied by at most
one assignment in every symmetry class.

Crawford et al. [5] showed a method for generating a set of lexicographic ordering constraints that are consis-
tent and complete for breaking any group of variable symmetries. It starts with an enumeration �X of the variables
in the instance. The set of symmetry-breaking constraints contains one constraint of the form 〈X0, . . . ,Xn−1〉 �lex

〈σ(X0), . . . , σ (Xn−1)〉 for each symmetry σ in the group. Since this set of constraints is often too large to use in
practice, what is often used is a subset and/or simplification of these constraints, which gives a consistent, though
incomplete, set of symmetry-breaking constraints. For this reason, lexicographic ordering constraints are widely used
for breaking variable symmetries.

2.4. Matrix models and index symmetry

A matrix model is the formulation of a CSP with one or more matrices of decision variables [9]. Matrix models are
a natural way to represent problems that involve finding a function or relation. For example, in the warehouse location
problem (prob034 in CSPLib [13]), we need to find a function from stores to warehouses that determines which
warehouse supplies each store. As a second example, in the steel mill slab design problem (prob038 in CSPLib), we
need to find a function from orders to slabs that determines which slab is used to satisfy each order. Other examples
are encountered later in this paper. Matrix models have been long used in integer linear programming [23], and are
commonly used in constraint programming. Of the first 38 problems in CSPLib, at least 33 have matrix models, most
of them already published and proved successful [9].

1 For the purposes of this paper precise definitions of symmetric partial assignments and symmetric search trees are not necessary.
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Matrices can be of any number of dimensions; the examples used in this paper have two or three dimensions. If a
matrix X of variables has n dimensions, we denote each of its elements by Xi1,...,in . In a two-dimensional matrix we
refer to the first dimension as the columns of the matrix and the second dimension as the rows. In general, the values
that are used to index the matrix can be drawn from any finite set. Without loss of generality, we shall assume that a
dimension that has n index values uses {0, . . . , n − 1} as its index values.

Many matrix models have variable symmetries among the variables of the matrix (matrices). A common pattern of
symmetry is that the rows and/or columns of an assignment to a 2D matrix can be swapped without affecting whether
or not the assignment is a solution [9]. These are called row symmetry or column symmetry; the general term is index
symmetry.

Definition 4. Let I be a CSP instance containing a two-dimensional matrix X of variables. A column symmetry for I

is a variable symmetry, σ , for I such that for some bijection ρ on the column indices of X,

• σ(Xi,j ) = Xρ(i),j , for every variable Xi,j in matrix X, and
• σ(Y ) = Y for every variable not in matrix X.

A row symmetry is the same as a column symmetry except that it operates on the second index of the matrix rather
than on the first.

Thus, for a particular index i of a matrix, every index symmetry σ on i corresponds to a unique bijection ρi on the
values of index i. We therefore identify an index symmetry by ρ and the index on which it operates.

Again, we are interested only in groups of index symmetries and, particularly, groups of two kinds. If every bijec-
tion on the values of an index is an index symmetry, then we say that the index has total symmetry. If the first (resp.
second) index of a 2D matrix has total symmetry, we say that the matrix has total column symmetry (resp. total row
symmetry). We also say that all the columns (resp. rows) of the matrix are interchangeable.

In many matrix models only a subset of the rows or columns are interchangeable. Let I be non-singleton, non-
empty subset of the values of index i of a matrix. Let S be the set containing every bijection ρ on the values of index
i such that ρ(v) = v for every v /∈ I . If every member of S is an index symmetry for i then we say that the matrix has
partial index symmetry. If the first (resp. second) index of a 2D matrix has partial symmetry, we say that the matrix
has partial column symmetry (resp. partial row symmetry). We also say that all the columns (resp. rows) in I of the
matrix are interchangeable.

There is one final case to consider: an index may have partial index symmetry on multiple subsets of its values. For
example, a CSP instance may have a 2D matrix for which rows 1, 2 and 3 are interchangeable and rows 5, 6 and 7 are
interchangeable. This can occur on any or all of the indices.

Section 3 of this paper gives several examples of CSPs that have index symmetry.
An n × m matrix with total row and total column symmetry has n!m! symmetries. Consequently, it can be very

costly to visit all the symmetric branches in a tree search. The next subsection explains how to break many of these
symmetries.

2.5. Lexicographic ordering constraints for breaking index symmetry

The application of lexicographic ordering constraints considered by this paper is to breaking symmetries in CSP
instances that have matrices with index symmetry. This section summarises the major results from Flener et al. [8]
and Shlyakhter [25] on breaking index symmetries with lexicographic ordering constraints.

If a matrix in a CSP instance has total column (resp. row) symmetry, then the symmetry can be broken completely
by a symmetry-breaking constraint that imposes a total ordering on the rows (resp. columns). The total ordering used
here is the lexicographic ordering. In particular, we constrain the columns (resp. rows) to be non-decreasing as the
value of the index increases. One way to achieve this, which is used in the experiments presented in this paper, is by
imposing a constraint between adjacent columns (resp. rows). If X is an n by m matrix of decision variables, then we
break column symmetry by imposing the constraints

〈Xi,0, . . . ,Xi,m〉 �lex 〈Xi+1,0, . . . ,Xi+1,m〉 (i ∈ [0, n − 2])
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and we break row symmetry by imposing the constraints

〈X0,j , . . . ,Xn,j 〉 �lex 〈X0,j+1, . . . ,Xn,j+1〉 (j ∈ [0,m − 2]).
Though these lexicographic ordering constraints are consistent and complete for total row or total column symmetry

individually, they are not complete for a matrix that has both kinds of symmetry. They are, however, consistent and
have been shown to be effective at removing many symmetries from the search spaces of many problems. Care must
be taken in specifying these constraints; if, the column constraints take Xi,0 to be the most significant position in each
column and the row constraints take Xn,j to be the most significant position in each row, then the conjunction of the
constraints is an inconsistent symmetry-breaking constraint.

If a matrix has only partial column (resp. partial row) symmetry then the symmetry can be broken by constraining
the interchangeable columns (resp. rows) to be in lexicographically non-decreasing order. This can be achieved in
a manner similar to that described above. The method also extends to matrices that have partial or total column
symmetry together with partial or total row symmetry. Finally, if the columns and/or rows of a matrix have multiple
partial symmetries than each can be broken in the manner just described.

Though it will not arise in this paper, lexicographic ordering constraints can be used in a similar manner to break
symmetry in multi-dimensional matrices that have partial or total index symmetry on any number of its dimensions.

3. Applications

This section presents matrix models for three combinatorial problems in which lexicographic ordering constraints
can be used to break index symmetry. These models are used in the experiments presented in Section 9.

3.1. Progressive party problem

The progressive party problem arises in the context of organising the social programme for a yachting rally
(prob013 in www.csplib.org). Given a set of boats, each with a number of crew members and a capacity in terms
of the number of guests it can accommodate, the problem is to designate a minimal subset of the boats as hosts and
schedule the remaining boats to visit the hosts for a number of half-hour periods. All members of a particular guest
crew remain together, and the crew of host boats remain on board their own boat. A guest boat cannot revisit a host
and guest crews cannot meet more than once.

A simplified version of this problem, also studied by Smith et al. [24], removes the objective function, pre-
designating the host boats and asking for only the schedule to be found. We study this version of the problem here.
Let Periods be the set of time periods, Guests the set of guest boats and Hosts the set of host boats. Each host boat
k has a capacity ck (after taking its own crew into consideration), and each guest boat j has a crew size sj . Smith et
al.’s matrix model of this problem is given in Fig. 1. It comprises two matrices, H indexed by Periods × Guests and
B indexed by Periods × Guests ×Hosts. If Hi,j = k, or equivalently Bi,j,k = 1, then in period i, guest j visits host
k. Although B is redundant given H , it allows the capacity constraints to be specified concisely.

Constraint (1) ensures that every pair of guest crews meet at most once. Note that the constraint sub-expression
Hi,j1 = Hi,j2 is reified to a 1 or a 0 value, depending on whether or not it is satisfied. Hence, the summation counts the
number of periods in which guest crews j1 and j2 are assigned the same host value. Constraint (2) disallows a guest
crew from revisiting a host boat over the course of the schedule. Here, for the sake of presentation, the periods are
considered to be the integers 0, . . . , p −1. Constraint (3) ensures that the capacity of each host boat is never exceeded.
Finally, Constraint (4) is a channelling constraint [3], which maintains consistency between the H and B matrices.

The time periods are interchangeable, hence there is total symmetry on the first index of H and the first index
of B .2 Guests with equal crew size are interchangeable, which means that there is partial symmetry on the second
index of H and the second index of B . Finally, hosts with equal capacity are interchangeable, hence there is partial
symmetry on the third index of B .

2 Observe that this is the same symmetry in both matrices and therefore cannot be broken independently in the two matrices. This issue arises
elsewhere, but for concision we do not re-address it.
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Given:
Periods, Guests, Hosts,
matrix ck indexed by k ∈Hosts,
matrix sj indexed by j ∈ Guests

Decision Variables:
matrix Hi,j with domain Hosts indexed by i ∈Periods, j ∈ Guests,
matrix Bi,j,k with domain {0,1} indexed by i ∈Periods, j ∈ Guests, k ∈Hosts

Constraints:
(1)

∑
i∈Periods(Hi,j1 = Hi,j2 ) � 1 (j1, j2 ∈ Guests, j1 < j2)

(2) all-different(〈H0,j ,H1,j , . . . ,Hp−1,j 〉) (j ∈ Guests)
(3)

∑
j∈Guests sj ∗ Bi,j,k � ck (i ∈Periods, k ∈Hosts)

(4) Hi,j = k ↔ Bi,j,k = 1 (i ∈Periods, j ∈ Guests, k ∈Hosts)

Fig. 1. Matrix model of the progressive party problem from [24].

Given:
T emplates, Variations, s,
matrix dj indexed by j ∈ Variations

Decision Variables:
matrix Runi with domain {0, . . . ,max(dj )} indexed by i ∈ T emplates,
matrix Ti,j with domain {0, . . . , s} indexed by i ∈ T emplates, j ∈ Variations

Constraints:
(1)

∑
j∈Variations Ti,j = s (i ∈ T emplates)

(2)
∑

i∈T emplates Runi ∗ Ti,j � dj (j ∈ Variations)

Objective:
minimize

∑
i∈T emplates Runi

Fig. 2. Matrix model of the template design problem from [21].

3.2. Template design problem

The template design problem (prob002 in CSPLib) involves configuring a set of printing templates with design
variations that need to be printed to meet specified demand. Given is a set of variations of a design, with a common
shape and size and such that the number of required “pressings” of each variation is known. The problem is to design
a set of templates, with a common capacity to which each must be filled, by assigning zero or more instances of a
variation to each template. A design should be chosen that minimises the total number of “runs” of the templates
required to satisfy the number of pressings required for each variation. As an example, the variations might be for
cartons for different flavours of cat food, such as fish or chicken, where ten thousand fish cartons and twenty thousand
chicken cartons need to be printed. The problem would then be to design a set of templates by assigning a number of
fish and/or chicken designs to each template such that a minimal number of runs of the templates is required to print
all thirty thousand cartons.

Proll and Smith address this problem by fixing the number of templates and minimising the total number of press-
ings [21]. We will adopt their model herein. Let T emplates be the fixed-size set of templates, each with capacity s,
to which variations are to be assigned. Let Variations be the set of variations. Each variation, j , is described by a
demand dj that specifies the minimum number of pressings required. Proll and Smith’s model is given in Fig. 2. It
comprises two matrices, Run indexed by T emplates, and T indexed by T emplates × Variations. If Runi = j , then
template i is printed j times, where j ranges between 0 and the maximum number of pressings required by any single
variation. Similarly, if Ti,j = k then template i is assigned k instances of variation j , where 0 � k � s.
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Given:
v, b, r, k, λ

Let:
B = {0, . . . , b − 1} and V = {0, . . . , v − 1}

Decision Variables:
matrix Xi,j with domain {0,1} indexed by i ∈ B, j ∈ V

Constraints:
(1)

∑
i∈B Xi,j = r (j ∈ V)

(2)
∑

j∈V Xi,j = k (i ∈ B)

(3)
∑

i∈B Xi,j1 ∗ Xi,j2 = λ (j1, j2 ∈ V, j1 < j2)

Fig. 3. Matrix model of the BIBD problem from [20].

