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1 Introduction

Combinatorial optimization problems (finding solutions that minimise a cost
parameter) are closely related to the corresponding decision problems (decid-
ing whether solutions within a given cost exist). Indeed, many algorithms for
optimization essentially work by solving a sequence of decision problems. We
might hope, therefore, that insights into decision problems gained by studying
phase transition behavior could be useful in understanding similar behavior in
optimization problems [ST98, SW01, Zha01]. For both theoretical and historical
reasons, propositional satisfiability (or SAT) is the most intensively studied such
decision problem. Accordingly, we begin our investigation with the simplest op-
timization versions of SAT: in the overconstrained case, MAXSAT and in the
underconstrained case MAXONES. Given the insights gained from studying the
2+p-SAT decision problem [MZK*99)], this paper looks at optimization versions
of random k+p-SAT.

2 24p-SAT

As is well known, there is a sharp transition in satisfiability for random 2-SAT
at I/n =1 [CR92, Goe92], and for random 3-SAT around !//n =~ 4.3 [MSL92].
Associated with this transition is a rapid increase in problem difficulty. The
random 2-SAT transition is continuous (or “2nd order”) as the backbone (the
fraction of variables taking fixed values) increases smoothly in size. On the
other hand, the random 3-SAT transition is discontinuous (or “lst order”) as
the backbone jumps in size at the phase boundary.

To study this in more detail, Monasson et al. introduced the 2+p-SAT prob-
lem class [MZK*99]. This interpolates smoothly from the polynomial 2-SAT
problem to the NP-complete 3-SAT problem. A random 24p-SAT problem in



n variables has [ clauses, a fraction (1 — p) of which are 2-SAT clauses, and a
fraction p of which are 3-SAT clauses. This gives pure 2-SAT problems for p = 0,
and pure 3-SAT problems for p = 1. For any fixed p > 0, the 24+p-SAT prob-
lem class is NP-complete since the embedded 3-SAT subproblem can be made
sufficiently large to encode other NP-complete problems within it.

By considering the satisfiability of the embedded 2-SAT subproblem and by
assuming that the random 3-SAT transition is at {/n = 4.3, we can bound the
location of the random 2+p-SAT transition to:
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Surprisingly, the upper bound is tight for p < 2/5 [AKKKO01]. That is, the 2-
SAT subproblem alone determines satisfiability up to p = 2/5. Asymptotically,
the 3-SAT clauses do not determine if problems are satisfiable, even though they
determine the worst-case complexity. Several other phenomena occur at p = 2/5
reflecting this change from a 2-SAT like transition to a 3-SAT like transition. For
example, the average cost to solve problems appears to increase from polynomial
to exponential both for complete and local search algorithms [MZK*98, SGS00].
As a second example, the transition shifts from continuous to discontinuous as
the backbone jumps in size [MZK198]. Random 2+p-SAT problems thus look
like polynomial 2-SAT problems up to p = 2/5 and NP-complete 3-SAT problems
for p > 2/5.

3 MAX 24p-SAT

We begin by looking at the MAX 2+4p-SAT optimization problem. We use a
two-phase exact algorithm for MAXSAT which runs the GSAT heuristic to gen-
erate an initial solution, and then uses a Davis-Putnam style branch and bound
algorithm [BF99]. As it is NP-hard to approximate the answer to both MAx
2-SAT and MAX 3-SAT to within any ¢, it will also be NP-hard to approximate
the answer to MAX 2+4p-SAT.

In Figure 1, we see that the number of unsatisfied clauses drops linearly
with p, and the gradient steepens as [/n increases. We can plot contours in the
p against I/n space of problems with an equal number of unsatisfied clauses.
These contours are very similar in shape to the cuve separating satisfiable 2+p-
SAT decsion problems from unsatisfiable ones. Search cost for MAX 2+p-SAT
increases as [ /n increases or as p decreases. The hardest MAX 2+p-SAT problems
at fixed I/n are for p = 0 (i.e. MAX 2-SAT problems). This is perhaps a little
surprising. We might expect MAX 3-SAT problems to be more difficult than
MAX 2-SAT problems, as MAX 3-SAT problems contain 3-clauses, which are
typically more difficult to reason with than 2-clauses (e.g. they give less unit
propagation). However, the number of unsatisfied clauses is largest for p = 0
and this dominates the search cost.
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Figure 1: Number of unsatisfied clauses in a MAX 2+p-SAT problem. 100
problems are generated at each point, p = 0 to 1 in steps of 0.1 and n = 30.

