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2 Formal backgroundA constraint satisfaction problem (CSP) consists of a set of variables, each witha domain of values, and a set of constraints (relations) on the allowed valuesfor speci�ed subsets of the variables. A binary CSP has only binary constraints.A binary CSP is arc-consistent (AC) i� it has non-empty domains and everybinary constraint is arc-consistent. A binary constraint is arc-consistent i� anyassignment to one of the variables in the constraint can be extended to a con-sistent assignment for the other variable. A (non-binary) CSP is generalizedarc-consistent (GAC) i� for any variable in a constraint and value that it isassigned, there exist compatible values for all the other variables in the con-straint [MM88]. Algorithms for solving CSPs typically maintain some level ofconsistency at every node in their search tree. For example, the MAC algo-rithm for binary CSPs maintains arc-consistency at each node in the searchtree [Gas79]. The FC algorithm (forward checking) for binary CSPs maintainsarc-consistency only on those constraints involving the most recently instanti-ated variable and those that are uninstantiated. Finally, for non-binary CSPs,the nFC0 algorithm maintains generalized arc-consistency on those constraintsinvolving one uninstantiated variable, whilst the nFC1 algorithm maintains gen-eralized arc-consistency on those constraints and constraint projections involvingone uninstantiated variable [BMFL99].Given a propositional formula, the satis�ability (SAT) problem is to deter-mine if there is an assignment of truth values to the variables that makes thewhole formula true [GJ79]. One of the best procedures to solve the SAT prob-lem is the so-called Davis-Putnam (DP) procedure (though it is actually due toDavis, Logemann and Loveland [DLL62]). The DP procedure consists of threemain rules: the empty rule (which fails and backtracks when an empty clause isgenerated), the unit propagation rule (which deterministically assigns any unitliteral), and the branching or split rule (which non-deterministically assigns atruth value to a variable). As is often the case in implementations of DP, we willignore the pure literal and tautology rules as neither are needed for completenessor soundness, nor usually for e�ciency.3 Encoding SAT into CSPsThere are several di�erent ways that a SAT problem can be encoded as a binaryor non-binary CSP.Dual encoding: We associate a dual variable, Di with each clause ci. Thedomain of Di consists of those tuples of truth values which satisfy the clauseci. For example, associated with the clause x1 _ x3 is a dual variable D1 withdomain fhT ; F i; hF ; T i; hT ; T ig. These are the assignments for x1 and x3 whichsatisfy the clause x1 _ x3. Binary constraints are posted between dual variableswhich are associated with clauses that share propositional variables in common.For example, between the dual variableD1 associated with the clause x1_x3 andthe dual variable D2 associated with the clause x2 _ :x3 is a binary constraint



that the second element of the tuple assigned to D1 must be the complement ofthe second element of the tuple assigned to D2.Hidden variable encoding: We again associate a dual variable, Di with eachclause ci, the domain of which consists of those tuples of truth values whichsatisfy the clause. However, we also have (propositional) variables xi with do-mains fT ; Fg. A binary constraint is posted between a propositional variableand a dual variable if its associated clause mentions the propositional variable.For example, between the dual variable D2 associated with the clause x2 _ :x3and the variable x3 is a binary constraint. This constrains the second elementof the tuple assigned to D2 to be the complement of the value assigned to x3.There are no direct constraints between dual variables.Literal encoding:We associate a variable, Di with each clause ci. The domainof Di consists of those literals which satisfy the clause ci. For example, associatedwith the clause x1_x3 is a dual variableD1 with domain fx1; x3g, and associatedwith the clause x2 _ :x3 is a dual variable D2 with domain fx2;:x3g. Binaryconstraints are posted between Di and Dj i� the associated clause ci contains aliteral whose complement is contained in the associated clause cj . For example,there is a constraint between D1 and D2 as the clause c1 contains the literalx3 whilst the clause c2 contains the complement :x3. This constraint rules