Constraint (1) ensures that every template has all its s slots occupied, and constraint (2) specifies that the total
production of each variation is at least its demand. The objective is then to minimise the total number of pressings.

In this model all the templates are interchangeable, hence Run has total symmetry on its index and T has total
symmetry on its first index. Variations of equal demand are interchangeable, hence there is total symmetry on the
second index of T .

3.3. Balanced incomplete block design problem

The balanced incomplete block design (BIBD) problem is a standard combinatorial problem from design theory [4]
with applications in experimental design and cryptography (prob028 in CSPLib). Given the tuple of natural numbers
〈v, b, r, k, λ〉, the problem is to arrange v distinct objects into b blocks such that each block contains exactly k distinct
objects, each object occurs in exactly r different blocks, and every two distinct objects occur together in exactly λ

blocks.
Meseguer and Torras’ model [20], which we adopt in this paper, is given in Fig. 3. It comprises one matrix, X,

indexed by B×V , where B = {0, . . . , b−1} is the set of blocks and V = {0, . . . , v −1} is the set of objects. Xi,j = 1 if
and only if block i contains object j . Constraints (1) and (2) ensure, respectively, that each object appears in r blocks
and that each block contains k objects. Constraint (3) is a scalar product constraint that requires every pair of objects
to meet in exactly λ blocks. Since both the objects and the blocks are interchangeable, the matrix X has total row and
total column symmetry.

4. A propagation algorithm

We present a propagation algorithm for the lexicographic ordering constraint that either detects the disentailment
of �X �lex �Y or prunes inconsistent values to establish GAC on �X �lex �Y .

In order to simplify the presentation, here and throughout the entire paper we consider only the case where �X and
�Y are variable-distinct in the following sense:

Definition 5. A pair of vectors is variable-distinct if each contains only CSP variables, each contains no repeated
variables, and there are no variables common to both vectors.

Note that the majority of applications, such as those described in the previous section, involve ordering variable-
distinct vectors. Kiziltan [17] gives an algorithm similar to that presented here, but which caters for the cases where
variables are repeated. In the presence of repeated variables, the algorithms given herein can be used by the following
simple expedient. Consider a constraint c with two occurrences of variable X. We can replace c with c′ ∧ (X = X′),
where X′ has the same domain as X and c′ results from replacing one occurrence of X in c with X′. This step
can be repeated to remove all repeated occurrences of a single variable. This approach preserves soundness, but not
completeness.

The key to the algorithm is that there are two significant indices within �X and �Y . The index α is the least index at
which �X and �Y are not ground and equal. If there is no such index α is n. The index β is the least index in [α,n) such
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that �Xβ..n−1 >lex �Yβ..n−1 is entailed. If there is no such index, β is n + 1. The algorithm only needs to consider the
regions of �X and �Y within indices [α,β).

4.1. A worked example

We now illustrate the GACLexLeq algorithm by considering its operation on the lexicographic ordering constraint
�X �lex �Y , where �X and �Y are variable-distinct and have the domains:

�X = 〈{1}, {2}, {2}, {1,3,4}, {1,2,3,4,5}, {1,2}, {3,4,5}〉
�Y = 〈{1}, {2}, {0,1,2}, {1}, {0,1,2,3,4}, {0,1}, {0,1,2}〉

The program variables alpha and beta are used to record the values α and β . When the domains of �X and �Y are
reduced alpha and beta may no longer contain the values α and β so the algorithm needs to update these program
variables.

We traverse the vectors once in order to initialise alpha and beta. Starting from index 0, we move first to index
1 and then to index 2 because X0

.= Y0 and X1
.= Y1. We stop at 2 and set alpha= 2 = α as Y2 is not assigned.

�X = 〈{1}, {2}, {2}, {1,3,4}, {1,2,3,4,5}, {1,2}, {3,4,5}〉
�Y = 〈{1}, {2}, {0,1,2}, {1}, {0,1,2,3,4}, {0,1}, {0,1,2}〉

alpha ↑
We initialise beta by traversing the vectors starting from alpha. At index 2 min(X2) = max(Y2), therefore

X2 � Y2 is entailed. Hence, β may equal 2, but this can only be determined by examining the variables with greater
indices. At index 3, min(X3) = max(Y3). This neither precludes nor confirms β = 2. At index 4, it is possible to
satisfy X4 � Y4. Hence, we have determined β �= 2. At index 5 min(X5) = max(Y5), therefore X5 � Y5 is entailed.
Similarly, β may equal 5, but this can only be determined by examining the variables with greater indices. At index 6,
min(X6) > max(Y6), so X6 > Y6 is entailed. Hence, �X5..6 >lex �Y5..6 is entailed, and therefore β = 5, to which beta
is initialised.

�X = 〈{1}, {2}, {2}, {1,3,4}, {1,2,3,4,5}, {1,2}, {3,4,5}〉
�Y = 〈{1}, {2}, {0,1,2}, {1}, {0,1,2,3,4}, {0,1}, {0,1,2}〉

alpha ↑ ↑ beta
The algorithm restricts domain pruning to the index alpha. As values are removed from the domains of the

variables, the value of alphamonotonically increases and the value of betamonotonically decreases. The constraint
is disentailed if the values of alpha and beta become equal.

Consider the vectors again. As the vectors are assigned and equal at the indices less than alpha, there is no
support for any value in D(Yalpha) that is less than min(Xalpha). We therefore remove 0 and 1 from D(Yalpha) and
increment alpha to 3 = α:

�X = 〈{1}, {2}, {2}, {1,3,4}, {1,2,3,4,5}, {1,2}, {3,4,5}〉
�Y = 〈{1}, {2}, {2}, {1}, {0,1,2,3,4}, {0,1}, {0,1,2}〉

alpha ↑ ↑ beta
Similarly, there is no support for any value in D(Xalpha) greater than max(Yalpha). We therefore remove 3 and 4
from D(Xalpha) and increment alpha to 4 = α:

�X = 〈{1}, {2}, {2}, {1}, {1,2,3,4,5}, {1,2}, {3,4,5}〉
�Y = 〈{1}, {2}, {2}, {1}, {0,1,2,3,4}, {0,1}, {0,1,2}〉

alpha ↑ ↑ beta
Since alpha = beta− 1, there is no support for any value in D(Xalpha) greater than or equal to max(Yalpha).
Similarly, there is no support for any value in D(Yalpha) less than or equal to min(Xalpha). We must therefore
establish arc consistency on Xalpha < Yalpha. Doing so removes 4 and 5 from D(Xalpha), and also 0 and 1 from
D(Yalpha):

�X = 〈{1}, {2}, {2}, {1}, {1,2,3}, {1,2}, {3,4,5}〉
�Y = 〈{1}, {2}, {2}, {1}, {2,3,4}, {0,1}, {0,1,2}〉

alpha ↑ ↑ beta
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The constraint �X �lex �Y is now GAC.

4.2. Theoretical background

This section formally defines α and β and presents two theorems that show their significance in propagating the
constraint �X �lex �Y .

Definition 6. Given two length n variable-distinct vectors, �X and �Y , α is the least index in [0, n) such that ¬(Xα
.= Yα)

or, if no such index exists, n.

Definition 7. Given two length n variable-distinct vectors, �X and �Y , β is the least index in [α,n) such that

∃k ∈ [β,n) .
(
min(Xk) > max(Yk) ∧ min( �Xβ..k−1) = max( �Yβ..k−1)

)
or, if no such index exists, n + 1.

The relative values of α and β provide important information about the constraint �X �lex �Y . By definition, β cannot
be strictly less than α. The following two theorems in turn address the cases when α = β and when α < β . The first
theorem states that if α = β then the constraint is disentailed.

Theorem 1. Let �X and �Y be a pair of length n variable-distinct vectors. α = β if and only if �X �lex �Y is disentailed.

Proof. (⇒) By Definition 6, �X0..α−1
.= �Y0..α−1, and by Definition 7 �Xβ..n−1 >lex �Yβ..n−1 is entailed. Since β = α

there is no assignment that can satisfy �X �lex �Y .
(⇐) If �X �lex �Y is disentailed then �X >lex �Y is entailed. From the definition of strict lexicographic ordering there

must be an index i such that min(Xi) > max(Yi). Let j be the least such index. If j = 0 then, by Definitions 6 and
7, α = j = β . Otherwise observe that min(Xh) � max(Xh) for all h ∈ [0, j − 1]. If �X0..j−1

.= �Y0..j−1 then from
Definition 6 α = j and from Definition 7 β = j . Otherwise, let g < j be the least index such that ¬(Xg

.= Yg). Then
from Definition 6 g = α and from Definition 7 g = β . �

The second theorem states that if β > α then the constraint is GAC if and only if α = n or all values at index α

have support.

Theorem 2. Let �X and �Y be a pair of length n variable-distinct vectors such that β > α. GAC( �X �lex �Y) if and only
if either

1. β = α + 1 and AC(Xα < Yα), or
2. β > α + 1 and AC(Xα � Yα).

Proof. (⇒) Assume �X �lex �Y is GAC but either Xα < Yα is not AC when β = α + 1 or Xα � Yα is not AC when
β > α + 1. Then either there exists no value in D(Yα) greater than (or equal to) a value a in D(Xα), or there exists no
value in D(Xα) less than (or equal to) a value b in D(Yα). Since the variables are all assigned and pairwise equal at
indices less than α, a or b lacks support from all the variables in the vectors. This contradicts that �X �lex �Y is GAC.

(⇐) All variables with indices less than α are assigned and pairwise equal. Therefore, the assignment Xα � Yα

provides support for all values at indices greater than α. Hence, given β = α + 1 and AC(Xα < Yα) the constraint
is GAC. Similarly, if β > α + 1 and AC(Xα � Yα) then Xα � Yα supports all values at indices greater than α. It
remains to consider the assignments that set Xα

.= Yα . If β = n + 1, then by definition min(Xi) � max(Yi) for all
i ∈ [α,n) and the constraint is GAC. Otherwise, from the definition of β , min(Xi) � max(Yi) for all i ∈ [α,β) and
¬(Xβ−1

.= Yβ−1). Since �X and �Y are variable-distinct, Xα
.= Yα is supported by the combination of Xβ−1 � Yβ−1

and �Xα+1..β−2
.= �Yα+1..β−2. Hence, the constraint is GAC. �
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Algorithm GACLexLeq

EstablishGAC
A1 alpha := 0
A2 while (alpha < n ∧ Xalpha

.= Yalpha) do alpha := alpha + 1
A3 if (alpha = n) then beta := n + 1, return
A4 i := alpha
A5 beta := −1
A6 while (i �= n ∧ min(Xi) � max(Yi)) do
A6.1 if (min(Xi) = max(Yi)) then if (beta= −1) then beta := i

A6.2 else beta := −1
A6.3 i := i + 1
A7 if (i = n) then beta := n + 1
A8 else if (beta= −1) then beta := i

A9 if (alpha= beta) then disentailed
A10 ReEstablishGAC(alpha)

ReEstablishGAC(i in [0, n)) Triggered when min(Xi) or max(Yi) changes
A11 if (i = alpha∧ i + 1 = beta) then EstablishAC(Xi < Yi )
A12 if (i = alpha∧ i + 1 < beta) then
A12.1 EstablishAC(Xi � Yi )
A12.2 if (Xi

.= Yi ) then UpdateAlpha
A13 if (alpha< i < beta) then
A13.1 if ((i = beta− 1 ∧ min(Xi) = max(Yi)) ∨ min(Xi) > max(Yi)) then
A13.2 UpdateBeta(i − 1)

UpdateAlpha
A14 alpha := alpha+ 1
A15 if (alpha= n) then return
A16 if (alpha= beta) then disentailed
A17 if (¬(Xalpha

.= Yalpha)) then ReEstablishGAC(alpha)
A18 else UpdateAlpha

UpdateBeta(i in [0, n))
A19 beta := i + 1
A20 if (alpha= beta) then disentailed
A21 if (min(Xi) < max(Yi)) then
A21.1 if (i = alpha) then EstablishAC(Xi < Yi )
A22 else UpdateBeta(i − 1)

Fig. 4. Constituent procedures of the GACLexLeq algorithm.

