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Abstract

We define the concept of an internal symmetry. This is a
symmety within a solution of a constraint satisfaction prob-
lem. We compare this to solution symmetry, which is a map-
ping between different solutions of the same problem. We
argue that we may be able to exploit both types of symmetry
when finding solutions. We illustrate the potential of exploit-
ing internal symmetries on two benchmark domains: Van der
Waerden numbers and graceful graphs. By identifying inter-
nal symmetries we are able to extend the state of the art in
both cases.

Introduction
Symmetry is an important feature of many combinato-
rial search problems. To be able to solve such prob-
lems, we often need to take account of symmetry. For ex-
ample, when finding magic squares (prob019 in CSPLib
(Gent and Walsh 1999)), we have the symmetries that rotate
and reflect the square. Factoring such symmetry out of the
search space is often critical when trying to solve large in-
stances of a problem. Up till now, research on symmetry has
mostly focused on symmetriesbetweendifferent solutions of
the same problem. In this paper, we propose considering in
addition the internal symmetries (that is, symmetrieswithin
each solution). Whilst it appears to be challenging to iden-
tify useful internal symmetries, such symmetries are easy
to exploit. We simply add constraints that restrict search
to those solutions with the required internal symmetry and
limit branching to the subset of decisions that generate a
complete solution. We will demonstrate the value of exploit-
ing internal symmetries within solutions with experimental
results on two benchmark domains: Van der Waerden num-
bers and graceful graphs.

Symmetry between solutions
A symmetryσ is a bijection on assignments. Given a set
of assignmentsA and a symmetryσ, we write σ(A) for
{σ(a) | a ∈ A}. Similarly, given a set of symmetriesΣ,
we writeΣ(A) for {σ(a) | a ∈ A, σ ∈ Σ}. A special type
of symmetry, calledsolution symmetryis a symmetrybe-
tweenthe solutions of a problem. Such a symmetry maps
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solutions onto solutions. A solution is simply a set of as-
signments that satisfy every constraint in the problem. More
formally, we say that a problem has thesolution symmetryσ
iff σ of any solution is itself a solution (Cohen et al. 2006).
As such mappings are associativity, and the inverse of a so-
lution symmetry and the identity mapping are solution sym-
metries, the set of solution symmetriesΣ of a problem forms
a group under composition. We say that two sets of assign-
mentsA andB are in the samesymmetry classof Σ iff there
existsσ ∈ Σ such thatσ(A) = B.
Running example. Themagic squaresproblem is to label a
n byn square so that the sum of every row, column and diag-
onal are equal (prob019 in CSPLib (Gent and Walsh 1999)).
A normalmagic square contains the integers 1 ton2. We
model this withn2 variablesXi,j whereXi,j = k iff the ith
column andjth row is labelled with the integerk.

“Lo Shu”, the smallest non-trivial normal magic square
has been known for over four thousand years and is an im-
portant object in ancient Chinese mathematics:

4 9 2
3 5 7
8 1 6

(1)

The magic squares problem has a number of solution sym-
metries. For example, consider the symmetryσd that reflects
a solution in the leading diagonal. This map “Lo Shu” onto
a symmetric solution:

6 7 2
1 5 9
8 3 4

(2)

Any other rotation or reflection of the square maps one so-
lution onto another. The 8 symmetries of the square are thus
all solution symmetries of this problem. In fact, there are
only 8 different magic square of order 3, and all are in the
same symmetry class.

One way to factor solution symmetry out of
the search space is to post symmetry break-
ing constraints. See, for instance, (Puget 1993;
Crawford et al. 1996; Flener et al. 2002; Frisch et al. 2002;
Walsh 2006a; Walsh 2006b; Law et al. 2007;
Walsh 2007). For example, we can eliminateσd by
posting a constraint which ensures that the top left corner
is smaller than its symmetry, the bottom right corner. This
selects (1) and eliminates (2).



Symmetry within a solution
Symmetries can also be found within individual solutions
of a constraint satisfaction problem. We say that a solution
A containsthe internal symmetryσ (or equivalentlyσ is a
internal symmetrywithin this solution) iffσ(A) = A.
Running example. Consider again “Lo Shu”. This con-
tains an internal symmetry. To see this, consider the solution
symmetryσinv that inverts labels, mappingk onton2+1−k.
This solution symmetry maps “Lo Shu” onto a different (but
symmetric) solution. However, if we now apply the solution
symmetryσ180 that rotates the square180◦, we map back
onto the original solution:

4 9 2
3 5 7
8 1 6

σinv

⇒
⇐

σ180

6 1 8
7 5 3
2 9 4

Consider the composition of these two symmetries:σinv ◦
σ180. As this symmetry maps “Lo Shu” onto itself, the solu-
tion “Lo Shu” contains the internal symmetryσinv ◦ σ180.

