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Abstract. We perform a comprehensive study of mappings between
constraint satisfaction problems (CSPs) and propositional satisfiability
(SAT). We analyse four different mappings of SAT problems into CSPs,
and two of CSPs into SAT problems. For each mapping, we compare the
impact of achieving arc-consistency on the CSP with unit propagation
on the SAT problem. We then extend these results to CSP algorithms
that maintain (some level of) arc-consistency during search like FC and
MAC, and to the Davis-Putnam procedure (which performs unit prop-
agation at each search node). Because of differences in the branching
structure of their search, a result showing the dominance of achieving
arc-consistency on the CSP over unit propagation on the SAT problem
does not necessarily translate to the dominance of MAC over the Davis-
Putnam procedure. These results provide insight into the relationship
between propositional satisfiability and constraint satisfaction.

1 Introduction

Despite their proximity, there has been little direct comparison between propo-
sitional satisfiability and constraint satisfaction. One of the most immediate dif-
ferences is that propositional satisfiability (SAT) problems have binary domains
and non-binary constraints whilst constraint satisfaction problems (CSPs) typi-
cally have binary constraints and non-binary domains. However, a more intimate
understanding of the similarities and differences between the two problem do-
mains would aid research in both areas. For example, are local search procedures
developed for SAT like WalkSAT and Novelty useful for CSPs?

One method for exploring the relationship between SAT problems and CSPs
is to study mappings between them. As each problem class is NP-complete, we
can reduce one into the other in polynomial time. However, the details of such
reductions and the properties preserved can, as we show here, be very informa-
tive. Bennaceur previously looked at encoding SAT problems as CSPs [Ben96],
whilst Génisson and Jégou looked at encoding CSPs as SAT problems [GJ96].
However, both these studies were limited to a single mapping. It is therefore
instructive to study the range of mappings possible between SAT problems and
CSPs. A more complete picture of the relationship between propositional satis-
fiability and constraint satisfaction then starts to emerge.
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2 Formal background

A constraint satisfaction problem (CSP) consists of a set of variables, each with
a domain of values, and a set of constraints (relations) on the allowed values
for specified subsets of the variables. A binary CSP has only binary constraints.
A binary CSP is arc-consistent (AC) iff it has non-empty domains and every
binary constraint is arc-consistent. A binary constraint is arc-consistent iff any
assignment to one of the variables in the constraint can be extended to a con-
sistent assignment for the other variable. A (non-binary) CSP is generalized
arc-consistent (GAC) iff for any variable in a constraint and value that it is
assigned, there exist compatible values for all the other variables in the con-
straint [MMS88]. Algorithms for solving CSPs typically maintain some level of
consistency at every node in their search tree. For example, the MAC algo-
rithm for binary CSPs maintains arc-consistency at each node in the search
tree [Gas79]. The FC algorithm (forward checking) for binary CSPs maintains
arc-consistency only on those constraints involving the most recently instanti-
ated variable and those that are uninstantiated. Finally, for non-binary CSPs,
the nFCO algorithm maintains generalized arc-consistency on those constraints
involving one uninstantiated variable, whilst the nFC1 algorithm maintains gen-
eralized arc-consistency on those constraints and constraint projections involving
one uninstantiated variable [BMFL99].

Given a propositional formula, the satisfiability (SAT) problem is to deter-
mine if there is an assignment of truth values to the variables that makes the
whole formula true [GJ79]. One of the best procedures to solve the SAT prob-
lem is the so-called Davis-Putnam (DP) procedure (though it is actually due to
Davis, Logemann and Loveland [DLL62]). The DP procedure consists of three
main rules: the empty rule (which fails and backtracks when an empty clause is
generated), the unit propagation rule (which deterministically assigns any unit
literal), and the branching or split rule (which non-deterministically assigns a
truth value to a variable). As is often the case in implementations of DP, we will
ignore the pure literal and tautology rules as neither are needed for completeness
or soundness, nor usually for efficiency.

