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Abstract—In conference review management, it is very com-
mon that many papers being assigned are not liked by some
reviewers due to their specialties or personal interests. In this
paper, we consider a reviewer might only envy other reviewers
who get a better set of papers than his. In this context, we
proposes a new bi-objective optimization assignment model to
efficiently and fairly assign papers to many competing review-
ers, in which an index that measures the amount of envy is
introduced. A fast iterative algorithm is proposed to solve the
problem. The experimental results on real datasets shows that the
algorithm achieves efficient and fair results and good computing
performance, especially on large scale problems. This work is
also meaningful for a number of similar allocation or matching
problems.

Index Terms—Conference paper assignment problem, multi-
objective optimization, Envy-index.

I. INTRODUCTION

In recent years, many academic conferences are facing
tremendous pressure of receiving too many submissions, e.g.,
AAAT 2020 received 7737 full-paper submissions, NeurIP-
S 2020 received 9467 submissions, automated and optimal
conference paper assignment in review procedure has been
well-known as a difficult and attractive topic in academic
conference management.

The conference paper assignment problem (CPAP) has got-
ten the attraction of researchers from academia and industry.
Many years ago, in order to yield high-quality reviews and
higher satisfaction of reviewers, [21] studied the maximum
match problem between the referees’ expertise and the paper
topics. Considering the difficulty to optimally solve the large
size problem, they proposed a combined greedy/evolutionary
algorithm and achieved a high satisfaction of referees with
the papers they have been assigned. [12] proposed a new
criterion on how to assign research proposals to reviewers,
ordinal ranking, but not the common criterion welfare, is
evaluated in their assignment. [26] described a variant of a
bipartite graph to study a conference assignment problem to
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maximize the overall affinity. [14] studied the problem of
assigning papers to referees, they considered a number of cri-
teria and aimed at achieving fairness among referees/papers in
the optimization. The approximation algorithms for different
criteria are proposed in the work. Building on this extensive
academic research, some paper assignment systems have been
incorporated into systems in recent years, e.g., the Toronto
Paper Matching System [9], an automated paper reviewer
assignment system, has been used for some famous academic
conferences,

In latest years, researchers are concerning on some new
aspects of CPAP. [19] proposed a topic coverage paper re-
viewer assignment. They studied the maximal topic coverage
for goodness and the conflict-of-interest for the fairness in
the assignment, and proposed an approximate algorithm to
solve the problem efficiently. Drawing inspiration from multi-
criteria decision making and social choice theory, [18] used
order weighted averages (OWAs), a parameterized class of
mean aggregators, to propose a novel mechanism to solve the
CPAP problem. [22] also took an OWA aggregation function
to summarize information from different sources and ranked
the candidate reviewers for each paper, and thus developed
a decision support tool for conference review assignment.
[25] focused on a fairness objective—to maximize the re-
view quality of the most disadvantaged paper, and designed
an assignment algorithm based on an incremental maxflow
procedure. [16] reduced the CPAP to a network flow, and use
a polynomial-time algorithm to compute the maximum flow
through the network. This research points out that minimum
cost flow is a feasible approach for many criteria of CPAP.
[17] proposed a fair paper matching model with local fairness
constraints. They presented two approximation algorithms for
solving this model, a cyclic relaxation method—FairIR, and a
minimum cost flow-based heuristic method—FairFlow. About
minimum cost flow problem, many other effective algorithms
have also been applied to solve it, e.g., the interior point



method [11]. This kind of algorithm is also promising for the
CPAP.