One significant difference between a solution symmetry
and an internal symmetry is that a solution symmetry is a
property of every solution whilst an internal symmetry is a
property of just the given solution.
Running example. Consider the following magic square:

1 4 13 16
14 15 2 3
8 5 12 9
11 10 7 6

(3)

σinv ◦σ180 is notan internal symmetry contained within this
solution:

1 4 13 16
14 15 2 3
8 5 12 9
11 10 7 6

⇔
σinv ◦ σ180

11 10 7 6
8 5 12 9
14 15 2 3
1 4 13 16

However,σinv◦σ180 is an internal symmetry found within
the following solution:

1 8 12 13
14 11 7 2
15 10 6 3
4 5 9 16

(4)

Thus we can conclude thatσinv ◦σ180 is an internal symme-
try contained within some but not all solutions of the normal
magic squares problem. In fact, 48 out of the 880 distinct
normal magic squares of order 4 contain this internal sym-
metry. On the other hand,σinv ◦σ180 is a solution symmetry
of normal magic square problems of every size.

A solution containing an internal symmetry can often be
described by a subset of assignments and one or more sym-
metries acting on this subset that generate a complete set of
assignments. Given a set of symmetriesΣ, we writeΣ∗ for
the closure ofΣ. That is,Σ0 = Σ, Σi = {σ1 ◦ σ2 | σ1 ∈
Σ, σ2 ∈ Σi−1}, Σ∗ =

⋃
i Σi. Given a solutionA, we

say the subsetB of A and the symmetriesΣ generateA
iff A = B ∪ Σ∗(B). In this case, we also describeA as
containing the internal symmetriesΣ.

Running example. Consider again the solution (4) which
contains the internal symmetryσinv ◦ σ180. Half this magic
square andσinv ◦ σ180 generate the whole solution:

1 8 12 13
14 11 7 2
- - - -
- - - -

⇔
σinv ◦ σ180

- - - -
- - - -

15 10 6 3
4 5 9 16

In fact, (4) can be generated from just the first quadrant
and two symmetries:σinv ◦ σ180 and a symmetryτ which
constructs a180◦ rotation of the first quadrant in the sec-
ond quadrant, decrementing those squares on the leading
diagonal and incrementing those on the trailing diagonal
(the same symmetry constructs the third quadrant from the
fourth). More precisely,τ makes the following mappings:

a b - -
c d - -
- - - -
- - - -

⇒
τ

- - d+1 c-1
- - b-1 a+1
- - - -
- - - -

The example hints at how we can exploit internal sym-
metries within solutions. We will limit search to a subset
of the decision variables that generates a complete set of as-
signments and construct the rest of the solution using the
generating symmetries.

Theoretical properties
We identify some properties of internal symmetries that will
be used to help find solutions.

Set of internal symmetries within a solution
Like solution symmetries, the internal symmetries within a
solution form a group. A solutionA containsa set of inter-
nal symmetriesΣ (or equivalentlyΣ are internal symmetries
within the solution) iffA containsσ for everyσ ∈ Σ.

Proposition 1. The set of internal symmetriesΣ within a
solutionA form a group under composition.

Proof: The identity symmetry is trivially an internal sym-
metry. Internal symmetries are also trivially closed under
composition, Finally, consider anyσ ∈ Σ. As σ(A) = A,
σ−1(σ(A)) = σ−1(A). That isA = σ−1(A). Hence, the
inverse ofσ is an internal symmetry.2

Symmetries within and between solutions
In general, there is no relationship between the solution sym-
metries of a problem and the internal symmetries within a
solution of that problem. There are solution symmetries of a
problem which are not internal symmetries within any solu-
tion of that problem, and vice versa. The problemZ1 6= Z2

has the solution symmetry that swapsZ1 with Z2, but no so-
lutions ofZ1 6= Z2 contain this internal symmetry. On the
other hand, the solutionZ1 = Z2 = 0 of Z1 ≤ Z2 contains
the internal symmetry that swapsZ1 andZ2, but this is not
a solution symmetry ofZ1 ≤ Z2 (sinceZ1 = 0, Z2 = 1 is
a solution but its symmetry is not). When all solutions of a
problem contain the same internal symmetry, we can be sure
that this is a solution symmetry of the problem itself.