outincompatible (partial) assignments. For instance, between D1 and D2 is theconstraint that allows D1 = x1 and D2 = x2, or D1 = x1 and D2 = :x3, orD1 = x3 and D2 = x2. However, the assignment D1 = x3 and D2 = :x3 isruled out as a nogood. Note that the literal encoding uses variables with smallerdomains than the dual or hidden variable encodings. The dual variables havedomains of size O(2k) where k is the clause length, whilst the variables in theliteral encoding have domains of size just O(k). This could have a signi�cantimpact on runtimes.Non-binary encoding: The CSP has variables xi with domains fT; Fg. A non-binary constraint is posted between those variables that occurring together ina clause. This constraint has as nogoods those partial assignments that fail tosatisfy the clause. For example, associated with the clause x1 _ x2 _ :x3 is anon-binary constraint on x1, x2 and x3 that has a single nogood hF ; F ; T i.4 Theoretical comparisonWe now compare the performance of the Davis-Putnam (DP) procedure againstsome popular CSP algorithms like FC and MAC on these di�erent encodings.Our analysis divides into two parts. We �rst compare the e�ect of unit propa-gation on the SAT problem and enforcing arc-consistency on the encoding. Wethen use this result to compare DP (which performs unit propagation at eachnode in its search tree) with MAC (which enforces arc-consistency at each node)and FC (which enforces a limited form of arc-consistency). When comparing twoalgorithms that are applied to (possibly) di�erent representations of a problem,we say that algorithm A dominates algorithm B i� algorithm A visits no more



branches than algorithm B assuming \equivalent" branching heuristics (we willdiscuss what we mean by \equivalent" in the proofs of such results as the exactdetails depend on the two representations). We say that algorithm A strictlydominates algorithm B i� it dominates and there exists one problem on whichalgorithm A visits strictly fewer branches.4.1 Dual encodingWe �rst prove that enforcing arc-consistency on the dual encoding does morework than unit propagation on the original SAT problem. That is, if unit prop-agation identi�es unsatis�ability then enforcing arc-consistency on the dual en-coding also does (but there are problems which enforcing arc-consistency willshow are insoluble that unit propagation will not). In addition, if unit propaga-tion commits to particular truth assignments then enforcing arc-consistency onthe dual encoding eliminates all contradictory values. To be more precise, if unitpropagation assigns true (false) to some variable xi, enforcing arc-consistencyon the dual encoding removes those values from the domains of dual variableswhich correspond to assigning false (true) to xi. When we come to assign thesedual variables, the value chosen will correspond to assigning true (false) to xi.Theorem 1.1. If unit propagation commits to particular truth assignments, then enforcingarc-consistency on the dual encoding eliminates all contradictory values.2. If unit propagation generates the empty clause then enforcing arc-consistencyon the dual encoding causes a domain wipeout (but the reverse does notnecessarily hold).Proof. 1. Suppose unit propagation makes a sequence of assignments: l1, l2,. . . lj . The proof uses induction on j. Consider the �nal assignment lj . Unitpropagation makes this assignment because lj occurs in a clause l01 _ : : : l0k inwhich all the other literals l0i (6= lj) have been assigned to false. Consider thedual variable associated with this clause. By the induction hypothesis, enforcingarc-consistency eliminates all values which assign any of the l0i (6= lj) to true.Hence, the only value left in the domain of this dual variable assigns l0i (6= lj)to false, and lj to true. Enforcing arc-consistency on the dual encoding thuseliminates all contradictory values.2. Unit propagation generates an empty clause if there is a clause, l1_: : : lk inwhich unit propagation assigns each literal li to false. Consider the dual variableassociated with this clause. By the �rst result, enforcing arc-consistency on thedual encoding eliminates all contradictory values. Hence this dual variable hasa domain wipeout. To show that the reverse may not hold, consider all possible2-SAT clauses in 2 variables: x1_x2, :x1_x2, x1_:x2, :x1_:x2. This problemdoes not contain any unit clauses so unit propagation does nothing. However,enforcing arc-consistency on the dual encoding causes a domain wipeout.