In the paper assignment, it is very common that many papers
being assigned are not liked by some reviewers due to their
personal interests or specialties. In fact, this kind of problem
has been studied as a fair allocation problem of indivisible
goods, which is a hot topic in the field of artificial intelligence
[3], [10], [15]. Many researchers have studied some well-
known criteria of fairness in fair allocation, in which one of
the most important ones is envy-freeness (EF). Envy-freeness,
an appealing fairness concept in allocation, ensures no agent
can obtain more utility by exchanging their items for those
of another. There are many works of literature related to
envy-freeness in the allocation of indivisible goods [5]-[7].
However, envy-freeness is a strong notion of fairness, and
it may not be achievable on some allocation instances [2].
Therefore, some other weaker notions of fairness, such as
proportionality [24], max-min and min-max fair share [5], [8]
and epistemic envy-freeness [2], are proposed by researchers
to assess the fairness. Pareto efficiency, another important
notion in fair allocation, means that no agent can be made
better off without another agent being made worse off. Envy-
freeness combined with efficiency leads to a natural notion of
fairness [27], and it is very important to ensure all agents have
incentives to participate in the allocation, so as to improve the
total welfare. However, in many cases, efficiency and envy-
freeness cannot be simultaneously achieved [23]. Therefore,
finding a balance between them becomes a very important
issue.

In this paper, we consider a conference paper assignment
problem in which we minimise the amount of envy reviewers
have for others. The main contributions of this paper can be
summarized as follows: 1) A bi-objective model-—minimal-
envy conference paper assignment is proposed to guarantee
both the efficiency and fairness in conference paper assign-
ment. 2) A fast two-stage iterative algorithm is proposed to
achieve high computational efficiency, especially on large-
scale problem instances.

II. PROBLEM FORMULATION

In this work, we consider the conference paper review
assignment problem with minimal envy. Before the problem
formulation, several assumptions are defined as follows to
clarify the problem.

Variable  Description

R, P Sets of reviewers and papers.

R, P Paper demand constraint and reviewer workload con-
straint.

A; The sub-set of paper assigned to reviewer 4.

w;(Az) the utility of reviewer ¢ with the papers allocated to him.

Uik Utility of assigning paper k to reviewer <.

Tij Binary decision variable, x;; = 1 denotes paper j is
assigned to reviewer ¢, and viceversa.

TABLE T

NOTATIONS IN MODEL

e A constraint of reviewer quantity exists, which means
each paper should be assigned to a given number of
reviewers.

¢ A constraint of reviewers’ workload exists, which means
that each reviewer can be assigned with a given number
of papers.

o The reviewers who bid a paper positively will be given
priority to review the paper, but the other reviewers may
also be assigned with the paper.

The notations used in the model are given in Table I.

A. Efficiency and Fairness Concepts

Consider allocating m papers in set P to n reviewers in set
R. An allocation can be denoted by A = {Ay, As,--- , Ay}
with P = U;crA; , where A; is the sub-set of papers allocated
to reviewer ¢. For each reviewer 1, it has a utility function u,,
u;(A;) means the utility of reviewer 4 for the papers allocated
to them. It might seem odd to consider being allocated a paper
to review as having (positive) utility. However, as agents get a
fixed number of papers to review, their utility is in getting ones
that they like. The total utilitarian welfare for an assignment
can be defined as

UW = " u;(4)). M
=1

In an allocation problem, it is natural that the UW should be
maximized to guarantee the efficiency.

Let us consider another concept of allocation—fairness.
In this paper, we consider one reviewer might envy another
reviewer with a better set of papers than his. For reviewer 1,
a better set of papers for him means higher u;(A;). Conse-
quently, if two reviewers have utility for a paper but only one
of them is allocated this paper to review, then one reviewer
might envy another.

For fairness concept, we recall some well-known definitions
in resource allocation.

Definition 1: Envy-freeness (EF): An allocation satisfies
envy-freeness if u;(A;) > u;(A;) for any pair of agents ¢ and
7, 1,5 € N.

However, in some practical problems, an envy-free assign-
ment may not exist, e.g., consider a problem in which reviewer
1 has utility 0 and 1 for paper a and b, whilst reviewer 2 also
has utility 0 and 1 respectively. We assume that a paper can
only be assigned to exactly one reviewer, there are only two
valid assignments allocating paper a to reviewer 1 and paper b
to reviewer 2 or paper a to reviewer 2 and paper b to reviewer
1. Both of these assignments will cause envy. Therefore, there
is no envy-free assignment in this problem.

In this context, we need a more relaxed measure of the
amount of envy in an allocation.