Proposition 2. If all solutions of a problem contain an in-
ternal symmetry then this is a solution symmetry.

Proof: Consider any solutionA. As all solutions of the
problem contain the internal symmetryσ, σ(A) = A. Hence
σ mapsA onto itself, andσ(A) is also a solution.2

By modus tollens, it follows that ifσ is not a solution
symmetry of a problem then there exists at least one solution
which does not contain the internal symmetryσ.

Symmetries of symmetric solutions
We next consider internal symmetries contained within sym-
metric solutions. In general, the symmetry of a solution
contains the conjugate of any internal symmetry contained
within the original solution.

Proposition 3. If the solutionA contains the internal sym-
metryσ and τ is any (other) symmetry thenτ(A) contains
the internal symmetryτ ◦ σ ◦ τ−1.

Proof: Consider the action ofτ ◦ σ ◦ τ−1 on τ(A). Now
τ(σ(τ−1(τ(A)))) = τ(σ(A)). But asA contains the inter-
nal symmetryσ, σ(A) = A. Henceτ(σ(A)) = τ(A). Thus
τ ◦ σ ◦ τ−1 mapsτ(A) onto itself.2

In the special case that symmetries commute, the symme-
try of a solution contains the same internal symmetries as
the original problem. Two symmetriesσ andτ commuteiff
σ ◦ τ = τ ◦ σ.

Proposition 4. If the solutionA contains the internal sym-
metryσ andτ commutes withσ thenτ(A) also contains the
internal symmetryσ.

Proof: By Proposition 3,τ(A) contains the internal sym-
metry τ◦σ ◦ τ−1. But τ ◦ σ ◦ τ−1 = τ ◦ τ−1 ◦ σ = σ.
2

Symmetry breaking
Finally, we consider the compatibility of eliminating sym-
metric solutions and focusing search on those solutions that
contain particular internal symmetries. In general, the two
techniques are incompatible. Symmetric breaking may elim-
inate all those solutions which contain a given internal sym-
metry.

Running example. Consider again the solution (3). This
contains the internal symmetryσv ◦σinv that inverts all val-
ues and reflects the square in the vertical axis:

1 4 13 16
14 15 2 3
8 5 12 9
11 10 7 6

σinv

⇒
⇐
σv

16 13 4 1
3 2 15 14
9 12 5 8
6 7 10 11

Note that this internal symmetry can only occur within
magic squares of even order or of order 1.

Suppose symmetry breaking eliminates all solutions in the
same symmetry class as (3) except for a symmetric solution
which is a90◦ clockwise rotation of (3). This solution does
not contain the internal symmetryσv ◦ σinv. In fact, this
rotation of (3) contains the internal symmetry that inverts
all values and reflects the square in thehorizontalaxis.

11 8 14 1
10 5 15 4
7 12 2 13
6 9 3 16

⇔
σv ◦ σinv

16 3 9 6
13 2 12 7
4 15 5 10
1 14 8 11

We can identify a special case where symmetry break-
ing does not change any internal symmetry within solu-
tions. Suppose symmetry breaking only eliminates symme-
tries which commute with the internal symmetry contained
within a particular solution. In this case, whilst symmetry
breaking may eliminate the given solution, it must leave a
symmetric solution containing the given internal symmetry.
Given a set of constraintsC with solution symmetriesΣ, we
say that a set of symmetry breaking constraintsS is sound
iff for every solution ofC there exists at least one solution
of C ∪ S in the same symmetry class.
Proposition 5. Given a set of constraintsC with solution
symmetriesΣ, a sound set of symmetry breaking constraints
S, and a solutionA containing the internal symmetryσ, if
σ commutes with every symmetry inΣ then there exists a
solution ofC ∪ S in the same symmetry class asA also
containing the internal symmetryσ.
Proof: As S is sound, there exists a solutionB of C∪S and
τ ∈ Σ with B = τ(A). Now τ commutes withσ. Therefore
by Proposition 4,B contains the internal symmetryσ. 2

Running example. Consider the internal symmetryσinv ◦
σ180 contained within some (but not all) normal magic
squares. This particular symmetry commutes with every
rotation, reflection and inversion solution symmetry of the
problem. Hence, if there is a solution with the internal sym-
metryσinv ◦ σ180, this remains true after breaking the rota-
tional, reflection and inversion symmetries. However, as in
the last example, there are internal symmetries contained
within some solutions (like reflection in the vertical axis)
which do not commute with all symmetries of the square.

