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Abstract. We consider preferences which can be partially ordered and which need to be aggregated.
We prove that, under certain conditions, if there are at least two agents and three outcomes, no aggrega-
tion system on partially ordered preferences can be fair. These result generalizes Arrow’s impossibility
theorem for combining total orders. We also provide two sufficient conditions which guarantee fairness
for the majority rule over partial orders. This allows us to generalize Sen’s theorem for total orders. Fi-
nally, we give a generalization of the Muller-Satterthwaite result for social choice functions over partial
orders.

1 Introduction

Many problems require us to combine the preferences of different agents. For example, when plan-
ning a wedding, we must combine the preferences of the bride, the groom and possibly some or
all of the in-laws. Incomparability is a useful mechanism to resolve conflict when aggregating such
preferences. If half of the agents prefer a to b and the other half prefer b to a, then it may be best
to say that a and b are incomparable.

In addition, an agent’s preferences are not necessarily total. For example, while it is easy and
reasonable to compare two apartments, it may be difficult to compare an apartment and a house.
We may wish simply to declare them incomparable. Moreover, an agent may have several possibly
conflicting preference criteria she wants to follow, and their combination can naturally lead to a
partial order. For example, one may want a cheap but big apartment, so an 80 square meters
apartment which costs 100.000 euros is incomparable to a 50 square meters apartment which costs
60.000 euros.

We assume therefore that both the preferences of an agent and the result of preference aggrega-
tion can be a partial order. In this context, it is natural to ask if we can combine partially ordered
preferences fairly.

For total orders, Arrow’s theorem shows this is impossible [1]. We show that this result can
be generalized to partial orders under certain conditions. This is both disappointing and a little
surprising. By moving from total orders to partial orders, we enrich greatly our ability to combine
outcomes fairly. As in the example above, we can use incomparability to resolve conflict and thereby
not contradict agents. Nevertheless, under the conditions identified here, we still do not escape the
reach of Arrow’s theorem.

These results assume that one is interested in obtaining a partial order over the different sce-
narios as the outcome of preference aggregation. One may wonder if the situation is easier when
we are only interested in the most preferred outcomes in the aggregated preferences. However, we
show that even in this case (that is, when considering social choice functions over partial orders) it
is impossible to be fair. This is a generalization of the Muller-Satterthwaite theorem [10] for total
orders.



We also identify two cases where fairness of social welfare functions over partial orders is possible,
one of which is a generalization of Sen’s theorem [12]. The two cases correspond to two extremes of
the amount of partiality of the partial orders. In fact, one considers partially ordered profiles which
are very ordered (that is, very close to be total orders), while the other one concerns profiles with
no chain of ordered pairs, so where the ordering relation contains a very small number of pairs.

The paper is organized as follows. Section 2 gives the basic definitions about partial orders.
Then, Section 3 defines social welfare functions on partially ordered profiles and introduces the
notions of fairness in this context, Section 4 proves that it is impossible to be fair over partial
orders under certain conditions, Section 5 shows cases in which the majority rule can be fair, and
Section 6 defines social choice functions over partial orders and their properties, and proves that
they cannot be fair. Finally, Section 7 describes the existing related work, and Section 8 summarizes
the results and gives hints for dirctions for future work.

All the proofs of the results of this paper are contained in the appendix.

2 Partial orders

A binary relation R on a set S (that is, R C S x S) is: reflexive iff for all z € S, (z,z) € R;
transitive iff for all z,y,2 € S, (z,y) € R and (y,z) € R implies (z,z) € R; antisymmetric
iff for all z,y € S, (z,y) € R and (y,z) € R implies z = y; complete iff for all z,y € S, either
(z,y) € Ror (y,z) € R.

A total order is a binary relation which is reflexive, transitive, antisymmetric, and complete.
A total order has an unique optimal element, that is an element o € S such that Vz € S, (0,z) & S.
We say that this element is undominated.

A partial order is a binary relation which is reflexive, transitive and antisymmetric but may be
not complete. There may be pairs of elements (z,y) of S which are not in the partial order relation,
that is, such that neither (z,y) € R nor (y,z) € R. Such elements are incomparable (written
z < y). Unlike a total order, a partial order can have several optimal and mutually incomparable
elements. We say that these elements are undominated. Undominated elements will also be called
top elements. The set of all top elements of a partial order o will be called top(0). Elements which
are below or incomparable to every other element will be called bottom elements.

Given any relation R which is either a total or a partial order, if (z,y) € R, it can be that z =y
or that z # y. If R is such that (z,y) € R implies z # y, then R is said to be strict. This means
that reflexivity does not hold.

Both total and partial orders can be extended to deal with ties, that is, sets of elements which
are equally positioned in the ordering. Two elements which belong to a tie will be said to be indif-
ferent. To summarize, in a total order with ties, two elements can be either ordered or indifferent.
On the other hand, in a partial order with ties, two elements can be either ordered, indifferent,
or incomparable. Notice that, while incomparability is not transitive in general, indifference is
transitive, reflexive, and symmetric.