The concept of the Gini index (GI) is one powerful way
to deal with this kind of problem. The GI is one of the most
frequently used measures to assess the inequality. Motivated
by the definition of GI, which is used for assessing inequality
in the distribution of wealth, [1] defined a related index that
measures the amount of envy.



Definition 2: Envy Index(EI): An index to evaluate the
envy of reviewer 7 to reviewer j is defined as maxz{0, u;(A,;)—
u;(A;)}. Drawing on the definition of GI, the total envies from
all pairs of agents can be defined as

_ D 2y max{0, ui (A7) — ui(A;)}
ZZL:l 2?21 Us (A])

Compared with envy-freeness, EI is a more powerful
measure—if an allocation is envy-free, the envy index will
be zero, otherwise, the envy index varies in (0,1] to indicate
how serious the envy exists, this should be very valuable in
some practical scenarios if there is no envy-free assignment.
This index has many other features as well, such as any
allocation which minimizes the envy index is Pareto efficient.
Furthermore, in some large-scale practical problems, it is
usually very difficult to find an envy-free allocation even if
it exists. The definition of EI could be helpful to design an
optimization algorithm—it provides an effective measure to
evaluate two allocations which both are not envy-free, which
evaluation is a very common operation in many optimization
algorithms.

EI 2

B. Problem Formulation

In this work, we try to minimize the Envy index and
maximize the utilitarian welfare of reviewers in the conference
paper assignment procedure, which is a bi-objective optimiza-
tion.

The problem can be formulated as

max UW = i: Zm: Tij * Uij (3)

i=1 j=1

n n
> >, max{0, > (uik - Tjr — Wik - Tik)}
i=1 =1 1

NEIE

_ _ k=1 “
> uik * Tk
i=1j=1k=1
S.t.
> mij = Re,j € 1,m], )
1=1
m
> mij < Pei€[1,ml, 6)
j=1

where x;; is the decision variable, and w;; is the utility
variable.

Eq. (5) is the reviewer quantity constraint, which restricts
each paper should be assigned to R, reviewers.

Eq. (6) is the reviewers’ workload constraint, which limits
the maximum quantity of papers a reviewer can accept.
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Fig. 1. The general scheme of the two-stage iterative algorithm

III. A FAST ITERATIVE ALGORITHM

Considering the large-scale combinational optimization of
a practical conference paper assignment problem, an efficient
algorithm is very necessary in practice. [1] has pointed out
that finding an allocation minimizing the envy index is NP-
hard. It immediately follows that solving the bi-objective
model is also NP-hard. In this paper, we propose a two-stage
iterative algorithm to solve the CPAP. The general flow of the
algorithm is shown in Figure 1. As is shown in the figure, each
iteration contains two stages to maximize UW and minimize
EI respectively.

The first stage corresponds to a min-cost flow prob-
lem(MCFP). In this stage, we test whether there is an alloca-
tion that satisfies all constraints, then the utilitarian welfare is
maximized in a precise way: Reduce the assignment model to a
network flow problem, and compute the maximal UW by the
cheapest augmenting path algorithm. The model constraints
are also considered by setting the capacity of arcs. After this
stage, we can obtain an allocation with maximal UW if a valid
allocation exists.

Fairness is considered in the second stage. Due to the
complex nonlinear fairness objective, it is hard to compute
the minimal EI using network flow methods. However, we
can find that all binary decision variables x;; are fixed in stage
1, then the fairness metric EI of different allocations can be
easily evaluated. To minimize envy among reviewers, we put
forward one more metric to assess partial envy, and use the
metric to generate a weight coefficient that is used to update
the weights of arcs for the next iteration.

The iteration is repeated until meeting one of the stopping
criteria—an envy-free allocation is found or the maximum
iteration number is reached. In this algorithm, each iteration
generates one allocation, and after the whole iteration, a set
of allocations will be obtained.