There are di�culties in extending this result to algorithms that maintain(some form of) arc-consistency at each node of their search tree (like FC andMAC) and those that perform unit propagation at each node (like DP). Onecomplication is that branching in DP can instantiate variables in any order,but branching on the dual encoding must follow the order of variables in theclauses. In addition, branching on the dual encoding e�ectively instantiates allthe variables in a clause at once. In DP, by comparison, we can instantiate astrict subset of the variables that occur in a clause. Consider, for example, thetwo clauses x1 _ : : : xk and y1 _ : : : yk. DP can instantiate the xi and yj in anyorder. By comparison, branching on the dual encoding either instantiates all thexi before the yj or vice versa. Similar observations hold for the literal encodings.In the following results, therefore, we start from a branching heuristic for thedual encoding and construct an \equivalent" branching heuristic for DP. It isnot always possible to perform the reverse (i.e. start from a DP heuristic andconstruct an equivalent heuristic for the dual encoding).Theorem 2. Given equivalent branching heuristics, DP strictly dominates FCapplied to the dual encoding.Proof. We show how to take the search tree explored by FC and map it ontoa proof tree for DP with no more branches. The proof proceeds by inductionon the number of branching points in the tree. Consider the root. Assume FCbranches on the variableDi associated with the SAT clause l1_l2_: : :_lk. Thereare 2k � 1 children. We can build a corresponding proof subtree for DP with atmost 2k�1 branches. In this subtree, we branch left at the root assigning l1, andright assigning :l1. On both children, we branch left again assigning l2 and rightassigning :l2 unless l2 is assigned by unit propagation (in which case, we moveon to l3). And so on through the li until either we reach lk or unit propagationconstructs an empty clause. Note that we do not need to split on lk as unitpropagation on the clause l1_ l2_ : : :_ lk forces this instantiation automatically.In the induction step, we perform the same transformation except some of theinstantiations in the DP proof tree may have been performed higher up and socan be ignored. FC on the dual encoding removes some values from the domainsof future variables, but unit propagation in DP also e�ectively makes the sameassignments. The result is a DP proof tree which has no more branches thanthe tree explored by FC. To show strictness, consider a 2-SAT problem with allpossible clauses in two variables: e.g. x1 _ x2, :x1 _ x2, x1 _ :x2, :x1 _ :x2.DP explores 2 branches showing that this problem is unsatis�able, irrespectiveof the branching heuristic. FC, on the other hand, explores 3 branches, againirrespective of the branching heuristic.Theorem 2 shows that DP, in a slightly restricted sense, dominates FC appliedto the dual encoding. What happens if we maintain a higher level of consistencyin the dual encoding than that maintained by FC? Theorem 1 shows that enforc-ing arc-consistency on the dual encoding does more work than unit propagation.This would suggest that MAC (which enforces arc-consistency at each node)might outperform DP (which performs unit propagation at each node). DP's



branching can, however, be more e�ective than MAC's. As a consequence, thereare problems on which DP outperforms MAC, and problems on which MACoutperforms DP, in both cases irrespective of the branching heuristics used.Theorem 3. MAC applied to the dual encoding is incomparable to DP.Proof. Consider a k-SAT problem with all 2k possible clauses: x1 _x2 _ : : :_xk,:x1_x2_: : :_xk, x1_:x2_: : :_xk , :x1_:x2_: : :_xk , : : ::x1_:x2_: : :_::xk .DP explores 2k�1 branches showing that this problem is unsatis�able irrespectiveof the branching heuristic. If k = 2, MAC proves that the problem is unsatis�ablewithout search. Hence, MAC can outperform DP. If k > 2, MAC branches onthe �rst variable (whose domain is of size 2k � 1) and backtracks immediately.Hence MAC takes 2k � 1 branches, and is outperformed by DP.4.2 Hidden variable encodingWe �rst prove that enforcing arc-consistency on the hidden variable encodingdoes the same work as unit propagation on the original SAT problem. In par-ticular, unit propagation identi�es unsatis�ability if and only if enforcing arc-consistency also does, whilst unit propagation commits to particular truth as-signments if and only if enforcing arc-consistency on the hidden variable encodingeliminates all contradictory values.Theorem 4.1. Unit propagation commits to a particular truth assignment if and only if en-forcing arc-consistency on the hidden variable encoding eliminates all con-tradictory values.2. Unit propagation generates the empty clause if and only if enforcing arc-consistency on the hidden variable encoding causes a domain wipeout.Proof. 