4.3. Algorithm GACLexLeq

Based on Theorems 1 and 2, we have designed an efficient linear-time propagation algorithm, GACLexLeq, which
either detects the disentailment of �X �lex �Y or prunes only inconsistent values so as to establish GAC on �X �lex �Y . It
is presented in Fig. 4.

Throughout the paper, we assume that our propagation algorithms are used in a certain manner, which is common
in the practice of constraint programming. If we are searching for a solution to a set of constraints that contains a
constraint of the form �X �leq

�Y , then the constraint will be imposed with a call to EstablishGAC. In searching
down any path of the search space ReEstablishGAC is called whenever the domain of a variable in �X or �Y is
reduced in a certain manner. As many domain reductions do not destroy the GAC property, our algorithms specify the
conditions under which ReEstablishGAC is triggered. Finally, we assume that the solver detects when the domain
of a variable has been reduced to the empty set and interrupts the execution of the propagation algorithm and signals
disentailment. Thus our algorithms do not test for empty domains. When other conditions lead our algorithms detect
that the constraint is disentailed, the algorithms signal this and return. We assume that the propagation algorithms are
never called with a constraint for which disentailment has been detected.
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Let us discuss GACLexLeq, beginning with EstablishGAC. Throughout the paper we refer to lines A1–A9 as
the “initialisation step” since these lines initialise the program variables alpha and beta to α and β , as defined in
Definitions 6 and 7. Following the initialisation step ReEstablishGAC is called (line A10) to establish generalised
arc consistency.

Line A2 traverses �X and �Y , starting at index 0, until either it reaches the end of the vectors (all pairs of variables
are assigned and equal), or it finds an index where the pair of variables are not assigned and equal. In the first case,
the algorithm returns (line A3) as �X �lex �Y is entailed. In the second case, alpha is set to the smallest index where
the pair of variables are not assigned and equal. The vectors are traversed at line A6, starting at index alpha, until
either the end of the vectors is reached (none of the pairs of variables have min(Xi) > max(Yi)), or an index i where
min(Xi) > max(Yi) is found. In the first case, beta is set to n + 1 (line A7). In the second case, beta is guaranteed
to be at most i (line A8). If, however, there exists an h ∈ [0, i − 1] such that min( �Xh..i−1) = max( �Yh..i−1), then beta
can be revised to the least such h (line A6.1).

If alpha= beta then disentailment is detected and EstablishGAC terminates, signalling that this is the case
(line A9). Otherwise, it is sufficient to call ReEstablishGAC with index alpha (line A10) to establish generalised
arc consistency, as we will show.

We now consider ReEstablishGAC itself. Apart from the call made by EstablishGAC, this procedure is
triggered whenever the lower bound of one of the variables in �X, or the upper bound of one of the variables in �Y , is
modified. The justification for this is that lexicographic ordering is a monotonic constraint. If a value of Xi has any
support then it is supported by the maximum value of Yi ; likewise, if a value of Yi has any support then it is supported
by the minimum value of Xi . Hence new support needs to be sought only if one of these bounds is changed.
ReEstablishGAC consists of three mutually-exclusive branches, which we describe in turn. Line A11 estab-

lishes AC on Xi < Yi , in accordance with Theorem 2. Again, because of monotonicity, this is a simple step. First, a
check is made to ensure that the upper bound of Xi is supported by the upper bound of Yi . If not, the upper bound of
Xi is revised accordingly. Similarly, the lower bound of Yi is compared against the lower bound of Xi and revised if
necessary.

Lines A12–12.2 cater for the case when alpha and beta are not adjacent. Again exploiting monotonicity, line
A12.1 establishes AC on Xi � Yi , in accordance with Theorem 2. If, following this step, Xi and Yi are assigned and
equal, alpha no longer reflects α and is updated via UpdateAlpha. In lines A14 and A18 of UpdateAlpha the
vectors are traversed until α is reached. If α = n the procedure returns (line A15) because GAC has been established.
If α = β , disentailment is signalled (line A16) in accordance with Theorem 1. Otherwise, ReEstablishGAC is
called (line A17).

Finally, lines A13–A13.2 deal with a call to ReEstablishGAC with an index between alpha and beta. In
this case, it may be the case that beta does not reflect β and must be updated. The condition for updating beta is
derived from Definition 7: at i either min(Xi) > max(Yi), or i is beta− 1 and min(Xi) = max(Yi). The program
variable beta is updated by calling UpdateBeta(i − 1). In lines A19 and A22, the vectors are traversed until β is
reached. Again, if α = β , disentailment is signalled (line A20) in accordance with Theorem 1. Otherwise, line A21.1
establishes AC on Xi � Yi if α is adjacent to β .

5. Theoretical properties

We begin by analysing the worst-case time complexity of GACLexLeq, before establishing its soundness and
completeness.

5.1. Time complexity

This section considers the time complexity of using GACLexLeq to establish or re-establish GAC as well as the
total time complexity of establishing and then repeatedly re-establishing GAC in moving down a single branch in a
search space.

The GACLexLeq algorithm updates the domains of variables by establishing arc-consistency on constraints of
the form X � Y and X < Y , both of which modify the domains only by tightening their bounds. Depending on how
domains are implemented, the time taken to perform this tightening operation could be constant, a function of the
cardinality of the domain, or even a function of the structure of the domain. In order to abstract away from this issue,
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we shall measure the run time of our algorithms by a pair of functions 〈f1, f2〉, where f1 gives the total number of
operations performed (counting domain bounds modification as a single operation) and f2 gives the total number of
domain bounds modifications. We also assume that min(X) and max(X) can be computed in constant time. Thus, the
cost of establishing AC on X � Y or X < Y is 〈O(1),0〉 if the constraint is AC, and 〈O(1),1〉 if it is not.

Our approach to the complexity analysis is first (in Lemma 2) to characterise the amount of computation performed
as a function of Mαβ , the total number of times that alpha and beta are modified, and then obtain the complexity
result by establishing that Mαβ is bounded by the vector length plus one.

Lemma 1. Every execution of UpdateAlpha increments alpha and every execution of UpdateBeta de-
creases beta. During the execution of ReEstablishGAC the value of alpha never decreases and the value
of beta never increases.

Proof. Each execution of UpdateAlpha increments alpha on Line A14 and modifies alpha nowhere else. Each
execution of UpdateBeta assigns a value to beta on line A19 and is modified nowhere else. Let us confirm that
line A19 decreases beta. On the initial call to UpdateBeta (line 13.2) the value passed is no greater than beta−2
and on subsequent calls (line A22) i is decremented. Hence, immediately before line A19 is executed, i + 1 is strictly
less than beta. An execution of ReEstablishGAC never modifies alpha or beta other than through calls to
UpdateAlpha and UpdateBeta; hence it never decreases alpha or increases beta. �
Lemma 2. Given a pair of equal-length variable-distinct vectors, the time complexity of ReEstablishGAC is
〈O(Mαβ),O(Mαβ)〉, where Mαβ is the total number of times that the alpha or beta variables are modified during
the execution.

Proof. With any execution e of ReEstablishGACwe can associate a string, se , of the symbols “r”, “a” and “b” that
indicates the sequence of invocations of ReEstablishGAC, UpdateAlpha and UpdateBeta, respectively, that
take place during execution e. It is useful to observe, from the structure of the algorithm, that the set of all such strings
is r(a∗|a+r)b∗. Consider an arbitrary execution e of ReEstablishGAC. We start the proof by first showing that
for execution e Mαβ = �(|se|). From Lemma 1 we know that each execution of UpdateAlpha increments alpha
and each execution of UpdateBeta decreases beta. Each execution of ReEstablishGAC, except the first, is
preceded by an execution of UpdateAlpha, whose execution incremented alpha. Therefore Mαβ = �(|se|). Ob-
serving that each of ReEstablishGAC, UpdateAlpha and UpdateBeta perform O(1) total operations, we
conclude that the total number of operations performed during execution e is O(Mαβ). Observing ReEstablish-
GAC, UpdateAlpha and UpdateBeta perform at most one domain bounds modification, we conclude that the
total number of such modifications performed during execution e is O(Mαβ). �
Theorem 3. Given a pair of length n variable-distinct vectors the time complexity of both ReEstablishGAC and
EstablishGAC is 〈O(n),O(n)〉.

Proof. First consider ReEstablishGAC. Observe that when ReEstablishGAC is called on line A10, alpha
is at least 0 and beta is at most n + 1. From Lemma 1 it follows that this is true for any subsequent call to
ReEstablishGAC, be it from line A17 or from outside the algorithm. Observe that the value of alpha never
exceeds that of beta. From Lemma 1 and these observations, it follows that, for any execution of ReEstab-
lishGAC, Mαβ � n + 1. Therefore, it follows from Lemma 2 that the complexity of both ReEstablishGAC and
EstablishGAC is 〈O(n),O(n)〉.

Now consider EstablishGAC. Observe that the complexity of the initialisation step (lines A1 through A9)
is 〈O(n),0〉. Adding this to the execution time of ReEstablishGAC (line A10) gives a total complexity of
〈O(n),O(n)〉. �

As explained at the beginning of Section 4.3, if we are searching for a solution to a set of constraints that contains
a constraint of the form �X �lex �Y , then the constraint will be imposed with a call to EstablishGAC and down any
branch of a search space a call will be made to ReEstablishGAC every time a lower bound of some Xi is increased,
or a upper bound of some Yi is decreased. Direct application of Theorem 3 would tell us that if such a sequence has
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k+1 calls then its total execution time is 〈O(kn),O(kn)〉. However, because the algorithms are incremental, the actual
execution time is much less.

Theorem 4. Given a pair of equal-length variable-distinct vectors, the time complexity of executing EstablishGAC
followed by a sequence of k executions of ReEstablishGAC is 〈O(n + k),O(n + k)〉.

Proof. From Lemma 1 and the arguments put forward in the previous proof, we know that over the entire sequence
of operations Mαβ will not exceed n + 1. Hence, by Lemma 2, the number of operations performed related to moves
of alpha and beta is O(n). But each of the k executions in the sequence will perform at least a constant number
of operations, even if alpha and beta are not moved; this takes O(k) total operations. Thus the total number of
operations executed in the sequence is O(n + k). By a similar argument, the number of domain bounds modifications
performed in the sequence of executions is also O(n + k). �
5.2. Soundness and completeness

We now turn our attention to the soundness and completeness of GACLexLeq. By soundness of a propagation
algorithm we mean that the algorithm only removes domain elements that participate in no satisfying assignment to
the constrained variables and signals disentailment only if the constraint is disentailed. By completeness we mean
that the algorithm signals disentailment if the constraint is disentailed, otherwise it removes all domain elements that
participate in no satisfying assignment. We begin with the initialisation part of EstablishGAC.

Lemma 3. Let �X and �Y be a pair of length n variable-distinct vectors. The initialisation step of EstablishGAC on
�X and �Y sets alpha and beta to α and β respectively. It signals that �X �lex �Y is disentailed if and only if this is
the case.