3 Encoding SAT into CSPs

There are several different ways that a SAT problem can be encoded as a binary
or non-binary CSP.

Dual encoding: We associate a dual variable, D; with each clause ¢;. The
domain of D; consists of those tuples of truth values which satisfy the clause
¢;- For example, associated with the clause x; V x3 is a dual variable D; with
domain {(T', F),(F,T),(T,T)}. These are the assignments for z; and x3 which
satisfy the clause z; V z3. Binary constraints are posted between dual variables
which are associated with clauses that share propositional variables in common.
For example, between the dual variable D; associated with the clause z; V23 and
the dual variable D, associated with the clause x> V -3 is a binary constraint



that the second element of the tuple assigned to D; must be the complement of
the second element of the tuple assigned to Ds.

Hidden variable encoding: We again associate a dual variable, D; with each
clause ¢;, the domain of which consists of those tuples of truth values which
satisfy the clause. However, we also have (propositional) variables z; with do-
mains {7, F'}. A binary constraint is posted between a propositional variable
and a dual variable if its associated clause mentions the propositional variable.
For example, between the dual variable D, associated with the clause z2 V -3
and the variable x3 is a binary constraint. This constrains the second element
of the tuple assigned to D2 to be the complement of the value assigned to zs.
There are no direct constraints between dual variables.

Literal encoding: We associate a variable, D; with each clause ¢;. The domain
of D; consists of those literals which satisfy the clause ¢;. For example, associated
with the clause z1 V3 is a dual variable D; with domain {z;,z3}, and associated
with the clause z V —x3 is a dual variable Dy with domain {z3, ~a3}. Binary
constraints are posted between D; and D; iff the associated clause ¢; contains a
literal whose complement is contained in the associated clause ¢;. For example,
there is a constraint between D; and Ds as the clause ¢; contains the literal
x3 whilst the clause ¢y contains the complement —x3. This constraint rules out
incompatible (partial) assignments. For instance, between D; and D, is the
constraint that allows Dy = z; and Dy = 3, or D; = z; and Dy = —x3, or
D, = x3 and D, = z». However, the assignment D; = z3 and D, = —x3 is
ruled out as a nogood. Note that the literal encoding uses variables with smaller
domains than the dual or hidden variable encodings. The dual variables have
domains of size O(2*) where k is the clause length, whilst the variables in the
literal encoding have domains of size just O(k). This could have a significant
impact on runtimes.

Non-binary encoding: The CSP has variables x; with domains {7, F'}. A non-
binary constraint is posted between those variables that occurring together in
a clause. This constraint has as nogoods those partial assignments that fail to
satisfy the clause. For example, associated with the clause x; V z2 V —x3 is a
non-binary constraint on 1, x2 and x3 that has a single nogood (F, F, T).

4 Theoretical comparison

We now compare the performance of the Davis-Putnam (DP) procedure against
some popular CSP algorithms like FC and MAC on these different encodings.
Our analysis divides into two parts. We first compare the effect of unit propa-
gation on the SAT problem and enforcing arc-consistency on the encoding. We
then use this result to compare DP (which performs unit propagation at each
node in its search tree) with MAC (which enforces arc-consistency at each node)
and FC (which enforces a limited form of arc-consistency). When comparing two
algorithms that are applied to (possibly) different representations of a problem,
we say that algorithm A dominates algorithm B iff algorithm A visits no more



branches than algorithm B assuming “equivalent” branching heuristics (we will
discuss what we mean by “equivalent” in the proofs of such results as the exact
details depend on the two representations). We say that algorithm A strictly
dominates algorithm B iff it dominates and there exists one problem on which
algorithm A visits strictly fewer branches.