1. Suppose unit propagation makes a sequence of assignments: l1, l2, . . . lj .The proof uses induction on j. Consider the �nal assignment lj . Unit propagationmakes this assignment because lj occurs in a clause l01 _ : : : l0k in which all theother literals l0i (6= lj) have been assigned to false. Consider the hidden variableencoding. By the induction hypothesis, enforcing arc-consistency reduces thedomain of each l0i (6= lj) to false. Enforcing arc-consistency therefore removes anyvalue from the domain of the dual variable associated with the clause l01 _ : : : l0kwhich assigns l0i (6= lj) to true. Hence, the only value left in the domain of thisdual variable assigns l0i (6= lj) to false, and lj to true. Enforcing arc-consistencyon the constraint between this dual variable and lj reduces the domain of lj totrue. Hence, enforcing arc-consistency on the hidden variable encoding eliminatesall contradictory values. The proof reverses in a straightforward manner.2. Unit propagation generates an empty clause if there is a clause, l1_: : : lk inwhich unit propagation assigns each literal li to false. Consider the dual variableassociated with this clause. By the �rst result, enforcing arc-consistency on thehidden variable encoding reduces the propositional variable associated with each



literal li to the appropriate singleton domain. Hence enforcing arc-consistencybetween these propositional variables and the dual variable in the hidden variableencoding causes a domain wipeout for the dual variable. The proof again reversesin a straightforward manner.This result can be extended to algorithms that maintain (some level of) arc-consistency during search, provided we restrict ourselves to branching heuristicsthat instantiate propositional variables before the associated dual variables. Itis then unproblematic to branch in an identical fashion in the hidden variableencoding and in the SAT problem.Theorem 5. Given equivalent branching heuristics, MAC applied to the hiddenvariable encoding explores the same number of branches as DP.Proof. We show how to take the search tree explored by DP and map it ontoa proof tree for MAC with the same number of branches (and vice versa). Theproof proceeds by induction on the number of propositional variables. In the stepcase, consider the �rst variable branched upon by DP or MAC. The proof di-vides into two cases. Either the �rst branch leads to a solution. Or we backtrackand try both truth values. In either case, as unit propagation and enforcingarc-consistency reduce both problems equivalently, we have \equivalent" sub-problems. As these subproblems have one fewer variable, we can appeal to theinduction hypothesis.What happens if we maintain a lower level of consistency in the hiddenvariable encoding that that maintained by MAC? For example, what about theFC algorithm which enforces only a limited form of arc-consistency at each node?Due to the topology of the constraint graph of a hidden variable encoding, withequivalent branching heuristic, FC can be made to explore the same number ofbranches as MAC.Theorem 6. Given equivalent branching heuristics, FC applied to the hiddenvariable encoding explores the same number of branches as MAC.Proof. In FC, we need a branching heuristic which chooses �rst any propositionalvariable with a singleton domain. This makes the same commitments as unitpropagation, without introducing any branching points. By Theorem 4, unitpropagation is equivalent to enforcing arc-consistency on the hidden variableencoding. Hence, FC explores a tree with the same number of branches as MAC.4.3 Literal encodingAs with the hidden variable encoding, enforcing arc-consistency on the literalencoding does the same work as unit propagation on the original SAT problem. Inparticular, unit propagation identi�es unsatis�ability if and only if enforcing arc-consistency on the literal encoding also does, whilst unit propagation commitsto a particular (partial) truth assignment if and only if enforcing arc-consistencyon the literal encoding eliminates all contradictory values.



Theorem 7.1. Unit propagation commits to particular truth assignments if and only if en-forcing arc-consistency on the literal encoding eliminates all contradictoryvalues.2. Unit propagation generates the empty clause if and only if enforcing arc-consistency on the literal encoding causes a domain wipeout.Proof. 1. Suppose unit propagation makes a sequence of assignments: l1, l2, . . . lj .The proof uses induction on j. Consider the �nal assignment lj . Unit propagationmakes this assignment because lj occurs in a clause l01 _ : : : l0k in which all theother literals l0i (6= lj) have been assigned to false. Consider the literal encoding.By the induction hypothesis, enforcing arc-consistency removes l0i (6= lj) fromthe domain of the variables Di associated with the clause l01_ : : : l0k. Di thereforehas the singleton domain fljg. Enforcing arc-consistency with any constraintbetween this dual variable and another that contains :lj removes :lj from thedomain. Hence, enforcing arc-consistency on the literal encoding eliminates allcontradictory values. The proof reverses in a straightforward manner.2. Unit propagation generates an empty clause if there is a clause, l1_: : : lk inwhich unit propagation assigns each literal li to false. Consider the variable Diassociated