Proof. Line A2 of EstablishGAC traverses �X and �Y , starting at index 0, until either it reaches the end of the vectors
(all pairs of variables are assigned and equal), or it finds an index where the pair of variables are not assigned and
equal. In the first case, GAC( �X �lex �Y ) holds and the algorithm returns with alpha and beta set as per Definitions 6
and 7 (line A3). In the second case, alpha is set to the smallest index where the pair of variables are not assigned
and equal, as per Definition 6. The vectors are traversed at line A6, starting at index alpha, until either the end of the
vectors is reached (none of the pairs of variables have min(Xi) > max(Yi)), or an index i where min(Xi) > max(Yi)

is found. In the first case, beta is set to n + 1 (line A7) as per Definition 7. In the second case, beta is guaranteed
to be at most i (line A8). If, however, there exists an h ∈ [0, i − 1] such that min( �Xh..i−1) = max( �Yh..i−1), then beta
can be revised to the least such h (line A6.1), as per Definition 7. If alpha= beta then �X �lex �Y is disentailed by
Theorem 1 and thus EstablishGAC terminates signalling that this is the case (line A9). �

Having established that alpha and beta are correctly initialised via lines A1 to A9 of EstablishGAC, we
show that these two variables are correctly updated by UpdateAlpha and UpdateBeta respectively. Note that
these two procedures may trigger pruning. We also show that such pruning is sound and complete.

Lemma 4. Let �X and �Y be a pair of length n variable-distinct vectors, alpha< α and beta� β . UpdateAlpha is
sound. If α < β or beta= β , UpdateAlpha is complete. If �X �lex �Y is not disentailed, UpdateAlpha terminates
with α = alpha.

Proof. Induction on k = n − α.
Base case: k = 0, hence α = n. By definition, �Xalpha..α−1

.= �Yalpha..α−1. At line A14, alpha is incremented.
If alpha is now equal to α, updateAlpha terminates at line A15, which is complete. Otherwise, since α = n,
β = n + 1, so the condition of line A16 cannot be met. Similarly, the condition of line A17 cannot be met. There-
fore, UpdateAlpha is called recursively at line A18. This process repeats until alpha = n, and UpdateAlpha
terminates correctly.

Inductive case: We assume that the theorem is true for 0 � k < j . We prove that it is true for k = j , equivalently
when α = n− j . Again, �Xalpha..α−1

.= �Yalpha..α−1 by definition. As above, alpha is updated until it is set correctly
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to α at line A14. The condition of line A15 cannot be met, by assumption. If alpha= beta, which is possible only
if beta = β , disentailment is signalled at line A16. This is sound and required for completeness. Since alpha= α,
the condition of line A17 is met, and ReEstablishGAC(alpha) is called. Consider first the case where α = β − 1.
From Theorem 2, establishing AC on Xalpha < Yalpha is sound and required for completeness. Since the condition
of line A16 was not met, and alpha = α, the condition of line A11 is met only if beta = β , which is the second
completeness condition. AC is established at line A11, and the algorithm terminates as required. Consider now the
case where α < β −1. From Theorem 2, establishing AC on Xalpha � Yalpha is sound and required for completeness.
Since alpha = α, and β � beta, the condition of line A12 is met. AC is established at line A12.1 as required. If
this results in Xalpha

.= Yalpha, then UpdateAlpha is called with k < j (since α is now a greater index). This is
sound and complete by the induction assumption. Since alpha= i the third branch cannot be entered. �
Lemma 5. Let �X and �Y be a pair of length n variable-distinct vectors, 0 � alpha � α, and for all h in [β,

i + 1], min(Xh) � max(Xh). In addition, assume that α < β and β − 1 � i < n, or α = β and alpha −1 � i < n.
UpdateBeta(i) is sound and complete. Furthermore, if �X �lex �Y is not disentailed, UpdateBeta(i) terminates
with β = beta.

Proof. We divide the proof into three cases.
Case 1: α = β . From Theorem 1, it is sound to signal disentailment and completeness requires that disentailment

is signalled. We assume that the initial call to UpdateBeta is with i > α. An initial call with i � α is a simple sub-
case, as will become clear. By assumption, at every index h in [β , i + 1], min(Xh) � max(Yh). Hence, the condition
of line A21 cannot be met, and UpdateBeta is called recursively until β = beta. By assumption alpha � α.
If α = alpha, then the condition of line A20 is met, and disentailment is signalled as required. If alpha < α,
the recursion continues until alpha − 1 since, by Definition 6, �Xalpha..α−1

.= �Y alpha..α−1. At this point, the
condition of line A20 is met, and disentailment is signalled as required.

Case 2: α = β − 1. From Theorem 2, it is sound to establish AC(Xα < Yα) and completeness requires that AC is
established. As above, UpdateBeta traverses the vectors until the condition of either line A20 or line A21 is met.
However, the condition of line A20 cannot be met: by assumption, alpha� α < β and, by Definition 7, min(Xβ−1)
< max(Yβ−1). By assumption, at every index h in [β , i + 1] min(Xh) � max(Yh). Hence, the recursion will end when
i reaches α = β − 1. At this point the conditions of lines A21 and A21.1 are met and AC is established as required. If
this does not cause disentailment, the algorithm returns with beta= β .

Case 3: α < β − 1. Similarly to above, beta is updated to β , at which point the condition of line A21 is met.
Clearly, however, the condition of line A21.1 cannot be met and the algorithm terminates correctly. �

In the context of a constraint solver, where it is intended that GACLexLeq is used, there is no guarantee that
ReEstablishGAC will be invoked immediately following every individual change to the vectors of variables that
it constrains. Hence, we must show that ReEstablishGAC is sound and complete following a number of such
changes. We also show that both EstablishGAC and ReEstablishGAC ensure that alpha and beta are set
correctly upon termination. This, in turn, ensures that successive applications of ReEstablishGAC following a
sequence of changes remains sound and complete.

Theorem 5. Let �X and �Y be a pair of length n variable-distinct vectors such that GAC( �X �lex �Y), and let
alpha = α �= β = beta. Let domain reductions be made to some variables in �X and �Y , whose indices form the
set I. Let P be the process of executing, in any order, ReEstablishGAC(i) for each i ∈ I that meets the trigger
conditions. P is sound and complete. If �X �lex �Y is not disentailed, P terminates with α = alpha and β = beta.

Proof. Soundness: The algorithm prunes values directly at lines A11 and A12.1, and as a result of invoking Up-
dateAlpha and UpdateBeta at lines A12.2 and A13.2. We consider each case in turn. The condition of line
A11 is met if 1) alpha= α and beta= β , in which case the propagation performed is sound from Theorem 2, or
2) α = β and alpha = α or beta = α. Here, propagation will result in an empty domain and disentailment will
be signalled, which is sound from Theorem 1. If alpha< α, the propagation at line A12.1 will have no effect and
UpdateAlpha is invoked. If alpha = α, the propagation at line A12.1 is sound from Theorem 2. If this results
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in Xi
.= Yi , UpdateAlpha is invoked. In either case, the soundness conditions for UpdateAlpha are met by as-

sumption. If the conditions of lines A13 and A13.1 are met, then UpdateBeta(i − 1) is invoked. The soundness
conditions for UpdateBeta are met by assumption.

Completeness: We divide completeness into three cases, according to the relative values of α and β .
Case 1: α < β − 1. From Theorem 2, it suffices to show that AC(Xα � Yα) is established. If α remains equal to

alpha, then there are three possibilities: (a) Xα and Yα are unchanged and AC(Xα � Yα) holds as it did before the
sequence of domain reductions. (b) Domain reductions at α have not affected the lower bound of Xα or the upper
bound of Yα . From monotonicity AC(Xα � Yα) still holds. (c) The lower bound of Xα and/or the upper bound of Yα

has been revised, in which case α ∈ I and the propagation is performed at line A12.1 as required. If alpha< α then
the domain of Xalpha and/or Yalpha has been reduced to a single value. Since AC(Xalpha � Yalpha) held before
the sequence of domain reductions, this means that the lower bound of Xalpha and/or the upper bound of Yalpha has
been reduced. Hence, UpdateAlpha is invoked at line A12.2, which is complete from Lemma 4.

Case 2: α = β − 1. If α = n, no propagation is necessary. Otherwise it suffices to show that AC(Xα < Yα) is
established from Theorem 2. If α remains equal to alpha, then there are two possibilities: (a) beta= β . If either
Xα and Yα are unchanged, or domain reductions at α have affected neither the lower bound of Xα nor the upper
bound of Yα , from monotonicity, AC(Xα < Yα) holds as it did before the sequence of domain reductions. If the
lower bound of Xα and/or the upper bound of Yα has been revised then α ∈ I and AC(Xα < Yα) is established at
line A11 as required. (b) β < beta. For some index j ∈ [β,beta), the lower bound of Xj or the upper bound of
Yj has been revised such that for all h in [β , j ], min(Xh) � max(Xh). Hence, j ∈ I and, UpdateBeta(j − 1) is
called at line A13.2. It is complete from Lemma 5. If alpha< α then, as above, alpha is updated to α. If, at this
point, beta= β , then AC is established at line A11 as required. If beta> β , then UpdateBeta is called with its
completeness conditions met, as above.

Case 3: α = β . From Theorem 1, completeness requires that disentailment is signalled. By assumption, it is not the
case that both alpha= α and beta= β . By similar arguments to the above, either UpdateAlpha is invoked and
is complete by Lemma 4, or UpdateBeta is invoked and is complete by Lemma 5.

Accuracy of α and β on termination (assuming �X �lex �Y is not disentailed): If alpha < α then, as argued above,
the domain of Xalpha and/or Yalpha has been reduced to a single value. Hence, UpdateAlpha is invoked at line
A12.2, which terminates with α = alpha from Lemma 4. If β < beta then, as also argued above, for some index j ,
where β � j < beta, the lower bound of Xj or the upper bound of Yj has been revised such that for all h in [β , j ]
min(Xh) � max(Xh). Hence, j ∈ I and, UpdateBeta(j − 1) is called at line A13.2. From Lemma 5 it terminates
with beta= β . �
Theorem 6. Let �X and �Y be a pair of length n variable-distinct vectors. EstablishGAC on �X and �Y is sound and
complete. If �X �lex �Y is not disentailed, EstablishGAC terminates with α = alpha and β = beta.

Proof. From Lemma 3, after line A9 of EstablishGAC has been executed, alpha and beta are set to α and β .
If disentailment has not already been detected, line A10 invokes ReEstablishGAC(alpha). From Theorem 2, if
GAC( �X �lex �Y ) then ReEstablishGAC(alpha) has no effect, which is complete. Otherwise, either AC(Xalpha �
Xbeta) or AC(Xalpha < Xbeta) does not hold. If alpha is adjacent to beta, AC(Xalpha < Xbeta) is established
at line A11, which is sound and complete. If alpha and beta are not adjacent, AC(Xalpha � Xbeta) is established
at line A12.1. If now Xalpha

.= Yalpha, UpdateAlpha is called at line A12.2. From Lemma 4, UpdateAlpha is
sound, complete, and if �X �lex �Y is not disentailed, it terminates with α = alpha and β = beta. �
6. Extensions

6.1. Strict lexicographic ordering constraint

With very little effort, GACLexLeq can be adapted to obtain a propagation algorithm, GACLexLess, which
either detects the disentailment of �X <lex �Y or prunes only inconsistent values so as to establish GAC on �X <lex �Y .
The reason the two algorithms are so similar is that as soon as β takes a value other than n+ 1, GACLexLeq enforces
strict lexicographic ordering on the vectors.
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Before showing how we modify GACLexLeq, we give the necessary theoretical background. We define the index
α between two vectors �X and �Y as in Definition 6. However, β is now the least index such that �Xβ..n−1 <lex �Yβ..n−1
is disentailed, or n if no such index exists.

Definition 8. Given two length n variable-distinct vectors, �X and �Y , β is the least index in [α,n) such that(∃k ∈ [β,n) .
(
min(Xk) > max(Yk) ∧ min( �Xβ..k−1) = max( �Yβ..k−1)

)) ∨ min( �Xβ..n−1) = max( �Yβ..n−1)

or, if no such index exists, n.