4 MAX 14p-SAT

The 2+4p-SAT problem interpolates smoothly from a polynomial decision prob-
lem to an NP-complete decision problem. To interpolate smoothly from a poly-
nomial optimization problem to one that is NP-hard to approximate, we intro-
duce the 14+p-SAT problem class. A random 1+4p-SAT problem in n variables
has [ clauses, a fraction (1 — p) of which are 1-SAT clauses, and a fraction p of
which are 2-SAT clauses. The MAX 1+p-SAT problem is to find the maximum
number of satisfied clauses in a 1+p-SAT problem. MAX 1-SAT is polynomial to
solve, just by counting pairs of complementary literals. On the other hand, for
any fixed p > 0, MAX 1+4p-SAT is NP-hard to approximate. The number of un-
satisfied clauses for MAX 14p-SAT behaves in a similar way to MAX 2+4p-SAT.
However, Figure 2 highlights a critical difference in computational complexity.
At fixed I/n, the hardest MAX 1+4p-SAT problems are at p ~ 0.7. Surprisingly
Max 1.7-SAT appears harder than MAX 2-SAT. That is, adding a polyno-
mial subproblem makes an NP-hard optimization problem orders of magnitude
harder. How can this be? In fact, it illustrates the difference in “flavor” between
optimization and decision: whilst decreasing p moves us closer to a purely poly-
nomial problem, it also increases the number of unsatisfied clauses. There is a
tradeoff between constrainedness (unsatisfiability) and simplicity. The hardest
problems are therefore at an intermediate value of p.
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Figure 2: Mean branches to solve a MAX 14p-SAT problem (y-axis logscale)
against p (x-axis). 1000 problems are generated at each point, p = 0 to 1 in
steps of 0.1, and n = 100.

5 MAXONES

Another optimization problem derived from the SAT decision problem is M AX-
ONES. The aim is to find a satisfying truth assignment that that maximizes the
number of variables assigned the value 1 (or true). This is a special case of D1s-
TANCESAT: find a satisfying truth assignment that diagrees as little as possible
with a given partial interpretation of the variables [BM99]. DISTANCESAT has
important practical applications: for instance, many CSPs with soft constraints
can be encoded naturally into DISTANCESAT. Even MAXSAT can be represented
as a DISTANCESAT problem: simply replace each clause C; with —p; v C; where
p; is a variable new to the problem, and try to maximise the number of these
new variables set to 1. One reason for studying MAXONES as well as MAXSAT
is that it is displays interesting behavior in the underconstrained SAT region,
whereas MAXSAT is perhaps most interesting in the overconstrained SAT region.

Figure 3 shows that 2+p-MAXONES follows the same pattern as MAX 2+p-
SAT as regards solution size. For a fixed [/v, the greater the proportion of
2-clauses the more constrained the SAT problem, and so the more one is forced
to make variables false in order to satisfy it. For fixed p, similarly, the con-
strainedness increases with the number of clauses.

Figure 4 is more interesting. It shows the computational cost (number of
branches explored) of solving 2+p-MAXONES using a simple Davis-Putnam al-
gorithm with branch and bound and with the MOMS heuristic for variable
selection. It is clear from the contour plot that the hard problems lie in a diag-
onal band, so any slice across the plot, either vertical or horizontal, will show a
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Figure 3: Number of variables assigned 0 in the optimal solution to a 2+p-
MAXONES problem. 1000 problems are generated at each point, p =0 to 1 in
steps of 0.1 and n = 75.
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Figure 4: Contour plot of median branches to solve a 2+p-MAXONES problem
against 2 + p (x-axis) and [/v (y-axis). 1000 problems are generated at each
point, p = 0 to 1 in steps of 0.1, and I/v = 0.2 to 2 in steps of 0.2. Each point
is the median over 1000 problems, n = 75. Darker regions represent regions
requiring fewer median branches to solve.