Exploiting symmetries within solutions
The exploitation of internal symmetries involves two steps:
finding internal symmetries, and then restricting search to
solutions containing just these internal symmetries. The
first step appears challenging. The definition of an internal
symmetry is rather weak. There will be many uninteresting
internal symmetries contained within a solution. We want
to find internal symmetries that are likely to be contained
within as yet unsolved instances of our problem. Although
we do not yet have an efficient set of automated methods to
do this, we can focus on simple symmetries (like the solu-
tion symmetries of the problem) and on small and already
solved instances of a problem. This may suggest internal
symmetries which might be contained in solutions of larger
(perhaps open) problems.

Once we have identified an internal symmetry which we
conjecture may be contained in solutions of other (perhaps
larger) instances of the problem, it is a simple matter to re-
strict search of a constraint solver to solutions of this form.
In general, if we want to find solutions containing the inter-
nal symmetryσ, we post symmetry constraints of the form:

Zi = j ⇒ σ(Zi = j)



In addition, we can limit branching decisions to a subset
of the decisions variables that generates a complete set of
assignments. This can significantly reduce the size of the
search space. Propagation of the problem and symmetry
constraints may prune the search space even further.

Running example. Consider again the problem of finding
normal magic squares. We coded this problem in BProlog
on a Pentium 4 3.2 GHz processor with 3GB of memory.
In addition to the problem constraints, we used symmetry
breaking constraints that eliminated most of the rotation,re-
flection and inversion solution symmetries:

X1,1 < min(X1,n,Xn,1,Xn,n), X1,n < Xn,1,

X1,1 ≤ n2 + 1 − max(X1,1,X1,n,Xn,1,Xn,n) (5)

We also used symmetry constraints to ensure a simple
internal symmetry was within the solution. Even and odd
order magic squares often contain different internal sym-
metries so we used different symmetry constraints for even
and oddn. For evenn, we looked for solutions containing
σv ◦ σinv. Recall that this internal symmetry cannot be con-
tained in solutions with oddn (exceptn = 1). For oddn, we
looked instead for solutions containingσinv ◦ σ180. Hence,
we used the following symmetry constraints for1 ≤ i, j ≤
n:

odd(n) → Xn+1−j,n+1−i = n2 + 1 − Xi,j

even(n) → Xn+1−i,j = n2 + 1 − Xi,j (6)

In the following table, we report backtracks (b) and time
(t) in seconds to find an ordern normal magic square us-
ing the default branching heuristic, the problem constraints
(P ), the symmetry breaking constraints (5) and the internal
symmetry constraints (6).

n P : b/t P + 5: b/t P + 6: b/t P + 5, 6: b/t
3 2/0.00 1/0.00 1/0.00 1/0.00
4 18/0.00 72/0.00 13/0.00 12/0.00
5 6656/0.13 5693/0.12 2287/0.03 38/0.00
6 4.47 · 109/ 1.92 · 108/ 959018/ 959018/

2.43 · 105 6618.38 28.08 28.63

We see that both symmetry breaking and internal symme-
try constraints speed up search. In addition, the combina-
tion of the two is usually better than either on their own.

Van der Waerden numbers
We illustrate the use of internal symmetries within solutions
with two applications where we have been able to extend the
state of the art. In the first, we found new lower bound cer-
tificates for Van der Waerden numbers. Such numbers are an
important concept in Ramsey theory. In the second applica-
tion, we increased the size of graceful labellings known for
a family of graphs. Graceful labelling has practical applica-
tions in areas like communication theory.

The Van der Waerden number,W (k, l) is the smallest in-
tegern such that if the integers1 to n are colored withk
colors then there are always at leastl integers in arithmetic
progression. For instance,W (2, 3) is 9 since the two sets

{1, 4, 5, 8} and{2, 3, 6, 7} contain no arithmetic progression
of length 3, but every partitioning of the integers 1 to 9 into
two sets contains an arithmetic progression of length 3 or
more. The certificate thatW (2, 3) > 8 can be represented
with the following blocks:

1 2 3 4 5 6 7 8

Finding such certificates can be encoded as a constraint
satisfaction problem. To test ifW (k, l) > n, we introduce
the Boolean variablexi,j wherei ∈ [0, k), j ∈ [0, n) and
constraints that each integer takes one color (

∨
i∈[0,k) xi,j),

and that no row of colors contains an arithmetic progression
of lengthl (xi,a ∧ . . . ∧ xi,a+d(l−2) → ¬xi,a+d(l−1)). This
problem has a number of solution symmetries. For exam-
ple, we can reverse any certificate and get another symmetric
certificate. We can also permute the colors and get another
symmetric certificate:

Individual certificates also often contain internal symme-
try. For example, the second half of the last certificate re-
peats the first half:

×2

Hence, this certificate contains the internal symmetry that
mapsxi,j ontoxi,j+4 mod 8.