Fig. 2. An instance of maximum network flow for CPAP

A. Stage 1: MCFP for Maximal Utilitarian Welfare Assign-
ment

According to [16], MCFP can be adapted for some kinds of
CPAP, including maximizing UW. In this work, we reduce the
problem to a maximum network flow problem to test whether
there is a valid allocation. The instance of maximum network
flow for CPAP is shown in Figure 2, it consists of several
components as follows.

o n nodes {Ry, Ra,--
reviewer.

e m nodes {P;, Py, -
paper.

e Two extra nodes, the source S and the sink 7.

e n X m arcs with capacity 1 from R; to P;, i € [1,n],j €
[1,m].

« n arcs with capacity R, from S to R;, i € [1,n].

« m arcs with capacity P, from P; to T, j € [1,m)].

-, R, }, each node corresponds to a

, P}, each node corresponds to a

Obviously, any allocation will follow the model constraints
if the corresponding flow satisfies that all arcs from R; to T’
are full-flowed. It is also easy to know each maximum flow
makes all arcs from R; to T full-flowed if a valid allocation
exists. Nevertheless, it should be noted that such an instance
does not consider the preference of each reviewer for papers.

To achieve maximal UW, we assign cost —u,;; to each
edge from R; to P; and cost 0 to other edges. Then the
opposite of the total cost will be equal to UW. Therefore,
the minimal total cost will also equal to maximal UW. The
cheapest augmenting path algorithm (CAPA) [28] is used to
solve MCFP. The procedure of this algorithm are given in
Algorithm 1. Considering that the network contains negative
weight arcs, we use Bellman-Ford algorithm [4], [13] to find
the cheapest path from source to sink.

B. Stage 2: An Heuristic to Minimize Envy Index

This traditional MCFP can only handle single-objective
optimization problem. But our model considers both max UW
and min EI objective. In order to promote a fairer treatment

Algorithm 1 The cheapest augmenting path algorithm (CAPA)

Input: source,sink
Parameter: Flow F; Edge E,A; Node U; Path P;
Qutput: flow,cost
1: F < 0. /* Initialize the flow with zero flow */
2: cost + O
3: Add a reverse edge for each edge
4: while Have a nonzero capacity path from Source to Sink
do

5:  Bellman-Ford(Source,Sink)
6: U ¢« sink
7. while have a non-zero capacity path from source to U
do

8: P < cheapest path from source to U

: minf <— minimum of (cap - flow) for all edges in P
10 for all Edge £ € P do
11: E.flow <+ E.flow + minf
12: E.flow < E.flow - minf

/* E is the reverse edge of E */

13: cost <— E.cost x minf
14: end for
15: A < the first edge which edge.flow=edge.cap
16: U < A.from
17: flow < flow+minf

18:  end while
19: end while
20: return F

for all reviewers during the whole allocation process, we put
forward some metrics in each iteration.

Competitive envy is a metric to describe the envy between a
pair of reviewers caused by competition for a paper. Compared
with EI, it can better measure the envy at a micro level.

Definition 3: Competitive Envy: (C E) Given iteration ¢ and
paper k, the competitive envy of reviewer ¢ to reviewer j can
be defined as
CE' . — 0 if u;(A;) > ui(Aj) or rj =1 or x5 =0,

ik w;,  otherwise.
(N

CEfjk > 0 if and only if reviewer ¢ has positive utility
on paper k, and paper k is assigned to reviewer j but not
i. However, there is one exception—if u;(A4;) > wu;(A;),
reviewer ¢’s competitive envy to j about any paper will never
be considered.

Next, we propose another metric—partial envy to evaluate
the competitive envies of a reviewer to all the other reviewers.

Definition 4: Partial Envy: (PE) Given iteration ¢ and
paper k, the partial envy of reviewer ¢ can be defined as

PE}, =Y CEl, (8)
JER

It is easy to deduce that PE can refer to envy-freeness in
some specific conditions.



Theorem 1: Envy-freeness is a necessary and sufficient
condition of

PE[;=0,Yi€ R,j € P. 9)

Proof. We prove the sufficient condition at first. If an
allocation A is envy-free, from Eq. (2), it can be known that
u;(A4;5) < wu;i(4;),V4,j € R. According to Eq. (7)-(8), Eq. (9)
is naturally satisfied.