We again make use of α and β to detect disentailment as well as prune inconsistent values.

Theorem 7. Let �X and �Y be a pair of length n variable-distinct vectors. β = α if and only if �X <lex �Y is disentailed.

Proof. (⇒) Identical to the proof of Theorem 1.
(⇐) If �X <lex �Y is disentailed then �X �lex �Y is entailed. If �X >lex �Y is entailed, the proof follows as for Theorem 1,

substituting Definition 8 for Definition 7. Otherwise just �X �lex �Y is entailed. Since the vectors are variable-distinct,
∀i ∈ [0, n)min(Xi) � max(Yi). Hence, from Definition 6, α is the least index such that ¬(Xα

.= Yα). Thus, from
Definition 8, β = α. �

The conditions for GAC to hold are also similar:

Theorem 8. Given a pair of length n variable-distinct vectors, �X and �Y , if β > α then GAC( �X <lex �Y ) if and only if
either of the following conditions holds:

1. β = α + 1 and AC(Xα < Yα), or
2. β > α + 1 and AC(Xα � Yα).

Proof. (⇒) Similar to the proof of Theorem 2.
(⇐) Since �X0..α−1

.= �Y0..α−1, the assignment Xα � Yα supports all values in the domains of �Xα+1..n−1 and
�Yα+1..n−1. Hence, given β = α + 1 and AC(Xα < Yα), the constraint is GAC. Similarly, if β > α + 1 and
AC(Xα � Yα) then Xα � Yα supports all values in the domains of �Xα+1..n−1 and �Yα+1..n−1. It remains to consider
Xα

.= Yα . Irrespective of whether β = n, from the definition of β , ¬(Xβ−1
.= Yβ−1) and min(Xi) � max(Yi) for all

i ∈ [α,β). Since �X and �Y are variable-distinct, Xα
.= Yα supports and is supported by the combination of Xβ−1 �Yβ−1

and �Xα−1..β−2
.= �Yα−1..β−2. Hence, the constraint is GAC. �

We now consider the simple modifications to GACLexLeq necessary to obtain the propagation algorithm
GACLexLess, which is presented in Fig. 5. First, the initialisation step of EstablishGAC (i.e. lines B1–B8)
must reflect the new definition of β . From Definition 8 and Theorem 7, the constraint is disentailed if α = n. Line
B3 deals with this case. A further change to the initialisation step is at line B7. Line A7 of GACLexLeq has been
removed so that beta is assigned to n correctly if there is no index from which the tail of the vectors is guaranteed to
be ordered lexicographically equal or decreasing. The second modification is to UpdateAlpha, as indicated in the
figure. Again, if alpha reaches n the constraint is disentailed. No other modifications are necessary.

6.2. Entailment

Even though GACLexLeq is a sound and complete propagation algorithm, it does not detect entailment. This
section extends the GACLexLeq algorithm to a new algorithm, GACLexLeqEntailed, that can detect entailment.
Mimicking the treatment of disentailment, when entailment is detected the algorithm signals this and returns. Once a
constraint is entailed it remains GAC even if the domains of the constrained variables are later reduced; hence there is
no need ever to re-establish GAC.

It is not hard to show when �X �lex �Y is entailed.
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Algorithm GACLexLess

EstablishGAC
B1 alpha := 0
B2 while (alpha< n ∧ Xalpha

.= Yalpha) do alpha := alpha+ 1
〉〉 B3 if (alpha= n) then disentailed

B4 i := alpha
B5 beta := −1
B6 while (i �= n ∧ min(Xi) � max(Yi)) do
B6.1 if (min(Xi) = max(Yi)) then if (beta= −1) then beta := i

B6.2 else beta := −1
B6.3 i := i + 1

〉〉 B7 if (beta= −1) then beta := i

B8 if (alpha= beta) then disentailed
B9 ReEstablishGAC(alpha)

ReEstablishGAC(i in [0, n)) Triggered when min(Xi) or max(Yi) changes
Identical to GACLexLeq

UpdateAlpha
B14 alpha := alpha+ 1

〉〉 B15 if (alpha= n) then disentailed
B16 if (alpha= beta) then disentailed
B17 if (¬(Xalpha

.= Yalpha)) then ReEstablishGAC(alpha)
B18 else UpdateAlpha

UpdateBeta(i in [0, n))
Identical to GACLexLeq

Fig. 5. Constituent procedures of the GACLexLess algorithm. Modifications from GACLexLeq are indicated by ‘〉〉’.

Theorem 9. Given a pair of length n variable-distinct vectors, �X and �Y , �X �lex �Y is entailed if and only if
max( �X) �lex min( �Y ).

Proof. (⇒) Since �X �lex �Y is entailed, any combination of assignments satisfies �X �lex �Y . Hence, min( �X) �lex

max( �Y ).
(⇐) Any �x ∈ �X is lexicographically less than or equal to any �y ∈ �Y . Hence, �X �lex �Y is entailed. �
To exploit this fact, we introduce γ , which is the least index in [α,n) such that �Xγ..n−1 �lex �Yγ..n−1 is entailed, or

n if no such index exists.

Definition 9. Given a pair of length n variable-distinct vectors, �X and �Y , γ is the least index in [α,n) such that

∃k ∈ [γ,n) .
(
max(Xk) < min(Yk) ∧ max( �Xγ..k−1) = min( �Yγ..k−1)

) ∨ max( �Xγ..n−1) = min( �Yγ..n−1)

or, if no such index exists, n.

Theorem 10. Given a pair of length n variable-distinct vectors, �X and �Y , �X �lex �Y is entailed if and only if γ = α.

Proof. (⇒) If �X �lex �Y is entailed, then, from the definition of lexicographic ordering and the fact that the vectors
are variable distinct, either a) there exists an index i such that max(Xi) < min(Yi) and max( �X0..i−1) = min( �Y0..i−1)

or b) max( �X0..n−1) = min( �Y0..n−1). First, consider a). Let k be the least index such that the variables are not assigned
and equal. By Definition 6, α = k. Clearly, k lies in [0, i]. From the first part of Definition 9, γ = k. Now consider b).
If the vectors are assigned and equal, then α = n = γ by Definitions 6 and 9. Otherwise, let k be defined as above.
From the second part of Definition 9, γ = k.

(⇐) By Definition 6, �X0..α−1 = �Y0..α−1 is entailed, and by Definition 9 �Xα..n−1 �lex �Yα..n−1 is entailed. Hence,
�X �lex �Y is entailed. �
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We now consider the modifications necessary to GACLexLeq to obtain GACLexLeqEntailed, which is pre-
sented in Fig. 6. Clearly, if alpha reaches n, then the constraint is entailed. This case is dealt with by lines C3 and
C21. Otherwise, entailment is detected by considering γ . We introduce the program variable gamma to keep track of
γ (line C10) and initialise it (lines C11–C12) in much the same way as beta.

Two further procedures are required to maintain gamma correctly. First, γ may change following an update to
max(Xi) or min(Yi), which are the opposite conditions to those that trigger ReEstablishGAC. Hence, Check-
Entailment is triggered by these events (line C19), which calls the UpdateGamma procedure if necessary.
UpdateGamma works similarly to the other two Update procedures, signalling entailment if alpha and gamma
meet (line C28).

Algorithm GACLexLeqEntailed

EstablishGAC
C1 alpha := 0
C2 while (alpha< n ∧ Xalpha

.= Yalpha) do alpha := alpha+ 1
〉〉 C3 if (alpha= n) then entailed

C4 i := alpha
C5 beta := −1
C6 while (i �= n ∧ min(Xi) � max(Yi)) do
C6.1 if (min(Xi) = max(Yi)) then if (beta= −1) then beta := i

C6.2 else beta := −1
C6.3 i := i + 1
C7 if (i = n) then beta := n + 1
C8 else if (beta= −1) then beta := i

C9 if (alpha= beta) then disentailed
〉〉 C10 gamma := −1, i := alpha
〉〉 C11 while (i �= n ∧ max(Xi) � min(Yi)) do
〉〉 C11.1 if (max(Xi) = min(Yi)) then
〉〉 C11.2 if (gamma= −1) then gamma := i

〉〉 C11.3 else gamma := −1
〉〉 C11.4 i := i + 1
〉〉 C12 if (gamma= −1) then gamma := i

〉〉 C13 if (alpha= gamma) then entailed
C14 ReEstablishGAC(alpha)

ReEstablishGAC(i in [0, n)) Triggered when min(Xi) or max(Yi) changes
Identical to GACLexLeq

〉〉 CheckEntailment(i in [0, n)) Triggered when max(Xi) or min(Yi) changes
〉〉 C19 if ((i = gamma− 1 ∧ max(Xi) = min(Yi)) ∨ max(Xi) < min(Yi)) then UpdateGamma(i − 1)

UpdateAlpha
C20 alpha := alpha+ 1

〉〉 C21 if (alpha= n) then entailed
C22 if (alpha= beta) then disentailed
C23 if (¬(Xalpha

.= Yalpha)) then ReEstablishGAC(alpha)
C24 else UpdateAlpha

UpdateBeta(i in [0, n))
Identical to GACLexLeq

〉〉 UpdateGamma(i in [0, n))
〉〉 C28 if (i + 1 = alpha) then entailed
〉〉 C29 if (max(Xi) > min(Yi)) then gamma := i + 1
〉〉 C30 else if (max(Xi) = min(Yi)) then UpdateGamma(i − 1)

Fig. 6. Constituent procedures of the GACLexLeqEntailed algorithm. Modifications from GACLexLeq are indicated by ‘〉〉’.
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Section 5.1 analyzed the complexity of GACLexLeq by considering the modifications of alpha and beta. As
the same arguments can be made about the modifications of gamma, the results given in Theorems 3 and 4 apply to
GACLexLeqEntailed as well.

6.3. Vectors of different length

This section considers vectors of different length. Since two vectors of different length can never be equal, we only
consider imposing a strict lexicographic ordering constraint.

Considering vectors of equal length, Definition 2 defined strict lexicographic ordering between two vectors of
integers and Theorem 8 stated the necessary conditions for GAC on a strict lexicographic ordering constraint on a pair
of vectors of variables. It is, however, straightforward to generalise the definition and the theorem for two vectors of
any, not necessarily equal, length.

Definition 10. Strict lexicographic ordering �x <lex �y between two vectors of integers �x = 〈x0, x1, . . . , xm−1〉 and
�y = 〈y0, y1, . . . , yn−1〉 holds if and only if either of the following conditions hold:

1. m < n ∧ �x �lex �y0..m−1, or
2. m � n ∧ �x0..n−1 <lex �y.

In other words, we truncate to the length of the shortest vector and then compare. Either �x is shorter than �y and the
first m elements of the vectors are lexicographically ordered, or �x is at least as long as �y and the first n elements
are strict lexicographically ordered. An example is 〈0,1,2,1,5〉 <lex 〈0,1,2,3,4〉 <lex 〈0,1,2,3,4,5,5,5〉 <lex

〈0,1,2,4,3〉.
Based on this general definition, GAC on �X <lex �Y is either GAC on a lexicographic ordering constraint or GAC

on a strict lexicographic ordering constraint.

Proposition 1. Given a pair of variable-distinct vectors, �X of length m and �Y of length n, �X <lex �Y is GAC if and
only if either of the following conditions hold:

1. m < n and GAC( �X �lex �Y0..m−1), or
2. m � n and GAC( �X0..n−1 <lex �Y ).

We can now easily generalise the propagation algorithm GACLexLess based on this theorem. If m < n then we
just consider the first m variables of �Y and use GACLexLeq to enforce GAC on �X �lex �Y0..m−1. If m � n then we just
consider the first n variables of �X and use GACLexLess to enforce GAC on �X0..n−1 <lex �Y ).

7. Alternative approaches

Various alternative methods exist for enforcing the lexicographic ordering constraint, ranging from enforcing a
collection of simpler constraints to alternative propagation algorithms. This section summarises and discusses these
alternative approaches.