In the following we will sometimes need to consider partial orders with some restrictions. In
particular, we will call a rPO a partial order where the top elements are all indifferent, or the
bottom elements are all indifferent. In both POs and rPOs, ties are allowed everywhere, except
when explicitly said otherwise.



3 Social welfare functions for partial orders

We assume that each agent’s preference specify a partial order over the possible outcomes. We
aggregate the preferences of a number of agents using a social welfare function. A social welfare
function f is a function from profiles p to orderings over outcomes. A profile p is a sequence of
n orderings p1,...,p, over outcomes, one for each agent 7 € {1,...,n}.

There are a number of properties that a social welfare function might be expected to pos-
sess. Except in the case of dictator, they are straightforward generalizations of the corresponding
properties for social welfare functions for total orders [2]:

— Freeness: f is surjective, that is, it can produce any ordering.

— Unanimity: if all agents agree that a is preferable to b, then the resulting order must agree as
well. That is, if a >, b for all agents ¢, then a >,y b. Notice that a stronger notion could be
defined, where unanimity over incomparability is also required. However, this is not needed for
the results of our paper.

— Independence to irrelevant alternatives: the ordering between a and b in the result depends
only on the relation between a and b given by the agents; that is, for all profiles p and p’, for all
a, b, for all agents 1, if p;(a,b) = pl(a,b), then f(p)(a,b) = f(p')(a,b), where, given an ordering
0, o(a, b) is the restriction of 0 on a and b.

— Monotonicity: We say that b improves with respect to a if the relationship between a and b
does not move to the left along the following sequence: >, >, (< or =), <, <. Given two profiles
p and p', if passing from p to p’ b improves with respect to a in one agent ¢ and p; = p/; for all
j # i, then in passing from f(p) to f(p') b improves with respect to a.

Another desirable property of social welfare functions is the absence of a dictator. With partial
orders, there are several possible notions of dictator:

Strong dictator: an agent 7 such that, in every profile p, f(p) = p;, that is, her ordering is the
result;

Dictator: an agent 7 such that, in every profile p, if a >p, b then a >, b.

Weak dictator: an agent ¢ such that, in every profile p, if a >p, b, then a £, b.

Nothing is said about the result if ¢ is incomparable or indifferent to b for the dictator or weak
dictator. Clearly a strong dictator is a dictator, and a dictator is a weak dictator. Note also that
whilst there can only be one strong dictator or dictator, there can be any number of weak dictators.

We say a social welfare function is strongly fair, fair or weakly fair if its is unanimous, inde-
pendent to irrelevant alternatives, and does not have a strong dictator, dictator or weak dictator
respectively. Arrow’s impossibility theorem [1,9] shows that, if a social welfare function on total
orders with ties is unanimous and independent to irrelevant alternatives and there are at least two
voters and three outcomes, then there must be at least one dictator. It is possible to prove that
freeness, monotonicity and independence to irrelevant alternatives imply unanimity. On the other
hand, there are social welfare functions which are free, unanimous and independent to irrelevant
alternatives but not monotonic [12]. Therefore a weaker version of Arrow’s result on total orders
with ties states that freeness, monotonicity and independence of irrelevant assumptions implies
that there must be at least one dictator [7].

Proposition 1. A social welfare function on partial orders can be fair.



For example, the Pareto rule in which the outcome is ordered if every agent agrees, but is
incomparable otherwise, is fair. Note that a social welfare function that is fair is also strongly fair.
Hence a social welfare function on partial orders can be strongly fair. Actually strong fairness is
a very weak property to demand. Even voting rules which appears very “unfair” may not have
a strong dictator. For example, suppose we ask the agents in some fixed order, and order two
outcomes according to the first agent who is not indifferent. This social welfare function (which we
will call the Lex rule) is not fair, but it is strongly fair.

4 TImpossibility results

We now show that, under certain conditions, it is impossible for a social welfare function over
partial orders to be weakly fair. The conditions involve the shape of the partial orders. In fact, we
assume the partial orders of the agents to be general (PO), but the resulting partial order must
have all top or all bottom elements indifferent (rPO).

Theorem 1. Given a social welfare function f over partial orders, assume the result is a rPO,
there are at least 2 agents and 8 outcomes, and f is unanimous and independent to irrelevant
alternatives. Then there is at least one weak dictator.

As with total orders, we can also prove a weaker result in which we replace unanimity by
monotonicity and freeness.

Corollary 1. Given a social welfare function f over partial orders, assume the result is a rPO,
there are at least 2 agents and 8 outcomes, and f is free, monotonic, and independent to irrelevant
alternatives. Then there is at least one weak dictator.

Consider, for example, the Pareto rule. With this rule, every agent is a weak dictator since no
agent can be contradicted. Note that we could consider a social welfare function which modifies
Pareto by applying the rule only to a strict subset of the agents, and ignores the rest. The agents
in the subset will then all be weak dictators.