4.1 Dual encoding

We first prove that enforcing arc-consistency on the dual encoding does more
work than unit propagation on the original SAT problem. That is, if unit prop-
agation identifies unsatisfiability then enforcing arc-consistency on the dual en-
coding also does (but there are problems which enforcing arc-consistency will
show are insoluble that unit propagation will not). In addition, if unit propaga-
tion commits to particular truth assignments then enforcing arc-consistency on
the dual encoding eliminates all contradictory values. To be more precise, if unit
propagation assigns true (false) to some variable z;, enforcing arc-consistency
on the dual encoding removes those values from the domains of dual variables
which correspond to assigning false (true) to x;. When we come to assign these
dual variables, the value chosen will correspond to assigning true (false) to ;.

Theorem 1.

1. If unit propagation commits to particular truth assignments, then enforcing
arc-consistency on the dual encoding eliminates all contradictory values.

2. If unit propagation generates the empty clause then enforcing arc-consistency
on the dual encoding causes a domain wipeout (but the reverse does not
necessarily hold).

Proof. 1. Suppose unit propagation makes a sequence of assignments: [y, [s,
...l;. The proof uses induction on j. Consider the final assignment [;. Unit
propagation makes this assignment because [; occurs in a clause I V ...l in
which all the other literals I} (# ;) have been assigned to false. Consider the
dual variable associated with this clause. By the induction hypothesis, enforcing
arc-consistency eliminates all values which assign any of the I} (# ;) to true.
Hence, the only value left in the domain of this dual variable assigns I} (# ;)
to false, and I; to true. Enforcing arc-consistency on the dual encoding thus
eliminates all contradictory values.

2. Unit propagation generates an empty clause if there is a clause, [; V... [} in
which unit propagation assigns each literal I; to false. Consider the dual variable
associated with this clause. By the first result, enforcing arc-consistency on the
dual encoding eliminates all contradictory values. Hence this dual variable has
a domain wipeout. To show that the reverse may not hold, consider all possible
2-SAT clauses in 2 variables: 1 Vxy, =21 VTs, 1 Vs, =21 V xo. This problem
does not contain any unit clauses so unit propagation does nothing. However,
enforcing arc-consistency on the dual encoding causes a domain wipeout.



There are difficulties in extending this result to algorithms that maintain
(some form of) arc-consistency at each node of their search tree (like FC and
MAC) and those that perform unit propagation at each node (like DP). One
complication is that branching in DP can instantiate variables in any order,
but branching on the dual encoding must follow the order of variables in the
clauses. In addition, branching on the dual encoding effectively instantiates all
the variables in a clause at once. In DP, by comparison, we can instantiate a
strict subset of the variables that occur in a clause. Consider, for example, the
two clauses 1 V ...z and y; V ...y;. DP can instantiate the x; and y; in any
order. By comparison, branching on the dual encoding either instantiates all the
x; before the y; or vice versa. Similar observations hold for the literal encodings.
In the following results, therefore, we start from a branching heuristic for the
dual encoding and construct an “equivalent” branching heuristic for DP. It is
not always possible to perform the reverse (i.e. start from a DP heuristic and
construct an equivalent heuristic for the dual encoding).

Theorem 2. Given equivalent branching heuristics, DP strictly dominates FC
applied to the dual encoding.

Proof. We show how to take the search tree explored by FC and map it onto
a proof tree for DP with no more branches. The proof proceeds by induction
on the number of branching points in the tree. Consider the root. Assume FC
branches on the variable D; associated with the SAT clause I; VI3 V...VI;. There
are 2¥ — 1 children. We can build a corresponding proof subtree for DP with at
most 2% — 1 branches. In this subtree, we branch left at the root assigning I;, and
right assigning —/;. On both children, we branch left again assigning l> and right
assigning —ls unless ls is assigned by unit propagation (in which case, we move
on to l3). And so on through the I; until either we reach I; or unit propagation
constructs an empty clause. Note that we do not need to split on l; as unit
propagation on the clause [y VIs V...V forces this instantiation automatically.
In the induction step, we perform the same transformation except some of the
instantiations in the DP proof tree may have been performed higher up and so
can be ignored. FC on the dual encoding removes some values from the domains
of future variables, but unit propagation in DP also effectively makes the same
assignments. The result is a DP proof tree which has no more branches than
the tree explored by FC. To show strictness, consider a 2-SAT problem with all
possible clauses in two variables: e.g. x1 V x2, —x1 V T2, x1 V 7Xa, x1 V TXs.
DP explores 2 branches showing that this problem is unsatisfiable, irrespective
of the branching heuristic. FC, on the other hand, explores 3 branches, again
irrespective of the branching heuristic.