7.1. Arithmetic constraints

To ensure that �X �lex �Y , we can post the following arithmetic inequality constraint between the vectors �X and �Y
whose variables range over any subset of {0, . . . , d − 1}:

dn−1 ∗ X0 + dn−2 ∗ X1 + · · · + d0 ∗ Xn−1 � dn−1 ∗ Y0 + dn−2 ∗ Y1 + · · · + d0 ∗ Yn−1

This is equivalent to converting two vectors into numbers and posting an ordering on the numbers. In order to enforce
strict lexicographic ordering �X <lex �Y , we post the strict inequality constraint:

dn−1 ∗ X0 + dn−2 ∗ X1 + · · · + d0 ∗ Xn−1 < dn−1 ∗ Y0 + dn−2 ∗ Y1 + · · · + d0 ∗ Yn−1
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These two arithmetic constraints are logically equivalent to the corresponding lexicographic ordering constraint.
Since these constraints are monotonic—any unsupported domain values are the greatest ones in �X or the least ones
in �Y —many constraint toolkits establish GAC on these constraints. Unfortunately, when n and d become large, dn−1

will be much more than the word size of the computer and establishing GAC will be expensive. Hence, this method is
only feasible when the vectors and domain sizes are small.

Inspired by [10], Warwick Harvey has suggested an alternative arithmetic constraint [14]. To ensure �X �lex �Y , he
posts the following logically equivalent constraint:

1 = (
X0 < Y0 + (

X1 < Y1 + (
. . . + (Xn−1 < Yn−1 + 1) . . .

)))
A constraint of the form (Xi < Yi + B) is reified into a 0/1 variable and it is interpreted as Xi < (Yi + B). Strict
ordering is achieved by posting:

1 = (
X0 < Y0 + (

X1 < Y1 + (
. . . + (Xn−1 < Yn−1 + 0) . . .

)))
which disallows Xn−1

.= Yn−1 in case the vectors are assigned and equal until the last index. Many toolkits that support
reification maintain GAC on these constraints.

Henceforth, we shall refer to Harvey’s reification approach by his name and to the purely arithmetic constraint
above simply as the “arithmetic constraint”.

7.2. Logical decompositions

The first decomposition, which we call the ∧ decomposition, is a conjunction of n − 1 constraints:

X0 � Y0 ∧
X0 = Y0 → X1 � Y1 ∧

X0 = Y0 ∧ X1 = Y1 → X2 � Y2 ∧
...

X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xn−2 = Yn−2 → Xn−1 � Yn−1

That is, we enforce that the most significant bits of the vectors are ordered, and if the most significant bits are equal then
the rest of the vectors are lexicographically ordered. In order to decompose the strict lexicographic ordering constraint
�X <lex �Y , we only need to change the last conjunction to X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xn−2 = Yn−2 → Xn−1 < Yn−1.

The second decomposition, which we call ∨ decomposition, is a disjunction of n − 1 constraints:

X0 < Y0 ∨
X0 = Y0 ∧ X1 < Y1 ∨

X0 = Y0 ∧ X1 = Y1 ∧ X2 < Y2 ∨
...

X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xn−2 = Yn−2 ∧ Xn−1 � Yn−1

That is, we enforce that either the most significant bits of the vectors are strictly ordered or the most significant bits are
equal and the rest of the vectors are lexicographically ordered. For strict lexicographic ordering, it suffices to change
the last disjunction to X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xn−2 = Yn−2 ∧ Xn−1 < Yn−1.

Constraints with logical connectives are imposed in the following manner.

• C1 ∧ C2: Both C1 and C2 are imposed.
• C1 ∨ C2: If one of C1 or C2 becomes disentailed, the other constraint is imposed. If C1 or C2 becomes entailed

then C1 ∨ C2 becomes entailed.
• C1 → C2: If C1 becomes entailed then C2 is imposed. If C2 becomes disentailed then ¬C1 is imposed. If C1

becomes disentailed or C2 becomes entailed, then C1 → C2 becomes entailed.
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• ¬C1: If C1 becomes entailed then ¬C1 becomes disentailed. If C1 becomes disentailed then ¬C1 becomes
entailed.

We consider a propagation algorithm for these decompositions that treat the logical connectives in this manner and
establish AC on a binary constraint whenever it is imposed. We now show that these algorithms are guaranteed to
establish GAC and that each of the algorithms can prune values that the other cannot.

Theorem 11. For both �X �lex �Y and �X <lex �Y the ∧ decomposition and the ∨ decomposition are sound but not
complete. Moreover, on each of these constraints, the two decomposition algorithms are incomparable in that one can
prune values that the other cannot, and vice-versa.

Proof. We only consider ( �X �lex �Y) but the proof also works for ( �X <lex �Y ). Suppose that �X �lex �Y is GAC. Thus
every value has a support. The vectors �x and �y supporting a value are lexicographically ordered (�x �lex �y). By De-
finition 3, either �x = �y or there is an index k in [0, n) such that xk < yk and �x0..k−1 = �y0..k−1. In either case, all
the constraints posted in either of the decompositions are satisfied. That is, every binary constraint imposed in the
decompositions is AC. Hence, the ∧ decomposition and the ∨ decomposition are sound for ( �X �lex �Y).

Consider �X = 〈{0,1}, {1}〉 and �Y = 〈{0,1}, {0}〉 where �X �lex �Y is not GAC. The ∧ decomposition imposes both of
X0 � Y0 and X0 = Y0 → X1 � Y1. We have AC(X0 � Y0). Since X1 � Y1 is disentailed, X0 �= Y0 is imposed. We have
AC(X0 �= Y0) so no pruning is possible. The ∨ decomposition, however, imposes X0 < Y0 because X0 = Y0 ∧X1 � Y1

is disentailed. This removes 1 from D(X0) and 0 from D(Y0).
Now consider �X = 〈{0,1,2}, {0,1}〉 and �Y = 〈{0,1}, {0,1}〉 where �X �lex �Y is not GAC. The ∧ decomposition

removes 2 from D(X0) by AC(X0 � Y0). The ∨ decomposition, however, leaves the vectors unchanged since neither
X0 < Y0 nor X0 = Y0 ∧ X1 � Y1 is disentailed.

Since each decomposition prunes a value not pruned by the other, neither is complete. �
Together, the two decompositions behave similarly to the propagation algorithm of the lexicographic ordering

constraint: they either prove that �X �lex �Y is disentailed or establish GAC( �X �lex �Y ). However, this requires posting
and propagating many constraints, and is likely to be inefficient. Our experimental results in Section 9.1 confirm this
expectation.

Theorem 12. Given a pair of length n variable-distinct vectors, �X and �Y , the ∧ and ∨ decomposition of �X �lex �Y
together either prove that �X �lex �Y is disentailed, or establish GAC( �X �lex �Y ).

Proof. Consider the ∧ decomposition. If α = β then either min(Xα) > max(Yα), or there exists an index k in (α,n)

such that min(Xk) > max(Yk) and min( �Xα..k−1) = max( �Yα..k−1). In the first case, the constraint X0 = Y0 ∧X1 = Y1 ∧
· · · ∧ Xα−1 = Yα−1 → Xα � Yα is disentailed. In the second case, the constraint X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xk−1 =
Yk−1 → Xk � Yk is disentailed because �Xα..k−1

.= �Yα..k−1 due to the constraint X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xi−1 =
Yi−1 → Xi � Yi . In any case, �X �lex �Y is disentailed. This is correct by Theorem 1. If, however, α < β then the
constraint X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xα−1 = Yα−1 → Xα � Yα makes sure that AC(Xα � Yα). Now consider the ∨
decomposition. If β = α then all the disjuncts of the decomposition are disentailed, so �X �lex �Y is disentailed. This is
correct by Theorem 1. If β = α + 1 then each disjunct except X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xα−1 = Yα−1 ∧ Xα < Yα is
disentailed. This makes sure that AC(Xα < Yα). Given β > α, we have either

• β = α + 1 and AC(Xα < Yα), or
• β > α + 1 and AC(Xα � Yα).

By Theorem 2, we have GAC( �X �lex �Y ). �
Theorem 13. Given a pair of length n variable-distinct vectors, �X and �Y , the ∧ and ∨ decomposition of �X <lex �Y
together either prove that �X <lex �Y is disentailed, or establish GAC( �X <lex �Y ).
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Proof. We only need to consider two cases, β = n and β < n∧min( �Xβ..n−1) = max( �Yβ..n−1); the remaining cases are
covered by the proof of Theorem 12. Assume β = n. Consider the ∧ decomposition. We either have α + 1 = β = n or
α + 1 < β = n. In the first case, the constraint X0 = Y0 ∧X1 = Y1 ∧ · · ·∧Xn−2 = Yn−2 → Xn−1 < Yn−1, which is the
last constraint of the conjunction, makes sure that AC(Xα < Yα). In the second case, the constraint X0 = Y0 ∧ X1 =
Y1 ∧ · · · ∧ Xα−1 = Yα−1 → Xα � Yα makes sure that AC(Xα � Yα).

Now assume β < n ∧ min( �Xβ..n−1) = max( �Yβ..n−1). Consider the ∧ decomposition. If α = β the constraint X0 =
Y0 ∧ X1 = Y1 ∧ · · · ∧ Xn−2 = Yn−2 → Xn−1 < Yn−1 is disentailed because for all i ∈ [α,n − 1) we get �Xi

.= �Yi due
to the constraint X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xi−1 = Yi−1 → Xi � Yi . Hence, �X �lex �Y is disentailed. This is correct
by Theorem 1. If, however, α < β then the constraint X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xα−1 = Yα−1 → Xα � Yα makes
sure that AC(Xα � Yα). Now consider the ∨ decomposition. If β = α then all the disjuncts of the decomposition
are disentailed, so �X �lex �Y is disentailed. This is correct by Theorem 1. If β = α + 1 then each of the disjuncts but
X0 = Y0 ∧ X1 = Y1 ∧ · · · ∧ Xα−1 = Yα−1 ∧ Xα < Yα is disentailed. This makes sure that AC(Xα < Yα).

Given β > α, whether β = n or β < n, we have either

1. β = α + 1 and AC(Xα < Yα), or
2. β > α + 1 and AC(Xα � Yα).

By Theorem 8, we have GAC( �X <lex �Y ). �
7.3. Alternative propagation algorithms

The ECLiPSe constraint solver [29] provides a global constraint, called lexico_le, for lexicographic ordering
of two vectors. The manual [6] does not reveal what propagation is performed by this constraint. Our tests show that it
is not complete: if �X = 〈{0,1}, {0,1}, {1}〉 and �Y = 〈{0,1}, {0}, {0}〉 then executing lexico_le on �X �lex �Y leaves
the vectors unchanged, even though �X �lex �Y is not GAC. Our tests also show that lexico_le can prune values
that are not pruned by each of the decompositions discussed in Section 7.2. For instance, if �X = 〈{0,1}, {1}〉 and �Y =
〈{0,1}, {0}〉 then executing lexico_le on �X �lex �Y gives �X = 〈{0}, {1}〉 and �Y = 〈{1}, {0}〉 but the ∧ decomposition
leaves the vectors unchanged. Likewise, if �X = 〈{0,1,2}, {0,1}〉 and �Y = 〈{0,1}, {0,1}〉 then executing lexico_le
on �X �lex �Y gives �X = 〈{0,1}, {0,1}〉 and �Y = 〈{0,1}, {0.1}〉 but the ∨ decomposition leaves the vectors unchanged.
We have found no examples where either of the decompositions prunes values not pruned by lexico_le.

Subsequent to the first publication of our GACLexLeq algorithm [10], Carlsson and Beldiceanu developed a
complete propagation algorithm for the lexicographic ordering constraint using a finite automaton [2]. The algorithm
maintains generalised arc consistency or detects (dis)entailment, and runs in linear time for posting plus amortised
constant time per propagation event. Their algorithm records the position of α, but has no counterpart of our beta
variable.