A number of results follow immediately from these theorems. If we denote the class of all social
welfare functions from profiles made with orders of type A to orders of type B by A™ — B, then
we have proved the impossibility of being weakly fair for functions in PO™ — rPQO.

If all functions in A™ — B are not weakly fair, then also functions in A" — B’, where B’ is a
subtype of B, are not weakly fair, since by restricting the co-domain of the functions we are just
considering a subset of them. Therefore this impossibility theorem implies also that the functions
in PO™ — O, where O is anything more ordered than a r PO, cannot be weakly fair. For example,
we can deduce that functions in PO™ — T'O cannot be weakly fair.

The same reasoning applies when we restrict the domain of the functions, that is, we pass from
A™ — B to A™ — B where A’ is a subtype of A. In fact, by doing this, we restrict the kind of
profiles we consider, so whatever is true in all the profiles of the larger set is also true in a subset of
the profiles. In particular, if a function from A" to B has a weak dictator, then the same function,
restricted over the profiles in A™, also has the same weak dictator. Thus if the functions in A" — B
cannot be weakly fair, also the functions in A"™ — B cannot be weakly fair. In particular, from
our result we can deduce that all functions in TO™ — r PO cannot be weakly fair. Finally, we can
deduce that all functions in TO™ — T'O cannot be weakly fair, which is exactly Arrow’s theorem.
In fact, we have a lattice of impossibility results for classes of social welfare functions, as described
by Figure 1.
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Fig. 1. Lattice of impossibility results. r PO stands for partial order where top elements or bottom elements are
all indifferent, PO stands for partial order, T'O stands for total order. Arrow’s theorem applies to O™ — TO.
and *\ stand for the lattice ordering.

5 Possibility results

We now consider ways of assuring that a social welfare function is weakly fair. In fact, we will
identify situations when the well known majority rule is transitive, which makes it weakly fair since
it usually has all the other properties.

The majority rule we will consider says a is better than b iff the number of agents which say
that a > b is greater than the number of agents which say that b > a plus the number of those that
say that a and b are incomparable. Notice that ties are ignored by this rule.

We focus on the condition that Sen has proved sufficient for fairness in the case of total orders,
namely triplewise value-restriction [12]. That is, for every triple of outcomes z1,x2,z3, there
exists z; € {x1,z2, 23} and r € {1,2,3} such that no agent ranks z; as his r-th preference among
T1,T9,T3. To apply Sen’s theorem to this context, we will consider linearizations of our profiles.

Note that, as we have partial orders, to assure transitivity in the resulting order, we must avoid
both cycles (as in the total order case) and incomparability in the wrong places. More precisely, if
the result has a > b > ¢, we cannot have ¢ > a, which would create a cycle, and not even a < c,
since in both cases transitivity would not hold. We will say that a profile p satisfies the generalized
triplewise value-restriction if all the profiles obtained from p by linearizing any PO to a TO
have the triplewise value-restriction property.

Theorem 2. If all profiles satisfy the generalized triplewise value-restriction and are without ties,
then the majority rule is transitive and thus weakly fair.

We have therefore generalized Sen’s theorem to partial orders without ties. This result is useful
when the profiles are highly ordered, and, within each profile, the agents have similar orders. On the
other extreme, we will now give another possibility result which can be applied to profiles which
order few outcomes. This result assures transitivity of the resulting ordering by a more rough
approach: it just avoids the presence of chains in the result. That is, for any triple z1,z9, 23 of
outcomes, it makes sure that the result cannot contain x; > x; > z; where 4, j, k is any permutation
of {1,2,3}. This is done by restricting the classes of orderings allowed for the agents.

A profile is non-chaining iff, for any triple of outcomes, only one of the following situations
can happen:

— the outcomes are all incomparable,
— only two of them are ordered, or
— there is one of them, which is more preferred than the other two.

Or:

— the outcomes are all incomparable;
— only two of them are ordered, or



— there is one of them, which is less preferred than the other two.

Theorem 3. If all profiles are non-chaining and without ties, then the majority rule is weakly fair.

6 Social choice functions

In some situations, the result of aggregating the preferences of a number of agents might not need
to be an order over outcomes. It might be enough to know the “most preferred” outcomes. For
example, when aggregating the preferences of two people who want to buy an apartment, we don’t
need to know whether they prefer an 80 square meter apartment at the ground floor or a 50 square
meter apartment at the 2nd floor, if they both prefer a 100 square meter apartment at the 3rd floor.
They would just buy the 3rd floor apartment without trying to order the other two apartments.
Social choice functions identify such most preferred outcomes, and do not care about the ordering
on the other outcomes.

A social choice function on total orders is a mapping from a profile to the optimal outcome, or
winner. With partial orders, there can be several outcomes which are incomparable and optimal.
We can therefore consider a generalization in which a social choice function is a mapping from a
profile to a non-empty set of outcomes, called the optimal outcomes, or the winners.