with this clause. By the �rst result, enforcing arc-consistency on theliteral encoding eliminates each literal from its domain. This causes a domainwipeout. The proof again reverses in a straightforward manner.When we consider algorithms that maintain arc-consistency at each node, wediscover that DP can branch more e�ectively than MAC on the literal encoding(as we discovered with the dual encoding). Since unit propagation in the SATproblem is equivalent to enforcing arc-consistency on the literal encoding, DPdominates MAC applied to the literal encoding.Theorem 8. Given equivalent branching heuristic, DP strictly dominates MACapplied to the literal encoding.Proof. We show how to take the search tree explored by MAC and map it ontoa proof tree for DP with no more branches. The proof proceeds by induction onthe number of branching points in the tree. Consider the root. Assume MACbranches on the variable Di associated with the SAT clause l1 _ l2 _ : : : _ lk.There are k children, the ith child corresponding to the value li assigned to Di.We can build a corresponding proof subtree for DP with k branches. In thissubtree, we branch left at the root assigning l1, and right assigning :l1. On theright child, we branch left again assigning l2 and right assigning :l2. And so onthrough the li until we reach lk. However, we do not need to split on lk as unitpropagation on the clause l1_ l2_ : : :_ lk forces this instantiation automatically.Schematically, this transformation is as follows:node(l1; l2; : : : ; lk) ) node(l1; node(l2; : : : node(lk�1; lk) : : :)):In the induction step, we perform the same transformation except: (a) someof the instantiations in the DP proof tree may have been performed higher up



and so can be ignored, and (b) the complement of some of the instantiationsmay have been performed higher up and so we can close this branch by unitpropagation. The result is a DP proof tree which has no more branches than thetree explored by MAC. To prove strictness, consider a k-SAT problem with all2k possible clauses where k > 2. DP explores 2k�1 branches showing that thisproblem is unsatis�able irrespective of the branching heuristic. However, MACtakes k! branches whatever variable and value ordering we use.4.4 Non-binary encodingIf the SAT problem contains clauses with more than two literals, the non-binaryencoding contains non-binary constraints. Hence, we compare unit propagationon the SAT problem with enforcing generalized arc-consistency on the non-binary encoding. Not surprisingly, generalized arc-consistency on the non-binaryencoding dominates unit propagation.Theorem 9.1. If unit propagation commits to particular truth assignments then enforcinggeneralized arc-consistency on the non-binary encoding eliminates all con-tradictory truth values.2. If unit propagation generates the empty clause then enforcing generalizedarc-consistency on the non-binary encoding causes a domain wipeout (butthe reverse does not necessarily hold).Proof. 1. Suppose unit propagation makes a sequence of assignments: l1, l2, . . . lj .The proof uses induction on j. Consider the �nal assignment lj . Unit propagationmakes this assignment because lj occurs in a clause l01_: : : l0k in which all the otherliterals l0i (6= lj) have been assigned to false. Consider the non-binary encoding.By the induction hypothesis, enforcing generalized arc-consistency removes thosevalues which assign l0i (6= lj) to false. Enforcing generalized arc-consistency on thenon-binary constraint involving l0i eliminates the truth value that assigns falseto lj . Hence, enforcing generalized arc-consistency on the non-binary encodingeliminates all contradictory values.2. Unit propagation generates an empty clause if there is a clause, l1 _ : : : lkin which unit propagation assigns each literal li to false. By the �rst result,enforcing generalized arc-consistency on the non-binary encoding eliminates eachtruth value which assigns li to true. Consider the non-binary associated with thisclause. Enforcing generalized arc-consistency on this constraint causes a domainwipeout. To show that the proof does not reverse even if we are in a polynomialsubclass of SAT, consider a 2-SAT problem with all possible clauses in twovariables: e.g. x1 _ x2, :x1 _ x2, x1 _ :x2, :x1 _ :x2. Enforcing (generalized)arc-consistency shows that this problem is insoluble, whilst unit propagationdoes nothing.With equivalent branching heuristics, DP explores the same size search treeas nFC0, the weakest non-binary version of the forward checking algorithm. DP