cost peak somewhere in the range. Thus, for instance, the cost of solving 2+p-
MAXONES with 2 clauses per variable increases monotonically with p, while
for problems with only 0.8 clauses per variable the cost peaks close to p = 0.1.
2+p-MAXONES is therefore like MAX 1+p-SAT, and unlike the decision versions
k+p-SAT, in that the hardest problems do not always occur where p = 1. It
is unlike MAX 1+4p-SAT, however, in that the cost peak in terms of p is not
independent of I /v.

Another feature clearly visible in Figure 4 is a saddle point near p = 0.65
and {/v = 1. It seems that the hardness of 2-MAXONEs-like problems peaks at
/v = 0.8 and that of 3-MAXONESs-like problems peaks at [/v = 1.8, while there
is a range of 24+p-MAXONES problems with p between 0.4 and 0.8 which fall into
neither class and which exhibit a smaller cost peak. It is unclear exactly why
this should be. Nor is it clear why the saddle should be at p ~ 0.65 rather than
being closer to the transition point p =~ 0.4 in the 24+p-SAT decision problem.

As in the case of MAXSAT, k-MAXONES is of polynomial complexity for
k = 1 and NP-hard for k = 2, so again we examined the transition between these
cases through 1+p-MAXONES. This time, however, there were no surprises.
The solution size for 1+p-MAXONES is monotonic in the constrainedness, like
that for 2+p-MAXONES, while the computational cost increases exponentially
with p, at least for {/v up to 0.8 which as already noted is the cost peak for
2-MAXONES.

6 Conclusions

The study of optimization problems related to the 2+p-SAT decision problem
throws fresh light on phase transition behaviour and the differences between de-
cision and optimization. There are relationships between average clause length,
constrainedness and the hardness of the optimization problems, but these have
their own structure which does not seem to mirror the more familiar ones found
in the decision problems.

In MAX 2+4p-SAT, the hardest problems at a fixed I/n are at p = 0. In some
sense, MAX 2-SAT is therefore harder than MAX 3-SAT. In MAX 1+4p-SAT, on
the other hand, the hardest problems at a fixed I/n are at p ~ 0.7. MAx 1.7-
SAT is thus typically harder than MAXx 2-SAT. A polynomial subproblem, by
worsening the bound, makes it harder to solve the MAX 1+4p-SAT problem.

The situation in k+p-MAXONES is a little different. In 14+p-MAXONES the
hardest problems are at p = 1, as might be expected, with no special behavior
at p = 0.7 or anywhere else. 24+p-MAXONES, however, shows a more complex
pattern: a double cost peak with a saddle between the two peaks. The hardest
problems for a fixed p occur at some /v ratio, but at different ratios for different
values of p. Conversely, for a fixed [ /v the hardest problems occur at some value
of p, but at different values for different ratios. As in the case of MAX 14+p-SAT,
there is a region (below and to the right of the “ridge” shown in the contour plot)



where the more we add of the polynomial subproblem the harder the NP-hard
problem becomes on average.

In future research we shall seek ways to transfer other phenomena associated
with phase transitions in decision problems such as SAT to their optimization
correlates such as MAXSAT and MAXONES. For example, we can gain insight
into the performance of the Davis Putnam algorithm on 3-SAT by following
trajectories in the 24+p-SAT phase space [CM01]. At each branch point in its
backtracking search tree, the Davis Putnam algorithm has a mixture of 2-SAT
and 3-SAT clauses. Each branch is thus a trajectory in the 24p-SAT phase
space. Similarly we may be able to understand better optimization algorithms
for problems like MAX 2-SAT or 3-MAXONES by tracing trajectories in the MAX
14+p-SAT or 24+p-MAXONES phase spaces.
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