We need to modify slightly the usual notions to deal with this generalization. We say that a
social choice function f is

— unanimous iff
e given any profile p where outcome a € top(p;) for every agent i, then a € f(p);
e given any profile p where {a} = top(p;) for every agent i, then f(p) = {a};
— monotonic iff, given two profiles p and p',
e if a € f(p) and for any other alternative b, a >p, b implies a >, b and a t<p, b implies
a <y, bor a >y b, for all agents 7, then we have a € f®);
e if f(p) =S and for all s € S, for all b, s >, b implies s >p. b and a p<p, b implies a by, b or
a >y b, for all agents 4, then fp) =8.

As for social welfare functions, we will define three notions of dictators:

— a strong dictator is an agent i such that, for all profiles p, f(p) = top(p;);
— a dictator is an agent ¢ such that, for all profiles p, f(p) C top(p;);
— a weak dictator is an agent 7 such that, for all profiles p, f(p) Ntop(p;) # 0.

Notice that, in any profile p, if a is the unique top of a weak dictator 7, then a € f(p). However,
this is not true if @ is not the unique top of 7.

Notice also that these three notions are consistent with the corresponding ones for social welfare
functions. More precisely, a dictator (resp., weak, strong) for a social welfare function f is also a
dictator (resp. weak, strong) for the social choice function f’ obtained by f by f'(p) = top(f(p))
for every profile p.

Proposition 2. A social choice function on partial orders can be at the same time unanimous,
monotonic, and have no dictators.

For example, the social choice function corresponding to the Pareto rule is unanimous, mono-
tonic, and has no dictators. However, all the agents are weak dictators. Another example is the
social choice function which returns the J; top(p;), which again is unanimous, monotonic, and has



no dictators (but all agents are weak dictators). On the other hand, the Lex rule has a strong
dictator (which is the first agent).

The Muller-Satterthwaite theorem [10] can be generalized to social choice functions over partial
orders without ties, for weak dictators.

Theorem 4. If we have at least two agents and at least three outcomes, and the social choice
function on partial order without ties is unanimous and monotonic, then there is at least one weak
dictator.

A further extension would be the generalization of the Gibbard-Satterthwaite theorem [8]. That
is, are weak dictators inevitable if we have at least two agents and three outcomes, and the social
choices function is strategy proof and onto? This is a the subject of our current work.

7 Related work

Since the original theorem by Arrow, some effort has been made to weaken its conditions. Both
the domain and the codomain of a social welfare function have been the subject of more relaxed
assumptions in several Arrow-like impossibility theorems:

— In [6], the codomain is a partial order, and profiles are allowed to be strict weak orders, which
are negatively transitive and assymetric. This structure is more general than total orders but
less general than partial orders, since, for example, it does not allow situations where A > B
and C' is incomparable to both A and B.

— In [3], social orders can be partial, and agents are allowed to vote using a partial order. However,
the set of profiles must be regular, meaning that for any three alternatives, every configuration
of their orders must be present in a profile.

— In [13] agents must vote using total orders. However, the social order can be a quasi-ordering,
which is reflexive and transitive. A similar setting is considered in [5], where agents use total
orders with some additional requirements (such as the discrimination axiom which requires that
each agent orders strictly at least one triple of candidates).

— In [4], each agent models her preferences using a non monotonic logic, giving a preorder (reflexive
and transitive) on the outcomes. An additional hypothesis is required, called conflict resolution,
which states that if a pair is ordered by any agent, then it must be ordered also in the social
order. Conflict resolution is a very strong property to require. For example, the Pareto rule does
not respect it.

With respect to all these approaches, our profiles are more general, since in our results a profile
can be any set of partial orders. However, the resulting order of a social welfare function is required
to be a restricted partial order, that is, a partial order with a unique top or a unique bottom. Thus
our result is incomparable to all the Arrow’s like theorems in the cited papers.

However, our possibility theorem for the majority rule is, to our knowledge, the first result
of this kind for partially ordered profiles in social welfare functions. The same holds also for our
impossibility result for social choice functions.

8 Conclusions and future work

We have proved that if there are at least two agents and three outcomes, social welfare functions
on partial orders cannot be weakly fair (that is, they cannot be at the same time unanimous,



independent to irrelevant alternatives, and with no weak dictator) if the result is a partial order
with all top or all bottom elements indifferent. This result generalizes Arrow’s impossibility theorem
for combining total orders [1]. On the other hand, we also proved that some social welfare functions,
such as the majority rule, can be weakly fair if we put some additional restrictions on the shape
of the orderings of the agents. In particular, this happens when all the linearizations of the partial
orders of the agents have the triplewise value-restriction, and also when they do not contain any
chain of ordered pairs. We also proved that social choice functions over partial orders cannot be at
the same time unanimous, monotonic, and without weak dictators if there are at least two agents
and three outcomes, and ties are not allowed.

An interesting open question is whether voting systems on partial orders can have other desirable
properties. For example, can they encourage non-tactical voting? Are they non-manipulable? We
are currently studying whether the Gibbard-Satterwhite theorem can be extended to social choice
functions over partially ordered profiles.
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Appendix: Proofs of main results

Theorem 1 Given a social welfare function f over partial orders, assume the result is a rPO,
there are at least 2 agents and 3 outcomes, and f is unanimous and independent to irrelevant
alternatives. Then there is at least one weak dictator.