is, however, dominated by nFC1 (the next stronger non-binary version of forwardchecking) and thus an algorithm that maintains generalized arc-consistency ateach node.Theorem 10. Given equivalent branching heuristics, DP explores the same num-ber of branches as nFC0 applied to the non-binary encoding.Proof. We show how to take the proof tree explored by DP and map it onto asearch tree for nFC0 with the same number of branches. The proof proceeds byinduction on the number of propositional variables. In the step case, considerthe �rst variable branched upon by DP. The proof divides into two cases. Eitherthis is a branching point (and we try both possible truth values). Or this is not abranching point (and unit propagation makes this assignment). In the �rst case,we can branch in the same way in nFC0. In the second case, forward checkingin nFC0 will have reduced the domain of this variable to a singleton, and wecan also branch in the same way in nFC0. We now have a subproblem with onefewer variable, and appeal to the induction hypothesis. The proof reverses in astraightforward manner.Theorem 11. Given equivalent branching heuristics, nFC1 applied to the non-binary encoding strictly dominates DP.Proof. Trivially nFC1 dominates nFC0. To show strictness, consider a 3-SATproblem with all possible clauses in 3 variables: x1 _ x2 _ x3, :x1 _ x2 _ x3,x1 _ :x2 _ x3, :x1 _ :x2 _ x3, x1 _ x2 _ :x3, :x1 _ x2 _ :x3, x1 _ :x2 _ :x3,:x1 _ :x2 _ :x3. DP takes 4 branches to prove this problem is unsatis�ablewhatever branching heuristic is used. nFC1 by comparison takes just 2 branches.Suppose we branch on x1. The binary projection of the non-binary constraintson x1, x2 and x3 onto x1 and x2 is the empty (unsatis�able) constraint. Hence,forward checking causes a domain wipeout.5 Encoding CSPs into SATWe now consider mappings in the reverse direction. There are two common waysto encode a (binary) CSP as a SAT problem.Direct encoding: We associate a propositional variable, xij with each valuej that can be assigned to the CSP variable Xi. We have clauses that ensureseach CSP variable is given a value: for each i, xi1 _ : : : xim. We optionally haveclauses that ensure each variable takes no more than one values: for each i; j; kwith j 6= k, :xij _ :xik . Finally, we have (binary) clauses that rule out any(binary) nogoods. For example, if X1 = 2 and X3 = 1 is not allowed then wehave the clause :x12 _ :x31.Log encoding: We have ndlog2(m)e propositional variables. The propositionalvariable xij is set i� the CSP variable Xi is assigned a value in which the j-thbit is set. We have a clause for each (binary) nogood. For example, if X1 = 2 and



X3 = 1 is not allowed, and each CSP variable has the domain f0; 1; 2; 3g then wehave the clause x10 _:x11 _ x20 _:x21 (which is logically equivalent to (:x10 ^x11)! :(:x20^x21)). Note that we do not need clauses to ensure that each CSPvariable is given a value, nor to ensure that each CSP variable is given only onevalue (any complete assignment for the propositional variables corresponds to anassignment of a single value to each CSP variable). If dlog2(m)e > log2(m) thenwe also have clauses that rule out (spurious) values at the top of each domain.For example, if variable Xi has only 3 values, then we have a clause :x30 _:x31which prohibits us assigning a fourth value to X3.5.1 Direct encodingWe �rst prove that enforcing arc-consistency on the original problem does morework than unit propagation on the direct encoding.Theorem 12.1. If unit propagation commits to particular truth assignments on the directencoding, then enforcing arc-consistency on the original problem eliminatesall contradictory values.2. If unit propagation generates the empty clause in the direct encoding thenenforcing arc-consistency on the original problem causes a domain wipeout(but the reverse does not necessarily hold).Proof. 1. Suppose unit propagation makes a sequence of assignments: l1, l2, . . . lj .The proof uses induction on j. Consider the �nal assignment l. Unit propagationmakes this assignment because l occurs in a clause in which all the other literalshave been assigned to false. The proof divides into three cases. If the clauseis of the form xi1 _ : : : xim then, by the induction hypothesis, enforcing arc-consistency eliminates from the domain of Xi all but the value assigned by l.Hence all contradictory values have been eliminated for Xi. If the clause is of theform :xij _:xpq and (without loss of generality) l = :xij then, by the inductionhypothesis, enforcing arc-consistency eliminates the value q from the domain ofXp. Hence, enforcing arc-consistency on the constraint associated with the clause:xij _ :xpq eliminates j from the domain of Xi. Hence all contradictory valueshave been eliminated for Xi. Finally, if the clause is of the form :xij _ :xikwhere j 6= k and (without loss of generality) l = :xij then Xi has been assignedthe value k (and so cannot be assigned the contradictory value j).2. Unit propagation generates an empty clause if there is a clause, l1 _ : : : lkin the direct encoding in which unit propagation assigns each literal li to false.The proof divides into three cases. If the clause is of the form xi1 _ : : : xim then,by the �rst result, enforcing arc-consistency on the direct encoding eliminates allcontradictory values. Hence Xi has a domain wipeout. The other two cases aresimilar. To show that the reverse may not hold, consider a CSP in two variablesand two values in which there is a binary constraint ruling out every possible as-signment. The direct encoding of this problem does not contain any unit clausesso unit propagation does nothing. However, enforcing arc-consistency causes adomain wipeout.