Theorem 2 shows that DP, in a slightly restricted sense, dominates FC applied
to the dual encoding. What happens if we maintain a higher level of consistency
in the dual encoding than that maintained by FC? Theorem 1 shows that enforc-
ing arc-consistency on the dual encoding does more work than unit propagation.
This would suggest that MAC (which enforces arc-consistency at each node)
might outperform DP (which performs unit propagation at each node). DP’s



branching can, however, be more effective than MAC’s. As a consequence, there
are problems on which DP outperforms MAC, and problems on which MAC
outperforms DP, in both cases irrespective of the branching heuristics used.

Theorem 3. MAC applied to the dual encoding is incomparable to DP.

Proof. Consider a k-SAT problem with all 2* possible clauses: z1 Vxa V...V g,
—r1VraV...Vxp, T1VxaV.. VT, 71V xaV.. VT, ... 21 VT2 V... VT,
DP explores 2°~! branches showing that this problem is unsatisfiable irrespective
of the branching heuristic. If £ = 2, MAC proves that the problem is unsatisfiable
without search. Hence, MAC can outperform DP. If £ > 2, MAC branches on
the first variable (whose domain is of size 2¥ — 1) and backtracks immediately.
Hence MAC takes 2% — 1 branches, and is outperformed by DP.

4.2 Hidden variable encoding

We first prove that enforcing arc-consistency on the hidden variable encoding
does the same work as unit propagation on the original SAT problem. In par-
ticular, unit propagation identifies unsatisfiability if and only if enforcing arc-
consistency also does, whilst unit propagation commits to particular truth as-
signments if and only if enforcing arc-consistency on the hidden variable encoding
eliminates all contradictory values.

Theorem 4.

1. Unit propagation commits to a particular truth assignment if and only if en-
forcing arc-consistency on the hidden variable encoding eliminates all con-
tradictory values.

2. Unit propagation generates the empty clause if and only if enforcing arc-
consistency on the hidden variable encoding causes a domain wipeout.

Proof. 1. Suppose unit propagation makes a sequence of assignments: {1, Iz, ...[;.
The proof uses induction on j. Consider the final assignment {;. Unit propagation
makes this assignment because [; occurs in a clause I{ V ...l; in which all the
other literals I} (# [;) have been assigned to false. Consider the hidden variable
encoding. By the induction hypothesis, enforcing arc-consistency reduces the
domain of each I} (# ;) to false. Enforcing arc-consistency therefore removes any
value from the domain of the dual variable associated with the clause i{ V ...1},
which assigns I} (# 1;) to true. Hence, the only value left in the domain of this
dual variable assigns I} (# [;) to false, and [; to true. Enforcing arc-consistency
on the constraint between this dual variable and [; reduces the domain of /; to
true. Hence, enforcing arc-consistency on the hidden variable encoding eliminates
all contradictory values. The proof reverses in a straightforward manner.

2. Unit propagation generates an empty clause if there is a clause, [; V... [} in
which unit propagation assigns each literal I; to false. Consider the dual variable
associated with this clause. By the first result, enforcing arc-consistency on the
hidden variable encoding reduces the propositional variable associated with each



literal I; to the appropriate singleton domain. Hence enforcing arc-consistency
between these propositional variables and the dual variable in the hidden variable
encoding causes a domain wipeout for the dual variable. The proof again reverses
in a straightforward manner.

This result can be extended to algorithms that maintain (some level of) arc-
consistency during search, provided we restrict ourselves to branching heuristics
that instantiate propositional variables before the associated dual variables. It
is then unproblematic to branch in an identical fashion in the hidden variable
encoding and in the SAT problem.