Proof. The proof is similar in outline to one of the proof of Arrow’s theorem [7]. However, we must
adapt each step to this more general context of partial orders. We assume the resulting ordering is
a rPO with all bottom elements indifferent. The proof can then be repeated very similarly for the
other case in which the resulting ordering is a rPO with all top elements indifferent.

1.

First we prove that, if a element b is at the very top or at the very bottom in all POs of the
agents, then it must be a top or bottom element in the resulting rPO. If b is not a top or bottom
element in the result, there must be other elements a and ¢ such that a > b > ¢. We will now
adjust the profile so that ¢ is above a for all agents. Since we assumed just one top and one
bottom for all agents, we can always do that while keeping b at the extreme position and not
changing the ordering relation between a and b and between ¢ and b.

By unanimity, we must have ¢ above a in the result. By independence to irrelevant alternatives,
we still have @ > b and b > c. By transitivity, we have a > ¢ which is a contradiction.

. We now prove that there is a pivotal agent n* such that, when he moves b from bottom to top,

the same change happens in the result.

Assume all agents have b as the bottom. Then, b must be at the bottom in the result by
unanimity. Let n* be the first agent such that, when b moves from bottom to top, this happens
in the result. Note that »* must exist, because when all agents move b from bottom to top, by
unanimity in the result we must have b at the top.

. We continue by proving that n* is a weak dictator for pairs of elements not involving b.

Let us consider the following scenarios in the context of moving b from the bottom to the top

of each agent’s ranking.

II: b is still the bottom of n*. In the result, b is the bottom element so we must have, a > b
for all a.

II5: b has been moved to the top of n*. In the result, b is a top element so we must have, b > ¢
or b incomparable to ¢ for all c.

II5: As in II; but a has now been moved above b in n* (and thus also above c), and all other
agents move freely a and c¢ leaving b in the top or bottom position.

By independence to irrelevant alternatives, a > b must be the result of II3, since all the ab

preferences are the same as in II. Also, b > ¢ or b incomparable to ¢ must be the result of I3,

since all b — ¢ preferences are the same as in I15. By transitivity, the result of IT3 cannot have

¢ > a since it would imply ¢ > b which is contradictory with the assumption that b and ¢ are

either incomparable or b > ¢. Thus n* is a weak dictator for pairs not involving b.

We now prove that there exists an agent n’ which is a weak dictator for pairs with no ¢. To do

this, it is enough to use the same construction as above but with ¢ in place of b.

. We show now that n* = n'. On total orders, there can be only one dictator, so it follows

immediately that n* = n/. With partial orders, there can be more than one weak dictator. The
argument that n* = n' is therefore much more elaborate.

Without loss of generality, assume n* < n'. Suppose that n* < n'. Let us consider the following
profiles: we start with all agents having b at the bottom and c¢ at the top. Then we swap b and ¢
in each orderings, going through the agents in the same order as in the previous constructions.
When we move b up for n*, b goes to the top in the result (by the previous part of the proof). ¢
goes down for n*, and in the result it can go down as well, in which case we can repeat the same
construction as in points 1,2,3 starting with ¢ at the top instead of b at the bottom, and we can
prove that n* is also a weak dictator for pairs not involving c. Thus we would have n* = n’,
which is a contradiction.

Otherwise, ¢ could stay at the top. However, since n* is a weak dictator for pairs not involving b,
and since c is the bottom for n*, then all the elements must be at the top with ¢ (as incomparable



or indifferent elements). This is true also in any other profile obtained from the current one by
leaving all the other agents move freely a and b. Thus n* is not contradicted on any pair. O

Corollary 1 Given a social welfare function f over partial orders, assume the result is a rPO,
there are at least 2 agents and 3 outcomes, and f is free, monotonic, and independent to irrelevant
alternatives. Then there is at least one weak dictator.

Proof. Suppose the social welfare function is free and monotonic, and that a > b for all agents. If a
is moved to the top of the ordering for all agents then, by independence to irrelevant alternatives,
this leaves the result between a and b unchanged. Suppose in the result a < b or a is incomparable
to b. By monotonicity, any change to the votes of a over b will not help ensure a > b. Hence,
the election cannot be free. Thus it must be a > b in the result. The voting system is therefore
unanimous. By Theorem 1, there must be at least one weak dictator. O

Theorem 2 If all profiles satisfy the generalized triplewise value-restriction and are without ties,
then the majority rule is transitive and thus weakly fair.

Proof. Take any profile p’ which is a linearization of p. Then p’ has the triplewise value-restriction
property, and the majority rule applied to p’ produces an ordering without cycles, by Sen’s theorem.
Since p’ is a linearization of p, p has a smaller or equal set of ordered pairs w.r.t. p’. Therefore,
if the majority rule has not produced any cycle starting from p’, it cannot produce any cycle if it
starts from p. In fact, the majority rule counts the number of agents who order a pair, so if the
profile has less ordered pairs, a smaller or equal number of pairs are ordered also in the result.