With equivalent branching heuristics, DP applied to the direct encoding ex-plores the same size search tree as the forward checking algorithm FC appliedto the original problem. DP is, however, dominated by MAC. Given equivalentbranching heuristics, DP applied to the direct encoding also explores the samesize search tree as the nFC0 algorithm applied to a non-binary problem. DP isagain dominated by nFC1.Theorem 13. Given equivalent branching heuristics, DP applied to the directencoding explores the same number of branches as FC applied to the originalproblem.Proof. We show how to take the proof tree explored by DP and map it onto asearch tree for FC with the same number of branches. The proof proceeds byinduction on the number of propositional variables. In the step case, considerthe �rst variable branched upon by DP. The proof divides into two cases. Eitherthis is a branching point (and we try both possible truth values). Or this isnot a branching point (and unit propagation makes this assignment). In the�rst case, we can branch in the same way in FC. In the second case, forwardchecking in FC will have reduced the domain of this variable to a singleton, andwe can also branch in the same way in FC. We now have a subproblem with onefewer variable, and appeal to the induction hypothesis. The proof reverses in astraightforward manner.Theorem 14. Given equivalent branching heuristics, MAC applied to the orig-inal problem strictly dominates DP applied to the direct encoding.Proof. MAC trivially dominates DP applied to the direct encoding since MACdominates FC which itself dominates DP applied to the direct encoding. To showstrictness, consider again the CSP in two variables and two values in which eachpossible assignment is ruled out. MAC solves this without search whilst DP takestwo branches on the direct encoding.5.2 Log encodingWe �rst prove that unit propagation on the log encoding is less e�ective thanunit propagation on the direct encoding. As enforcing arc-consistency on theoriginal problem is more e�ective than unit propagation on the direct encoding,it follows by transitivity that enforcing arc-consistency on the original problemis more e�ective than unit propagation on the log encoding.Theorem 15.1. If unit propagation commits to particular truth assignments on the log en-coding, then unit propagation commits to the same truth assignments on thedirect encoding.2. If unit propagation generates the empty clause in the log encoding then unitpropagation generates the empty clause in the direct encoding then (but thereverse does not necessarily hold).



Proof. 1. Suppose unit propagation makes a sequence of assignments in thelog encoding: l1, l2, . . . lj . The proof uses induction on j. Consider the �nalassignment l. Unit propagation makes this assignment because l occurs in aclause in which all the other literals have been assigned to false. By construction,this will assign dlog2(m)e (i.e. all) bits associated with one CSP variable anddlog2(m)e�1 (i.e. all but one) bits associated with another. That is, one variablewill have a value assigned, By the induction hypothesis, unit propagation willhave assigned the propositional variable associated with this value to true. Hence,unit propagation on the clause associated with this nogood will set the othervariable (and thus its last bit).2. Unit propagation generates an empty clause in the log encoding if there isa clause, l1 _ : : : lk in which unit propagation assigns each literal li to false. Thismeans that two CSP variables are e�ectively assigned values which contradict thenogood associated with this clause. By the �rst result, enforcing arc-consistencyon the direct encoding makes the same assignments. Hence unit propagation onthe direct encoding also generates an empty clause. To show that the reverse maynot hold, consider a CSP in two variables, the �rst with one value, the secondwith four values, all o incompatible with the �rst value. Then unit propagationon the direct encoding generates the empty clause, but not on the log encoding.With equivalent branching heuristics, the forward checking algorithm FC ap-plied to the original problem strictly dominates DP applied to the log encoding.To simplify the proof, we assume that the branching heuristic in FC enumeratesvalues in (numerical) order. The ability of FC to assign values in any order givesit an even greater edge over DP applied to the log encoding.Theorem 16. Given equivalent branching heuristics, FC applied to the originalproblem strictly dominates DP applied to the log encoding.Proof. We map the search tree explored by FC onto a proof tree for DP with atleast as many branches. The proof proceeds by induction on the number of CSPvariables. In the step case, consider the �rst variable x1 branched upon by FC.We assume FC orders the values