In fact, many known certificates can be generated from
some simple symmetry operations on just the colors as-
signed to the first two or three integers. For instance,
the first construction method for Van der Waerden certifi-
cates (Rabung 1979) made use of the observation that the
largest possible certificates for the known numbersW (k, l)1

consist of a repetition ofl−1 times a base pattern. All these
certificates, as well as all best lower bounds, have a base
pattern of sizem = n

l−1 . This first method only worked for
certificates for whichm is prime. An improved construction
method (Herwig et al. 2007) generalises it for non-primem.

An important concept in both construction methods is the
primitive root2 of m denoted byr. Letp be the largest prime
factor ofm, thenr is the smallest number for which:

ri(mod m) 6= rj(mod m) for 1 ≤ i < j < q (7)
We identified four internal symmetries:
σ+m: Apply to all elementsxi,j := xi,j + m (modn)
σ+p: Apply to all elementsxi,j := xi,j + p (modm)
σ×r: Apply to all elementsxi,j := xi,j × r (modm)
σ×rt : At least one subset maps onto itself after applying

xi,j := xi,j × rt (modm) for a t ∈ {1, . . . , k}

Consider the largest known certificate forW (5, 3) which
has 170 elements. For this certificate,m = 85, p = 17, and
r = 3. Below the base pattern is shown the first 85 elements.
Notice that for this certificateA, σ+p(A) andσ×r(A) are
also certificates. In fact, after sorting the elements and per-
muting the subsets, this certificate is mapped onto itself after
applying these symmetries.

1Except forW (3, 3)
2Our use slightly differs from the conventional definition



18 20 24 26 33 36 38 44 65 66 74 76 79 80 5 13 17

22 30 34 35 37 41 43 50 53 55 61 82 83 6 8 11 12

23 25 28 29 39 47 51 52 54 58 60 67 70 72 78 14 15

31 32 40 42 45 46 56 64 68 69 71 75 77 84 2 4 10

19 21 27 48 49 57 59 62 63 73 81 85 1 3 7 9 16

⇑ σ+p

1 3 7 9 16 19 21 27 48 49 57 59 62 63 73 81 85

5 13 17 18 20 24 26 33 36 38 44 65 66 74 76 79 80

6 8 11 12 22 30 34 35 37 41 43 50 53 55 61 82 83

14 15 23 25 28 29 39 47 51 52 54 58 60 67 70 72 78

2 4 10 31 32 40 42 45 46 56 64 68 69 71 75 77 84

⇓ σ×r

3 9 21 27 48 57 63 81 59 62 1 7 16 19 49 73 85

15 39 51 54 60 72 78 14 23 29 47 25 28 52 58 67 70

18 24 33 36 66 5 17 20 26 38 44 65 74 80 13 76 79

42 45 69 75 84 2 32 56 68 71 77 4 10 31 40 46 64

6 12 30 8 11 35 41 50 53 83 22 34 37 43 55 61 82

Given these symmetries, we can easily construct a com-
plete certificate. We place the first and last elements (1 and
85) in the first subset and applyσ×r to generate all ele-
ments in this subset. We applyσ+p to partition the elements
{1, . . . , 85}. Finally, we obtain a complete certificate by ap-
plyingσ+m. We generalised this into a construction method.
To find a larger certificateW (k, l, n), we test with a con-
straint solver for increasingn ≡ 0 (mod l − 1) whether a
certificate can be obtained using the following steps:

• break solution symmetry by forcing that the first subset of
the partition maps onto itself after applyingσ×rt

• chooset ∈ {1, . . . , k}, q ∈ {1, . . . , m
p
}

• place elementsq andm in the first subset
• apply the symmetriesσ×rt , σ×r, σ+p, andσ+m, to con-

struct a certificateA with n′ elements
• check with a constraint solver ifA lacks an arithmetic

progression of lengthl

Using this method we significantly improved some of the
best known lower bounds3:

• W (3, 7) > 48811. The old bound was43855.
• W (4, 7) > 420217. The old bound was393469.