Assume now we have a > b > ¢ and a incomparable to ¢ in the result. We will now show that,
if this is the case, then there is a linearization which doesn’t satisfy the triplewise value-restriction
property.

In fact, since @ > b in the result we know that [Sy~p| > [Sa<ch| + |Saxe|- Similarly |Sps¢| >
|Sp<c| + |Stc|- Since we are assuming that a < ¢ then |Sgse| < [Sesa| + [Sexal- We know that a
majority of agents says that a > b. Let us now assume that no agent says that a is incomparable to
b and that no agent says that b is incomparable to c. Let us consider the agents that say a > b, then
for each such agent she must have one of the following orderings:(1) a > b > ¢; (2) a > bAc > b;
(3) a>c>b; (4) ¢ >a>b. We want to prove that that there is at least one agent that says (1)
and that there is at least one agent that says either (2) or (4). In fact it is not possible that all
the agents which have said a > b have all ordering (1), since that would mean that there is also a
majority that says a > ¢, while a < ¢ by hypothesis. Moreover, it is not possible that all the agents
that say a > b vote as (2) or (3) or (4) but none using (1) since this would imply that ¢ > b. Thus
we can conclude that at least one agent must vote as in (1) and at least one agent votes either (2)
or (4).

Now let us consider the agents in the majority that vote b > ¢. Each of them can have one of
the following orderings:(i) @ > b > ¢; (ii) b > ¢ Ab > q; (iii)b > ¢ > a; (iv) b > a > ¢. As before
they cannot all vote (i), otherwise using the majority rule we would have a > ¢, and not a < ¢ as
assumed. However at least one must vote (i), since (ii), (iii) and (iv) order b above a, while we know
there is a majority saying a > b. Moreover, it is also not possible that all voters that say b > ¢ say
(i) or say (iv) since again that would imply a > c¢. Thus there is at least an agent such that either
she says (ii) or he says (iii).

To summarize, we have an agent that says (1) (or (i)) @ > b > ¢, then we have an agent that
says (3) or (4). Notice that if she says (3) we can linearize (3) into (4) by adding ¢ > a. Thus for
the second agent we have ¢ > a > b. Finally we have an agent that says either (ii) or (iii). Again



(ii) can be linearized into (iii) by adding ¢ > a. Thus for the third agent b > ¢ > a. This is a
linearization which violates the triplewise value-restriction property.

Notice that if we allow the agents to express incomparability between a and b and/or b and ¢
this means that agents that voted (3) or (4) now could vote (2) and that agents that voted (iii)
or (iv) now could vote (ii) or give even more incomparability. However this does not prevent the
possibility to linearize the orderings as above. O

Theorem 3 If all profiles are non-chaining and without ties, then the majority rule is weakly fair.

Proof. We just need to show that the majority rule is transitive since it has all other properties of
fairness. Let us first consider situation «. We will prove that for every triple a,b, and ¢ it cannot be
a > b > ¢, that there are no transitive chains in the ordering. Let us assume that a > b > c. Since
a > b then:

- (1) |Sa>b| > |Sa>b| + |Sal><1b‘
Similarly from b > ¢ we have that
- (2) |Sb>c| > |Sc>b| + |Sbl><lc‘

From the fact that we are situation o we have that:

- (3) |Sa>b| < |Sbl><lc|
- (4) |Sb>c| < |Sb>a| + |Sbl><1a‘

The reason for inequality (3) is that all the voters that say a > b cannot order b and c. The reason
for inequality (4) is that all the voters that put b above ¢ must either put a below b or incomparable
to b.

From the above inequalities we get the following inconsistency:

(3) ©) (4) 1)
|Sa>b| < |Sbl><lc| < |Sb>c‘ < ‘Sb>a|+ ‘Sblxia' < |Sa>b|
In situation g, (1) and (2) still hold while we have, from the fact that we are situation f3:

- (3) |Sb>c| S |Sal><1b|
— (4) |Sasbl < |Sesb| + |Sesan|

The reason for inequality (3) is that all the voters that say b > ¢ cannot order a and b. The reason
for inequality (4) is that all the voters that put a above b must either put b below c or incomparable
to c.

From the above inequalities we get the following inconsistency:

®3) (1) (4) (2)
|Sb>c| < |Sal><1b‘ < ‘Sa>b| < ‘Sc>b| + |Scl><1b| < |Sc>b|
O
Theorem 4 If we have at least two agents and at least three outcomes, and the social choice

function on partial order without ties is unanimous and monotonic, then there is at least one weak
dictator.
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Fig. 3. Profiles P| and Pj.

Proof. The proof follows the scheme of the proof of the Muller-Satterthwaite theorem that can be
found in [11].