Next, we prove the necessary condition by contradiction.
If an allocation A satisfies Eq. (9), it is easy to derive that
CE};, = 0, this is to say, Vi,j € R,k € Pif ui(4;) >
u;(A;), i =1 or xj, = 0 or u;; = 0. Now we assume the
allocation A is not envy-free, that is, u;(A4;) > u;(A;),3i,j €
R. This condition is equivalent to ZZL=1 Wik (i — Tig) >
0,3i,57 € R,Vk € P. However, for these 1, j, k, at least one
of x; = .1, Zjr = 0, us = 0 must be satisfied. At the same
time, w;x (x5 — ;) could not be positive when any one of
the above three conditions is true. Then we can conclude that
this assumption A is not envy free conflicts with Eq. (9), so
envy-freeness is a necessary condition of Eq. (9). [

Based on theorem 1, we propose an effective heuristic and
attempt to make the PE of all reviewers to be zero. The
heuristic is to set a weight coefficients on UW. We define UW?
to represent the weighted utilitarian welfare in ¢th iteration.
The maximum of UW! can be computed using algorithm 1 in
stage 1, then we can control the allocation to assign a paper
to a specific reviewer with a higher probability by adjusting
the coefficients.

Definition 5: Weighted utilitarian welfare: (UW'?t) The
UW? can be defined as

t t ot
UW' = QG5 - T - Ugj,

: (10)

where aﬁj is a weight coefficient for assigning paper j to
reviewer ¢ in the tth iteration, it lies in (0,1]. The details of
the weight coefficients generation are given in algorithm 2.
afj will iteratively reduce in the algorithm, and its reduction
in next iteration depends on the value of PEfj, the greater
PEfj, the smaller reduction of ozﬁj. In the algorithm, all weight
coefficients should be initialized to 1, the parameter ¢, ranges
from O to 1, is defined to control the change range of the
coefficients.

Since there is no guarantee that envy-free assignment exists,

several termination criteria are set for the algorithm as follows.

o EI =0, which means an envy-free assignment is obtained.
e The number of iterations reaches a maximum value I,,,4,.

Dataset  Papers Reviewers Identity

1 54 31 MD-00002-00000001
2 176 146 MD-00002-00000003
3 613 201 MD-00004-00000001

TABLE IT
DETAILS OF THREE DATASETS

Algorithm 2 The weight coefficients generation algorithm

Input: Tij, Uig, aﬁj,i €ER,jeP;

Output: o}

1: foralli € R,j € P do

2 PEj <0

3: end for

4: for all 7,5 € R do

5: if uz(AJ) > ’U,l(Al) then

6 for all kK € P do

7 if 2;; =0 and x;; =1 and u;; > 0 then

8 PEY. « PE!, + u;, + max{u;, — ujx, 0}

9: end if

10: end for

11:  end if

12: end for

13: maxPE" < maxmax PEj,
iER jEP

14: for alli € R,j € P do

15: aﬁ;rl ol [0+ (1-90)-

16: end for

PE};
ma:cPEt]

IV. EXPERIMENTS

A. Experimental Datasets

Preflib, an open library for preferences [20], provides sev-
eral collections of real conference bidding data, in which
we choose three datasets from an Al conference as our
experiment data. The bidding language for the conference
is yes/maybe/conflict. In order to make the dataset more
useful for PreLib users, the data has been converted to in-
complete partial orders yes > maybe > no response, and
the papers of which a reviewer had a conflict have been
removed from their preference list, so each paper can be
assigned to any reviewer. In this work, we use the utilities
2,1, 0 for preferences yes, maybe, no response. Three datasets
with different scale are selected to perform the experiments.
The details of the datasets refer to Table II.