7.4. Encoding GACLexLeq

An alternative way of propagating a global constraint is to post a set of constraints that “simulate” the special-
purpose propagation algorithm. The success of such an approach was demonstrated in [11] by showing that arc
consistency on the CSP representation of the stable marriage problem gives reduced domains that are equivalent
to the GS-lists produced by the Extended Gale–Shapley algorithm. Inspired by [10], Gent et al. have developed an
encoding of the lexicographic ordering constraint [12].

The encoding introduces a new vector �α of 0/1 variables indexed from −1 to n − 1. The intended meaning of �α is
that: if αi = 1 then �X0..i = �Y0..i , if αi+1 = 0 but αi = 1 then Xi+1 < Yi+1. They post the following constraints:

α−1 = 1

αi = 0 → αi+1 = 0 (i ∈ [0, n − 2])
αi = 1 → Xi = Yi (i ∈ [0, n − 1])
αi = 1 ∧ αi+1 = 0 → Xi+1 < Yi+1 (i ∈ [−1, n − 2])
αi = 1 → Xi+1 � Yi+1 (i ∈ [−1, n − 2])
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For strict lexicographic ordering, it suffices to add αn−1 = 0.
The advantage of using this encoding is that it obviates the need implement a special-purpose propagation algo-

rithm, instead relying on existing and more general propagation algorithms. On the other hand, as our experimental
results in Section 9 show, the introduction of extra variables and constraints may be less efficient.

8. Multiple vectors

Chains of lexicographic ordering constraints often arise in practice, such as when posting lexicographic ordering
constraints on the rows or columns of a matrix of decision variables. We can treat such a chain as a single global
ordering constraint over the whole matrix. Alternatively, we can decompose it into lexicographic ordering constraints
between adjacent rows/columns or between all pairs of rows/columns. This section demonstrates that such decompo-
sitions hinder constraint propagation.

As this section considers sequences of vectors, it is useful to subscript the individual vectors, such as in the vector
sequence �X0, . . . , �Xn−1. Notice that the vector accent in �Xi indicates that we are referring to vector i in a sequence of
vectors, as opposed to Xi , which refers to element i in vector X.

Theorem 14. Let �X0, . . . , �Xn−1 be variable-distinct vectors. Then GAC( �Xi �lex �Xi+1) for all i ∈ [0, n − 1) does not
imply GAC( �Xi �lex �Xj) for all i, j ∈ [0, n) such that i < j .

Proof. Consider the following three vectors:

�X0 = 〈{0,1}, {1}, {0,1}〉
�X1 = 〈{0,1}, {0,1}, {0,1}〉
�X2 = 〈{0,1}, {0}, {0,1}〉

Observe that �X0 �lex �X1 and �X1 �lex �X2 are each GAC. But �X0 �lex �X2 is not GAC as the constraint has no solution
in which the initial element of �X0 is assigned 1. �
Theorem 15. Let �X0, . . . , �Xn−1 be variable-distinct vectors. Then GAC( �Xi <lex �Xi+1) for all i ∈ [0, n − 1) does not
imply GAC( �Xi <lex �Xj ) for all i, j ∈ [0, n) such that i < j .

Proof. This is shown by the example in the proof of Theorem 14. �
Theorem 16. Let �X0, . . . , �Xn−1 be variable-distinct vectors. Then GAC( �Xi �lex �Xj) for all i, j ∈ [0, n) such that
i < j does not imply GAC( �X0 �lex �X1 �lex · · · �lex �Xn−1).

Proof. Consider the following three vectors:

�X0 = 〈{0,1}, {0,1}, {1}, {0,1}〉
�X1 = 〈{0,1}, {0,1}, {0}, {1}〉
�X2 = 〈{0,1}, {0,1}, {0}, {0}〉

Observe that �X0 �lex �X1, �X0 �lex �X2 and �X1 �lex �X2 are each GAC. But (X0 �lex �X1 �lex X2) is not GAC as the
constraint has no solution in which the initial element of �X0 is assigned 1. �

The proof of Theorem 16 shows that the theorem holds even if attention is restricted to 0/1 variables, demonstrating
the incorrectness of a previous claim [10] to the contrary.

Theorem 17. Let �X0, . . . , �Xn−1 be variable-distinct vectors. Then GAC( �Xi <lex �Xj) for all i, j ∈ [0, n) such that
i < j does not imply GAC( �X0 <lex �X1 <lex · · · <lex �Xn−1).

Proof. This is shown by the example in the proof of Theorem 16. �
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Subsequent to [10], Carlsson and Beldiceanu [1] introduced a propagation algorithm, called lex_chain, that can
establish GAC on a constraint of the form ( �X0 �lex �X1 �lex · · · �lex �Xn−1). Every time the constraint is propagated,
feasible upper and lower bounds are computed for each vector in the chain and then the vectors are pruned with respect
to these bounds. Given m vectors, each of length n, the algorithm maintains generalised arc-consistency or detects
(dis)entailment, and performs O(nm) operations.

9. Experimental results

We implemented our algorithms in C++ using ILOG Solver 5.3 [16] and performed experiments to compare them
with the alternatives presented in Section 7 and the lex_chain algorithm mentioned in Section 8. We experimented
on the three matrix models given in Section 3, adding lexicographic ordering constraints to break the partial and total
index symmetry.

The results of the experiments are shown in tables where a “−” means no result is obtained in 1 hour. The number
of fails gives the number of incorrect decisions at choice points in the search tree. The best result of each entry in a
table is typeset in bold. Lexicographic ordering on the rows is enforced via technique Tech, then we write Tech R.
Similarly, we write Tech C if Tech is used to constrain the columns to be lexicographically ordered, and Tech RC if
Tech is used to constrain both dimensions. In theory, posting lexicographic ordering constraints between every pair of
rows (similarly for columns) leads to more pruning than posting between adjacent rows (see Section 8). However, we
did not observe any benefit in practice. Therefore, we just posted lexicographic ordering constraints between adjacent
rows. The experiments were conducted using ILOG Solver 5.3 on a 1 Ghz Pentium III processor with 256 Mb RAM
under Windows XP. We propagate the arithmetic constraint via IloScalProd, which maintains GAC on it. We
either look for one solution or the optimal solution in optimisation problems.

9.1. Comparison with alternative approaches

We designed some experiments to test two goals. First, does our propagation algorithm(s) do more inference in
practice than the ∧ and ∨ decompositions? Similarly, is the algorithm more efficient in practice than these decompo-
sitions? Second, how does our algorithm compare with the alternatives that also maintain GAC, that is the arithmetic
constraint, the combined logical decompositions, and Gent et al.’s encoding?

We do not experiment with lexico_le, since it is exclusive to ECLiPSe. Recall, however, that we have shown
in Section 7.3 that lexico_le does not maintain GAC. Furthermore, we do not experiment with Carlsson and
Beldiceanu’s pairwise propagation algorithm since it is exclusive to SICStus prolog. As noted in Section 7.3, however,
this algorithm has been shown to behave very similarly to our own.

We now consider each of the three problem domains in turn.

Progressive party problem. We use the matrix model introduced in Section 3. The H matrix in this model has
partial row and total column symmetry, which we break by posting lexicographic ordering constraints using either our
propagation algorithm GACLexLess or the various alternative approaches. Due to the problem constraints, no pair of
rows/columns can be equal. Given a set of interchangeable guests {gi, gi+1, . . . , gj }, therefore, we can break the partial
row symmetry of H by constraining the corresponding rows, �Ri, �Ri+1, . . . , �Rj , to be strictly lexicographically ordered
as follows: �Rj <lex �Ri+1 · · · <lex �Ri . As for the column symmetry of H , we constrain the columns, �C0, �C1, . . . , �Cp−1,
corresponding to the p time periods to be strictly lexicographically ordered as follows: �Cp−1 <lex �Cp−2 · · · <lex �C1.

We consider several instances of the progressive party problem, drawn from the data in CSPLib. We randomly
select 13 host boats in such a way that the total spare capacity of the host boats is sufficient to accommodate all the
guests. The data is presented in Table 1. The last column gives the percentage of the total capacity used, which is a
measure of constrainedness [28].

We branch on the variables of the H matrix. As in [24], we give priority to the largest crews, so the guest boats
are ordered in descending order of their size. Also, when assigning a host to a guest, we first try a value that is most
likely to succeed. We therefore order the host boats in descending order of their spare capacity. In terms of variable
ordering, we use the smallest-domain first heuristic.
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Table 1
Instance specification for the progressive party problem

Instance # Host boats Total host spare capacity Total guest size %capacity

1 2-12, 14, 16 102 92 .90
2 3-14, 16 100 90 .90
3 3-12, 14, 15, 16 101 91 .90

4 3-12, 14, 16, 25 101 92 .91
5 3-12, 14, 16, 23 99 90 .91
6 3-12, 15, 16, 25 100 91 .91

7 1, 3-12, 14, 16 100 92 .92
8 3-12, 16, 25, 26 100 92 .92
9 3-12, 14, 16, 30 98 90 .92

Table 2
Performance of different propagation algorithms on the progressive party problem. All times are given in seconds

Inst.
#

GACLexLess RC ∧ RC ∨ RC ∧∨ RC
Time

Gent et al.
Time

Harvey
TimeFails Time Fails Time Fails Time

1 446 0.86 – – – – 1.11 0.98 0.92
2 445 0.98 445 1.41 – – 1.25 1.11 1.04
3 2,380 2.17 3,651 3.00 – – 2.95 2.47 2.44

4 459 0.86 – – – – 1.15 0.98 0.95
5 443 0.98 443 1.12 – – 1.18 1.16 0.98
6 8,481 6.14 604 1.36 – – 8.10 6.62 6.82

7 782 1.13 – – – – 1.50 1.21 1.22
8 33,849 16.79 773 1.31 – – 21.62 18.40 17.93
9* 211,075 117.25 213,568 150.33 – – 156.84 130.27 131.11

Table 2 summarises the results of the experiments. Note that all the problem instances are solved for 6 time periods.
One exception is the last instance, indicated by a “*”, as none of the approaches could solve this instance within an
hour time limit for 6 time periods. We therefore report results for 5 time periods for this instance of the problem.

In this set of experiments, clearly GACLexLess is superior to the ∨ decomposition: none of the instances could
be solved within an hour by the ∨ decomposition. However, it is difficult to judge which of GACLexLess and the ∧
decomposition is superior. GACLexLess solves instances 1, 4 and 7 very quickly, but the ∧ decomposition fails to
return an answer in one hour. Also, instances 3 and 9 are solved with fewer failures by GACLexLess. On the other
hand, the ∧ decomposition is superior to GACLexLess for instances 6 and 8. No difference in the size of the search
tree is observed for instances 2 and 5. Note that even though the ∧ decomposition of �X <lex �Y does not establish
GAC, enforcing the ∧ decomposition at every choice point may lead to a smaller search tree than maintaining GAC
at every choice point because a dynamic variable ordering is employed.

We now turn our attention to the alternatives that maintain GAC. Note that posting the arithmetic constraint is not
feasible for this problem, as the largest coefficient necessary is 1328, which is greater than 231, the maximum integer
size allowed in Solver 5.3. In all cases, the tree explored is identical, hence we focus on run-time. Versus the combined
∧∨ decomposition, GACLexLess is clearly more efficient, especially for the more difficult instances. Compared with
Gent et al.’s encoding and Harvey’s arithmetic constraint, GACLexLess holds a small but consistent advantage that
scales with the difficulty of the instance. In all cases, this advantage is due to the fact that GACLexLess encapsulates
lexicographic ordering in a single compact constraint. The alternatives incur the overhead of several constraints and/or
several additional variables (note that the reification performed in Harvey’s arithmetic constraint makes use of hidden
Boolean variables).