Consider three alternatives a, b, and h, and a profile P where a <t h (where < means incom-
parability) are at the top above every other element, and b is the unique bottom, for all agents.
By unanimity, f(P) contains both a and h, and so f(P) can be {a,h} or {a,h,d} where d is an
alternative different from a, b, h, if any.

Let us now rise b one position at time in agent 1’s ranking. By monotonicity, the set of winners
still contains both a and h, as long as b < a and b < h. When b is risen above a and h, by
monotonicity the set of winners may contain b. If we continue this with the other agents in the
order, at the end we must have b as the only winner by unanimity. Thus at some point b must
appear in the set of winners.

Step 1. Consider profiles P, and P,. P; is the last profile where the set of winners is still {a, h}
or {a, h,d}, where d is one or more other elements, whereas P, is the first profile such that the set
of winners contain b.

Ifd € f(P1), then by monotonicity on profiles P; and P, we have d € f(P,). If instead d & f(P1),
then d &€ f(P). In fact, assume d € f(P,); then, by monotonicity on P, and Py, d € f(Py) as well,
which is a contradiction. Therefore,

— if f(P1) = {a,h} then f(P) can be {b}, {a,b}, {h,b} or {a,h,b};
— if f(P;) ={a,h,d} then f(P,) can be {b,d}, {a,b,d}, {h,b,d} or {a,h,b,d}.

Step 2. Consider the new profiles P{ and Pj in Figure 3.

Notice that f(Pj) must contain b, by monotonicity on P, and Pj.

If d € f(P), then d € f(P;) by monotonicity on P, and Pj. If h ¢ f(P), then h ¢ f(P;). In
fact, assume h € f(P}); then monotonicity on Pj and P, implies h € f(P,), that is a contradiction.
Analogously, if a & f(P2), then a & f(P}).

If f(P1) = {a, h,d}, we know from Step 1 that f(P,) contains d. Then, for the reasoning above,
d € f(Pj). Hence f(Pj) can be {b,d}, {a,b,d}, {h,b,d} or {a,h,b,d}. Whereas, if f(P;) = {a,h},



then we know only that f(Ps) must contain b, therefore f(Pj) can be {b}, {b,d}, {a,b}, {a,b,d},
{h, b}, {h,b,d}, {a,h,b} or {a,h,b,d}.

In particular, if f(P2) is {b,d} or {b}, then by monotonicity on P, and Pj, f(Pj) is resp. {b,d}
or {b}, and if f(P) # {b}, then f(Pj) # {b}. In fact, suppose f(Pj) = {b}. Then by monotonicity
on P} and Py, f(P2) = {b}, that is a contradiction. Moreover, for the reasoning above, if f(P%) is
{a,b,d} or {a,b}, i.e., h & f(P2), then h ¢ f(Pj), and analogously, if f(P2) is {h,b,d} or {h,b},
ie., ad f(P,), then a & f(Py).

Summarizing,

~ it () = {a,h,d},
o if f(P,) = {b,d}, then f(Py) = {b,d};
e if f(P,) ={a,b,d}, then f(Pj) = {b,d} or {a,b,d};
o if f(P;) ={h,b,d}, then f(Pj) = {b,d} or {h,b,d};
e if f(P) ={a,h,b,d}, then f(Pj) can be {b,d}, {a,b,d}, {h,b,d} or {a,h,b,d};
~ it f(Py) = {a,h},
« i f(Py) = {b}, then f(P}) = {b};
o if f(P,) ={a,b}, then f(Pj) = {b,d}, {a,b}, {a,b,d};
o if f(PQ) - {h’a b}: then f(PQI) = {ba d}a {h7 b}a {haba d};
o if f(P) ={a,b,h}, then f(P}) ={b,d}, {a,b}, {a,b,d}, {h,b}, {h,b,d}, {a, h,b} or {a, h,b,d}.

Hence, f(P;) can be {b}, {b,d}, {a,b}, {a,b,d}, {h,b}, {h,b,d}, {a,h,b} or {a,h,b,d}.

Notice that f(P{) doesn’t contain b. In fact, if we suppose b € f(P[), then by monotonicity on
P and Py, also f(P1) should contain b. But this is a contradiction, since f(P;) doesn’t contain b.

Moreover, f(P{) # {d}. In fact, if f(P]) = {d}, then by strict monotonicity on P{ and Pj,
f(P3) = {d}, that is not one of the possible cases for f(Pj). Hence, f(P]) can be {a}, {h}, {a,h},
{a,d}, {h,d}, {a,h,d}.

If d € f(Pj), then d € f(P]) for monotononity on profiles Pj and P{. If d ¢ f(Pj), then
d ¢ f(P]). In fact, if we suppose d € f(P]), then monotonicity on P; and Py, implies d € f(Pj),
that is a contradiction.

Moreover, if a € f(P}), then, for monotonicity on profile Pj and P], a € f(P]) and, for the
same reason, if h € f(Py), then for monotonicity on profile Py and P/, h € f(P]).