for this variable numerically. We branch in DPon xi0 then xi1, . . .xidlog2(m)e. We now have a CSP subproblem with one fewervariable, and appeal to the induction hypothesis. To show strictness, consider aCSP in two variables, both with 3 values, in which all pairs of assignments arenogood. FC will take 3 branches to show that the problem is insoluble. DP onthe log encoding will take 8 branches since both bits for one variable and onebit for the second variable must be set before we generate the empty clause.6 Related workBennaceur studied the literal encoding for encoding SAT problems as CSPs[Ben96]. He proved that enforcing arc-consistency on the literal encoding isequivalent to unit propagation. We re-prove this result and extend it to arc-inconsistency. Bennaceur also proved that a CSP is arc-consistent i� its literal



encoding has no unit clauses, and strong path-consistent i� it has no unit orbinary clauses. The direct encoding of a CSP into a SAT problem appears in[dK89]. G�enisson and J�egou proved that, with suitable branching heuristics, DPis equivalent to FC applied to the direct encoding [GJ96].Apt has also looked at propagation rules for Boolean constraints [A99].He proves an equivalence between Boolean constraint propagation and unitpropagation, and between Boolean constraint propagation and generalized arc-consistency. Our results complete the triangle, characterizing the relationshipbetween generalized arc-consistency and unit propagation.Frisch and Peugniez studied the performance of local search procedures likeWalkSAT on encodings of non-Boolean formulae into propositional satis�ability[FP99]. The unary and binary encodings studied there are closely related to thedirect and log encodings of CSPs into SAT problems studied here.Bacchus and van Beek present a study of encodings of non-binary CSPs intobinary CSPs [BvB98]. The dual and hidden variable encodings studied here canbe constructed by composing the non-binary encoding of SAT problems intonon-binary CSPs, with the dual and hidden variable encodings of non-binaryCSPs into binary CSPs. Bacchus and van Beek's work is limited to the FCalgorithm and a simple extension called FC+. Stergiou and Walsh look at themaintenance of higher levels of consistency, in particular arc-consistency withinthese encodings [SW99]. They prove that arc-consistency on the dual encodingis strictly stronger than arc-consistency on the hidden variable, and this itself isequivalent to generalized arc-consistency on the original non-binary CSP.7 ConclusionsWe have performed a comprehensive study of mappings between constraint satis-faction problems (CSPs) and propositional satis�ability (SAT). We analysed fourdi�erent mappings of SAT problems into CSPs: the dual, hidden variable, literaland non-binary encodings. We proved that achieving arc-consistency on the dualencoding does more work than unit propagation on the original SAT problem,whilst achieving arc-consistency on the hidden variable and literal encodingsdoes essentially the same work. We then extended these results to algorithmsthat maintain some level of arc-consistency during search like FC and MAC, andDP which performs unit propagation at each search node. DP strictly dominatesFC applied to the dual encoding, is incomparable to MAC applied to the dualencoding, explores the same number of branches as MAC applied to the hiddenvariable encoding, and strictly dominates MAC applied to the literal encoding.We also analysed two di�erent mappings of CSPs into SAT problems: the di-rect and log encodings. We proved that unit propagation on the direct encodingdoes less work than achieving arc-consistency on the original problem, but morework than unit propagation on the log encoding. DP on the direct encodingexplores the same size search tree as FC applied to the original problem, but isstrictly dominated by MAC. By comparison, DP on the log encoding is strictlydominated by both FC and MAC applied to the original problem.



What general lessons can be learned from this study? First, the choice ofencoding can have a large impact on the level of consistency achieved. For in-stance, the dual encoding allows us to achieve higher levels of consistency thanthe literal encoding. Second, the choice of encoding also has a large impact onthe branching structure of our search trees. In particular, the dual and literalencodings require us to branch using a variable ordering based upon the clauses.DP applied to the original SAT problem can therefore sometimes beat MACapplied to the dual encoding. Fourth, whilst a clearer picture of the relationshipbetween SAT problems and CSPs is starting to emerge, there are several ques-tions that remain unanswered. For example, how do local search methods likeGSAT and Min-Con
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