Graceful graphs
Our second application of internal symmetries is graceful la-
belling. A graph withe edges is called graceful if its vertices
can be labelled with the distinct values{0, . . . , e} in such a
way that each edge gets a unique label when it is assigned
the absolute difference of the vertices it connects. Graceful
labelling has a wide range of applications in areas like radio
astronomy, cryptography, communication networks and cir-
cuit design. Whilst various classes of graphs are known to
be graceful (Gallian 1998), there are others where it is not
known but is conjectured that they are graceful. One such

3Seewww.st.ewi.tudelft.nl/sat/ ˜ waerden.php

class is the class of double wheel graphs. The graphDWn

consists of two cycles of sizen and a hub connected all the
vertices. The largest double wheel graph that we have seen
graceful labelled in the literature4 has size 10.

0

9

33

16

37

1534

14

39

11

38
1

3

7

12

18
31

8

40

10

36

The problem of finding a graceful labelling can be
specified using 2n + 1 variables Xi with domain
{0, . . . , e}. This problem has16n2 solution symme-
tries (Petrie and Smith 2003):
• Rotation of the vertices (n2 symmetries)
• Inversion of the order of the vertices (4 symmetries)
• Swapping of the inner and outer wheel (2 symmetries)
• Inversion of the labels,Xi := 4n − Xi (2 symmetries)
To identify internal symmetries, we generated all graceful
labellings forDW4. This is the smallest double wheel graph
with a graceful labelling. We observed two internal symme-
tries within the 44 solutions ofDW4:

σ4n: In 31 solutions, the hub had label4n or 0 (σinv).
σ+2: If 1 ≤ Xi ≤ n − 2, thenXi+2 := Xi + 2

Although we observedσ+2, we restrict this internal symme-
try to 1 ≤ Xi ≤ n − 4 because it proved more effective.

When both symmetries are applied, the computational
costs to find a graceful labelling is significantly reduced.
ConsiderDW24. To construct a graceful labelling, we first
assign the hub to value96 (applyingσ4n). Second, we label
the first vertex of the outer wheel with1 and label the first
vertex of the inner wheel with2. Third, we apply symme-
try σ+2 to labeln-1 vertices with the labels{1, . . . , n − 1}.
Finally, we use a constraint solver to label the remaining ver-
tices. Using this method we found the first known graceful
labeling forDW24 (see overleaf).

The following table gives the runtime (in seconds) for our
constraint solver to find graceful labellings ofDWn for the
original problem (P ) with and without symmetry breaking
(SB) constraints (Petrie and Smith 2003). The last column
shows the results when we force internal symmetries within
solutions. This also breaks the solution symmetries.

n P P + SB P + σ4n, σ+2

4 0.04 0.03 0.03

8 0.24 0.23 0.21

12 20.42 18.34 0.91

16 554.30 259.75 11.31

20 > 7200 2634.67 117.08

24 > 7200 > 7200 602.09

4Seewww.comp.leeds.ac.uk/bms/Graceful/

www.st.ewi.tudelft.nl/sat/~waerden.php
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Related work
Several forms of symmetry have been identified and
exploited in search. For instance, Brown, Finkel-
stein and Purdom defined symmetry as a permutation
of the variables leaving the set of solutions invariant
(Brown, Finkelstein, and Purdom. 1988). This is a subset
of the solution symmetries. For the propositional calcu-
lus, Krishnamurthy was one of the first to exploit sym-
metry (Krishnamurthy 1985). He defined symmetry as a
permutation of the variables leaving the set of clauses un-
changed. Benhamou and Sais extended this to a per-
mutation of the literals preserving the set of clauses
(Benhamou and Sais 1992). Perhaps closest to this work is
Puget’s symmetry breaking method that considers symme-
tries which stabilize the current partial set of assignments
(Puget 2003). By comparison, we consider only those sym-
metries which stabilize a complete set of assignments.

Conclusions
We have defined the concept of an internal symmetry within
a single solution of a constraint satisfaction problem. We
compared this with the existing notion of symmetry between
different solutions of the same problem. We demonstrated
that we can exploit both types of symmetry when solving
constraint satisfaction problems. We illustrated the potential
of exploiting internal symmetry on two benchmark domains:
Van der Waerden numbers and graceful graphs. By identi-
fying internal symmetries, we were able to extend the state
of the art in both cases. With Van der Waerden numbers, we
improved two lower bounds by around 10%. With graceful
graphs, we more than doubled the size of the largest known
double wheel graph with a graceful labelling.
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