If f(P)) = {b,d}, {a,b,d}, {h,b,d} or {a,h,b,d}, then for the reasoning above, f(P]) must
contain d and so it can be {a,d}, {h,d}, {a, h,d}, whereas if f(P;) = {b}, {a, b}, {h,b}, or {a, h, b},
then f(P]) cannot contain d and so it can be {a}, {h} or {a,h}.

More precisely,

(
—if f(PQ') = {a b}, then f(P]) can be {a} or {a,h};
— if f(P)) = {h,b}, then f(P|) can be {h} or {a,h};
~ i J(PY) = {a.h,b}, then f(P}) = {a, b}
— if f(P) = {b,d}, then f(P]) can be {a,d}, {h,d} or {a,h,d};
— if f(P) ={a,b,d}, then f(P]) can be {a,d} or {a,h,d};
— if f(Py) = {h,b,d}, then f(P]) can be {h,d} or {a,h,d};
— it £(P}) = {a, hyb,d}, then £(P{) = {a, h, )

Step 3. Consider an alternative e, distinct from a, h, and b, and the arbitrary profile P53 in
Figure 4, obtained from the profile P{ without changing the ranking of a and h versus any other
alternative in all agents’ rankings, bringing b just above a and h (which are at the bottom) for
agents j < 7, and inserting the alternative e just above b for 7 < ¢ and just above a and h for j > 1.
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Fig. 4. Profiles P; and Pj.

Notice that f(P3) must not contain b, in fact if b € f(Ps) then, by monotonicity on P3 and P,
b € f(P1), that is a contradiction. Hence f(Ps) can be {a}, {h}, {d}, {a,h}, {a,d}, {h,d}, {a, h,d}.

By monotonicity on profiles P{ and Ps, if a € f(P]) then a € f(Ps) and if h € f(P]) then
h € f(P3). Moreover if a ¢ f(P]) then a ¢ f(Ps), in fact if we assume a € f(Ps), then monotonicity
on profiles P3 and P| produces a € f(P]), that is a contradiction. Analogously, if h ¢ f(P]) then
h ¢ f(Ps).

By monotonicity on profiles P{ and Ps, if f(P]) = {a} then f(P;) = {a}, if f(P]) = {h}
then f(Ps) = {h} and if f(P]) = {a,h} then f(P3) = {a,h}. In particular, if f(P{) # {a} then
f(Ps) # {a}. In fact if f(P;) = {a}, then by monotonicity on P3 and P], f(P]/) must be {a},
that is a contradiction. Analogously, if f(P{) # {h} then f(P3) # {h} if f(P]) # {a,h} then
f(P3) 7é {a’h}'

By Step 2 we know that f(P]) can be {a}, {h}, {a,h}, {a,d}, {h,d} or {a,h,d}, therefore,
applying the reasoning above, we have that f(Pj]) = f(Ps).

Step 4. Consider profile P, derived from profile P by swapping the ranking of alternatives a
and b for agents j > i, and profile Py obtained from P, by bringing alternative e at the unique
top of every agent’s ranking. By unanimity, f(Py) = {e}. Note that f(P4) does not contain b. In
fact, if b € f(Py), by monotonicity on profiles Py and Pj, b € f(P}), that is a contradiction since
f(Py) = {e}. Also, if d & f(P3), then d ¢ f(P4) and if d € f(Ps), then d € f(Py). Moreover, if
h & f(P3), then h ¢ f(P,) and analogously if a ¢ f(Ps), then a ¢ f(Py). In fact, if a € f(Py), by
monotonicity on Py and Ps, then a € f(Ps), that is a contradiction. Notice that if f(P3) # {a},
then f(P;) # {a}. In fact, if we assume f(P;) = {a}, then by monotonicity on profiles P, and
Ps, f(P3) must be {a}, that is a contradiction. Analogously, if f(Ps;) # {h} then f(Ps) # {h}, if
f(P3) # {aah} then f(P4) # {a’h’}a if f(PS) # {aad} then f(P4) # {a'ad} and if f(P3) # {a'ah”d}
then f(Py) # {a, h,d}.

By Step 3, we know that f(P3) can be {a}, {h}, {a,h}, {a,d}, {h,d} or {a, h,d}. Therefore, by
reasoning above, f(P3) = f(Py).

Step 5. Consider an arbitrary profile P;, with a and h the only top elements of agent i’s
ranking. It can be obtained from profile P; without reducing the ranking of a and h versus any
other alternative in any agent’s ranking. Remember that, by step 4, f(Py) can be {a}, {h}, {a,h},
{a,d}, {h,d} or {a, h,d}. By monotonicity on profiles Py and Ps, if a € f(Py), then a € f(Ps), and
if h € f(Py), then h € f(P5). Therefore, since in all possible cases f(Py) contains a or h (where or
is not exclusive), the set of winner of an arbitrary profile, i.e. f(P5), must contain at least one (a
or h) of the tops of the agent i. Thus agent 7 is a weak dictator.

It is easy to see that this proof can be easily generalized to the case of more than two tops for
agent i. Moreover, the case of just one top for agent ¢ can be proven via a simpler version of this
proof. O