B. Experimental Algorithms and Settings

To evaluate the algorithm performance, NSGA-II, one of
the most popular and classical evolutionary algorithm in
multi-objective optimization, is taken to compare with ours.
CPAP has been modeled as some of these problems, e.g., the
Toronto Paper Matching System. As in the Toronto system,
the basic problem with single objective to maximise UW
is modeled as the same as ours except the objective EI,
and it is solved by linear programming (LP) [9]. CPLEX is
a powerful optimization tool that integrates various solvers,
such as linear programming (LP), mixed integer programming
(MIP) and constraint programming (CP). Thus, to provide
more comparison in detail, we compute the upper bound of
UW by the LP solver of CPLEX and the CAPA in this work,
and solve the lower bound of EI by the CP solver of CPLEX.
All the experiments are conducted on a PC with Intel Core
15-6500 CPU @ 3.20GHz and 8GB RAM.



. . Ours NSGA-II
Dataset Topsis weight
uw EI GI Uuw EI GI
[1,0] 173 0.0156 0.2431 170 0.0866 0.1560
1 [0.5,0.5] 171 0.0026 0.2079 166 0.0076 0.1351
[0,1] 169 0.0000 0.1935 162 0.0000 0.1323
[1,0] 625 0.0106 0.2947 601 0.1909 0.3717
2 [0.5,0.5] 618 0.0032 0.2784 582 0.1292 0.3430
[0,1] 606 0.0000 0.2480 543 0.1028 0.3307
[1,0] 1817 0.0013 0.2699 1701 0.0505 0.1233
3 [0.5,0.5] 1809 0.0003 0.2454 1615 0.0245 0.1018
[0,1] 1794 0.0000 0.2444 1450 0.0134 0.1012
TABLE TIT
THE RESULTS OF BI-OBJECTIVE MODEL WITH DIFFERENT TOPSIS WEIGHTS
Dataset Ours, w = [0.5,0.5] CAPA(maxUW) LP solver(maxUW) CP solver(minEI)
uw EI GI uw EI GI uw EI GI uw EI GI
1 171 0.0026 0.2079 173 0.0744 0.3599 173 0.0804 0.3002 147 0.0000 0.1093
618 0.0032 0.2784 625 0.0852 0.4672 608 0.1140 0.3292 - - -
3 1809 0.0003 0.2454 1817 0.0079 0.2699 - - - - - -
TABLE TV

THE OPTIMAL RESULTS OF SINGLE-OBJECTIVE MODEL

The iteration times to 2000 and population size to 30 in
NSGA-IIL. For our algorithm, § = 0.9, and I,,,, = 1000.
Prioe =5, Ry = 2 for dataset 1-2, and Ppa0 = 7, Ryae =
2 for dataset 3 due to deficiency of reviewers.

C. Experimental Results

Since the bi-objective optimization algorithm obtains a
solution set, we choose the TOPSIS method to select a optimal
solution from the solution set. We use three different TOPSIS
weights, w = [1,0], [0.5,0.5], and [0,1], to choose the optimal
solution. w = [1,0] represents efficiency first, [0.5,0.5] denotes
efficiency and fairness are considered equally, and [0.5,0.5]
means fairness first. The results of single-objective problems
and bi-objective problems are shown in Table IV and Table III,
respectively. It should be noted that if solving minEI model by
the CP solver of CPLEX, UW is approximately equal to zero.
Therefore, we set a new constraint UW > L, and enumerate
L from big to small until CPLEX can find a valid assignment.
The cell without data means that CPLEX cannot find any valid
assignment within limited time.

From Table III and Table IV, when the w = [1,0], we can see
that our algorithm achieves maximum utilitarian welfare in all
three datasets, this is easy to understand from Section III—the
first iteration of our algorithm is actually a CAPA to maximize
utilitarian welfare. We can also find that for all three TOPSIS
weights, the metrics of our algorithm are better than NSGA-II,
either on UW or EI. Another phenomenon in Table III is that
our algorithm achieves larger GI than NSGA-II on dataset
1 and dataset 3, but viceversa on dataset 2. We think this
is reasonable because this work focuses on the fairness that
represented by envy index, but not the absolute equity denoted
by GI. Table IV shows that our algorithm achieves both
high efficiency and fairness compared with single objective
optimization Take w = [0.5,0.5] as an example, for the fairness

aspect, our algorithm outperforms the single-objective CAPA
on both EI and GI metrics. Not only that, but the UW obtained
by our algorithm is substantially higher than that of simple
using CP solver to minimize EI.