Template design problem. We use the model of [21], which adds symmetry-breaking constraints and implied con-
straints to the matrix model introduced in Section 3. The T matrix has partial row and partial column symmetry. Again
we break the partial row symmetry by posting lexicographic ordering constraints. Given a set of interchangeable vari-
ations {vi, vi+1, . . . , vj }, we can break the partial row symmetry of T by insisting that the rows corresponding to



A.M. Frisch et al. / Artificial Intelligence 170 (2006) 803–834 829
such variations, �Ri, �Ri+1, . . . , �Rj , are lexicographically ordered as follows: �Ri �lex �Ri+1 · · · �lex �Rj . The symmetries
among interchangeable templates are broken by the constraints

Runi � Runi+1 (i ∈ [0, t − 1))

We post the additional constraints proposed in [21]. In presenting these constraints we consider T emplates be
[0, t), Variations to be [0, v), and Surplus to be s · ∑i∈T emplates Runi − ∑

j∈Variations dj . To ease the presentation of
these constraints we assume that the variations are ordered by non-decreasing demand; that is, if i < j then di � dj .
The additional constraints are

T0,j < T0,j+1 → T1,j > T1,j+1 (j ∈ [0, v − 1), dj = dj+1) (1)∑
i∈T emplates

Runi ∗ Ti,j �
∑

i∈T emplates

Runi ∗ Ti,j+1 (j ∈ [0, v − 1), dj < dj+1) (2)

∑
i∈T emplates

Runi ∗ Ti,j − dj � Surplus (j ∈ Variations) (3)

∑
0�j�k

( ∑
i∈T emplates

Runi ∗ Ti,j − dj

)
� Surplus (k ∈ [1, v − 1)) (4)

The constraints in (1) break symmetries among variations with equal demand when t = 2, and (2) are what they call
“pseudo-symmetry” breaking constraints. The constraints of (3) and (4) are implied constraints that provide an upper
bound on the cost function. Proll and Smith [21] also post some implied constraints on the Run variables, but we omit
these as they can be shown to be propagation redundant.

We also use the static variable ordering proposed by Proll and Smith [21]: we first label the variables of T , and
then the variables of Run. The T matrix is labelled row by row starting with variation 0, and each row is labeled in
order starting with template 0. The Run variables are labelled in order starting with Run0.

Our experiments are conducted on an instance of the template design problem known as the herbs problem [21],
where labels for a variety of herbs are to be printed on templates. The data for this instance are shown in Table 3.

As in [21], we first specify that the over-production of any variation can be at most 10%. With this constraint, there
is no solution with 2 templates, and this is trivially proven by all the approaches and GACLexLeq in 36 fails, 0.1
seconds. Removing this restriction makes the problem very difficult. A solution with cost 89 is found in 109,683 fails
and around 23 seconds by GACLexLeq, the ∧ decomposition and the arithmetic constraint, but all of them fail to
prove optimality within an hour. Changing the labeling heuristic by assigning the Run variables before the T variables
helps to find and prove a solution for 2 templates with cost 87, but does not help to find a solution for 3 templates
within an hour even with the restricted over-production of 10%.

An alternative way of solving the problem is to allow 10% over- and under-production. We therefore relax the
constraint that for all variations the minimum amount produced meets its demand. According to [21], this meets the
problem owner’s specification. The results of tackling the problem in this way for t = 2,3,4,5 templates are shown
in Table 4.

We observe in Table 4 that, as the number of templates increase, the search effort and time required to find a
solution and prove optimality dramatically increase for the ∧ and ∨ decompositions. On the other hand, GACLexLeq
finds and proves solutions very quickly with much less effort. In particular, the 4 and 5 template problems can only be
solved by GACLexLeq. On the approaches that maintain GAC we focus on run time since the search trees explored
are identical. In these cases, there is very little difference in time taken. This is because the vectors constrained are
relatively short, with each variable having a relatively small domain size. Hence, the advantage of having a single
compact constraint is not visible.

Table 3
The data for the herbs problem in [21]

Slots per template Number of variations Demand (in thousands)

42 30 60, 60, 70, 70, 70, 70 ,70, 70, 70, 80, 80,
80, 80, 90, 90, 90, 90, 90, 90, 100, 100,
100, 100, 150, 230, 230, 230, 230, 280, 280



830 A.M. Frisch et al. / Artificial Intelligence 170 (2006) 803–834
Table 4
Performance of different propagation algorithms on the herbs problem with 10% over- and under-production. All times are given in seconds

t Goal GACLexLeq R ∧ R ∨ R ∧∨ R
Time

Arth R
Time

Gent et al.
Time

Harvey
TimeFails Time Fails Time Fails Time

2 find 22 0.02 22 0.02 22 0.02 0.08 0.08 0.02 0.02
prove 49 0.02 49 0.02 49 0.02 0.08 0.08 0.02 0.02

3 find 5 0.02 18,341 7.67 18,842 9.30 0.08 0.08 0.02 0.02
prove 52 0.02 18,341 7.67 18,842 9.30 0.08 0.08 0.02 0.02

4 find 6 0.02 – – – – 0.08 0.08 0.02 0.02
prove 70 0.02 – – – – 0.08 0.08 0.02 0.02

5 find 4 0.02 – – – – 0.08 0.08 0.02 0.02
prove 77 0.02 – – – – 0.08 0.08 0.02 0.02

Fig. 7. BIBD: GACLexLeq/GACLexLess vs ∧, ∨, ∧∨ decompositions in terms of fails.

Balanced incomplete block design problem. We use the matrix model, introduced in Section 3. Due to the con-
straints on the rows, no pair of rows in X can be equal unless r = λ. To break the row symmetry, we enforce that
the rows �R0, �R1, . . . , �Rv−1 of X corresponding to the v elements are strictly lexicographically ordered as follows:
�Rv−1 <lex �Rv−2 · · · <lex �R0. As for the column symmetry, we enforce that the columns �C0, �C1, . . . , �Cb−1 of X cor-

responding to the b subsets of V are lexicographically ordered as follows: �Cb−1 �lex �Cb−2 · · · �lex �C0. We post the
lexicographic ordering constraints either by using GACLexLess and GACLexLeq, or the corresponding alternative
approaches.

Large benchmark instances were selected with which to experiment (as in [4]). For the labelling heuristic, we
adopted a static variable ordering, instantiating the matrix X along its rows from top to bottom and exploring the
domain of each variable in ascending order. Figs. 7–9 (note the logarithmic scale) summarise our results. Again, we
begin by comparing our propagation algorithm with the ∧ and ∨ decompositions individually. Given our choice of
variable ordering, our algorithm explores the same search tree as the ∧ decomposition on all but two of the instances,
where it explores a slightly smaller tree. The ∨ decomposition, however, can solve only the first 3 instances within
an hour limit, with many more failures. In terms of run time, however, we observe a substantial gain in efficiency
by using our algorithms in preference to the other approaches. Even though the ∧ decomposition and our algorithms
explore the same search tree, the efficiency of our algorithms dramatically reduces the run times.

We now turn our attention to the alternatives that maintain GAC. Note that these instances require the ordering
of relatively long vectors, hence posting the arithmetic constraint is not feasible. The combined ∧∨ decomposition
performs better than the ∧ decomposition alone, but is still significantly less efficient than GACLexLeq. We observe
in Fig. 9 that the instances are solved quicker using our algorithm (note the logarithmic scale), though the difference
is not as much as the difference between the algorithms and the ∧ decomposition in Fig. 8. In comparison with Gent
et al.’s encoding and Harvey’s arithmetic constraint, GACLexLeq maintains a small but consistent advantage.

To summarise the three sets of experiments in this section, GACLexLeq provides an efficient and lightweight
means of enforcing lexicographic ordering, which provides a consistent improvement over the alternatives when used
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Fig. 8. BIBD: GACLexLeq/GACLexLess vs ∧, ∨, ∧∨ decompositions in terms of run times.

Fig. 9. BIBD: GACLexLeq/GACLexLess vs Gent et al.’s encoding and Harvey’s arithmetic constraint in terms of run times.

with a fixed search strategy. We observed that a weaker propagation algorithm combined with a dynamic variable
ordering can sometimes perform better, but this is unsurprising: choosing the ‘right’ variable to assign next is well
known to be crucial in reducing search. On this occasion the dynamic variable was led by chance to a better selection
due to weaker propagation.

The alternatives that do maintain GAC have the disadvantage of requiring the introduction of auxiliary variables
and constraints. To illustrate this point, consider Figs. 10 and 11, which present the total numbers of variables and
memory used for GACLexLeq, Gent et al.’s encoding and Harvey’s decomposition on the BIBD problem.

9.2. Comparison with lex_chain

As Theorem 16 shows, the lex_chain algorithm of [1] can do more pruning than lexicographic ordering con-
straints between adjacent pairs of vectors. We performed a further set of experiments to determine the value of this
additional pruning in practice. We focus on the BIBD problem as the most challenging domain considered herein.
Table 5 summarises the results of solving BIBDs using SICStus Prolog constraint solver 3.10.1 [26]. Note that we
used different instances from those in the previous experiments, since the earlier instances proved to take too long
to solve in SICStus. We constrained the columns and rows to be lexicographically ordered non-decreasing or non-
increasing, and assigned the variables in the matrix from top to bottom exploring the domains in ascending order.
The lexicographic ordering constraints are posted using lex_chain. This constraint is either posted once for all the
symmetric rows/columns, or between each adjacent symmetric rows/columns.

In all the cases, we observed no benefits of combining a chain of lexicographic ordering constraints. By posting the
constraints between the adjacent rows/columns, we obtain the same search trees and very similar run times as posting



832 A.M. Frisch et al. / Artificial Intelligence 170 (2006) 803–834
Fig. 10. BIBD: GACLexLeq/GACLexLess vs Gent et al.’s encoding and Harvey’s arithmetic constraint in terms of number of variables.

Fig. 11. BIBD: GACLexLeq/GACLexLess vs Gent et al.’s encoding and Harvey’s arithmetic constraint in terms of memory usage.

Table 5
BIBD: lex_chain(〈X0, . . . ,Xm−1〉) vs lex_chain(〈Xi,Xi+1〉) for all i ∈ [0,m − 1) with row-wise labeling

v, b, r, k, λ No symmetry
breaking

<lex R �lex C
lex_chain

>lex R �lex C
lex_chain

Backtracks 〈X0, . . . ,Xm−1〉
Backtracks

〈Xi,Xi+1〉
Backtracks

〈X0, . . . ,Xm−1〉
Backtracks

〈Xi,Xi+1〉
Backtracks

6,20,10,3,4 5,201 84 84 706 706
7,21,9,3,3 1,488 130 130 72 72
6,30,15,3,6 540,039 217 217 9216 9216
7,28,12,3,4 23,160 216 216 183 183
9,24,8,3,2 – 1,472 1,472 79 79
6,40,20,3,8 – 449 449 51,576 51,576
7,35,15,3,5 9,429,447 326 326 395 395
7,42,18,3,6 5,975,823 460 460 756 756

only one constraint on the rows/columns. This result is in agreement with our previous experiments, comparing posting
lexicographic ordering constraints between adjacent rows/columns of a matrix, and between all pairs of rows/columns
[10], where the latter is an approximation of lex_chain.

10. Conclusion

This paper introduced new algorithms for propagating lexicographic ordering constraints on two vectors of decision
variables. Such constraints are useful for breaking row and column symmetries in matrix models. We demonstrated
that decomposing such constraints often carries a penalty either in the amount or the cost of constraint propagation.
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We have therefore developed efficient propagation algorithms that either ensure that such constraints are GAC or
detect disentailment. These algorithms require only O(n) operations where each vector contains n variables and can
execute as sequence of k updates in O(n + k) operations. Experimental results on a number of domains demonstrate
the value of these new algorithms.

A number of interesting questions remain. First, are there other total orderings of vectors that we can post to break
row and column symmetry? For example, can we use the Gray code ordering? Second, how do we design labeling
strategies to work in synergy with symmetry breaking constraints like this? Third, are these global constraints useful
in multi-criteria optimization problems where the objective function consists of features that are ranked [7]?
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