For large-scale practical problems, the computing perfor-
mance is also a very important metric to assess an algorithm.
The time consumption of different methods are shown in
Table V. Our algorithm is an iterative algorithm, it is actually
a MCFP solving during each iteration, so we can see that
the computing time of our algorithm is obviously greater
than CAPA. From the table we can see that our algorithm is
significantly faster than NSGA-II, which means our algorithm
is more practical to solve large scale engineering problems.

From these results, we can basically conclude that our
proposed algorithm is an efficient-fair method for CPAP,
especially for large-scale practical problems.

D. Statistical Analyses of Performance Metrics

The results in Table III only show the overall objectives of
the assignment, but don’t provide the assignment details, i.e.,
the distribution of individual welfare, and the individual envy
among reviewers. In order to show the details of assignment,
we use box plot to portray the reviewers’ individual welfare in
Figure 3. From Figure 3, we can see that the upper quartile,
median and lower quartile of ours are higher than NSGA-
II, which means more individual welfare is obtained for the

Dataset Ours NSGA-II CAPA

1 0.68 121.40 0.01

2 35.37 2253.65 0.22

3 446.73 14937.80 5.49
TABLE V

TIME CONSUMPTION OF DIFFERENT METHODS(SECS)
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Fig. 3. Box plot of individual welfare

626 01
o
(]
8 x
= [0}
= E
- o155] 10.05 2
= H 2
5 . I

605 L 0

; 50 100

(a) Utilitarian welfare and Envy Index

0.47 0.1
3 3
2 2
= 0.355 10.05 -
£ >
o 0

1 50 100

(b) Gini Index and Envy Index

Fig. 4. The variation of metrics during the whole iteration on dataset 2

reviewers, especially on dataset 3. Furthermore, we can see
that the box of ours with w = [0,1] is shorter than w = [1,0]
on all the datasets, which means the individual welfare of
reviewers is closer to each other, that is, the better fairness of
the paper assignment is achieved.

Next, we use a convergence curve to observe the iteration
of the algorithm. In Figure 4(a), there is a basic trend of
decline on both UW and EI, which represent the efficiency
decreases and the fairness improves. In Figure 4(b), the curves
of the metrics EI and GI also show a trend of decline. In
general, the curves of the two metrics are basically similar,
but there are still some differences between them. Consider
the different definition and meaning of the metrics, given any
two allocations, the evaluation results using EI and GI could
be inconsistent. From the above results, we can conclude
that our algorithm performs better on both efficiency and
fairness than NSGA-II. In addition, since our algorithm has
less time consumption than NSGA-II, we also say that it is
more conducive to solve large-scale practical problems.

Finally, it is worth noting that from Table III we can see
envy-free assignment exists on all three datasets, this may be
due to the constraints of the model are relatively loose. From
this observation, it appears that we can directly replace EI with
envy-freeness. However, for some problem instances, there
may be no envy-free assignment. Even an envy-free allocations
exists, due to the huge searching space, it is difficult to directly
find an envy-free allocation in the algorithm. Thus, envy index
would be very useful and helpful for the algorithm design,

i.e., provides a way to evaluate the fairness of a not envy-free
assignment.

V. CONCLUSIONS

This paper proposed a bi-objective conference paper as-
signment model—with the both consideration of fairness and
efficiency. On fair aspect, we use a new metric—envy index
to evaluate the severity of envy in assignment. Consider the
complexity of envy index and the difficulties of bi-objective
optimization, we proposed a fast iterative algorithm to solve
the problem. The experimental results proved that our algorith-
m is efficient-fair, especially for large-scale practical problems.
Consider many academic conferences are facing huge paper
submissions and deficient reviewers, how to efficiently assign
the papers and improve the satisfaction of both reviewers and
authors have been a focus area in conference management.
Our proposed model and algorithm is helpful to deal with this
problem. The method proposed in this paper is also meaningful
for a number of similar allocation or matching problems, e.g.,
research project review assignment and order dispatching.
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