Theorem 5. Given equivalent branching heuristics, MAC applied to the hidden
variable encoding explores the same number of branches as DP.

Proof. We show how to take the search tree explored by DP and map it onto
a proof tree for MAC with the same number of branches (and vice versa). The
proof proceeds by induction on the number of propositional variables. In the step
case, consider the first variable branched upon by DP or MAC. The proof di-
vides into two cases. Either the first branch leads to a solution. Or we backtrack
and try both truth values. In either case, as unit propagation and enforcing
arc-consistency reduce both problems equivalently, we have “equivalent” sub-
problems. As these subproblems have one fewer variable, we can appeal to the
induction hypothesis.

What happens if we maintain a lower level of consistency in the hidden
variable encoding that that maintained by MAC? For example, what about the
FC algorithm which enforces only a limited form of arc-consistency at each node?
Due to the topology of the constraint graph of a hidden variable encoding, with
equivalent branching heuristic, FC can be made to explore the same number of
branches as MAC.

Theorem 6. Given equivalent branching heuristics, FC applied to the hidden
variable encoding explores the same number of branches as MAC.

Proof. In FC, we need a branching heuristic which chooses first any propositional
variable with a singleton domain. This makes the same commitments as unit
propagation, without introducing any branching points. By Theorem 4, unit
propagation is equivalent to enforcing arc-consistency on the hidden variable
encoding. Hence, FC explores a tree with the same number of branches as MAC.

4.3 Literal encoding

As with the hidden variable encoding, enforcing arc-consistency on the literal
encoding does the same work as unit propagation on the original SAT problem. In
particular, unit propagation identifies unsatisfiability if and only if enforcing arc-
consistency on the literal encoding also does, whilst unit propagation commits
to a particular (partial) truth assignment if and only if enforcing arc-consistency
on the literal encoding eliminates all contradictory values.



Theorem 7.

1. Unit propagation commits to particular truth assignments if and only if en-
forcing arc-consistency on the literal encoding eliminates all contradictory
values.

2. Unit propagation generates the empty clause if and only if enforcing arc-
consistency on the literal encoding causes a domain wipeout.

Proof. 1. Suppose unit propagation makes a sequence of assignments: {1, l>, ... ;.
The proof uses induction on j. Consider the final assignment ;. Unit propagation
makes this assignment because I; occurs in a clause [{ V ...l in which all the
other literals I} (# [;) have been assigned to false. Consider the literal encoding.
By the induction hypothesis, enforcing arc-consistency removes I} (# [;) from
the domain of the variables D; associated with the clause I} V...l;.. D; therefore
has the singleton domain {/;}. Enforcing arc-consistency with any constraint
between this dual variable and another that contains —l; removes —l; from the
domain. Hence, enforcing arc-consistency on the literal encoding eliminates all
contradictory values. The proof reverses in a straightforward manner.

2. Unit propagation generates an empty clause if there is a clause, [; V...l in
which unit propagation assigns each literal /; to false. Consider the variable D;
associated with this clause. By the first result, enforcing arc-consistency on the
literal encoding eliminates each literal from its domain. This causes a domain
wipeout. The proof again reverses in a straightforward manner.

When we consider algorithms that maintain arc-consistency at each node, we
discover that DP can branch more effectively than MAC on the literal encoding
(as we discovered with the dual encoding). Since unit propagation in the SAT
problem is equivalent to enforcing arc-consistency on the literal encoding, DP
dominates MAC applied to the literal encoding.

Theorem 8. Given equivalent branching heuristic, DP strictly dominates MAC
applied to the literal encoding.

Proof. We show how to take the search tree explored by MAC and map it onto
a proof tree for DP with no more branches. The proof proceeds by induction on
the number of branching points in the tree. Consider the root. Assume MAC
branches on the variable D; associated with the SAT clause I; ViIs V...V .
There are k children, the ith child corresponding to the value I; assigned to D;.
We can build a corresponding proof subtree for DP with k£ branches. In this
subtree, we branch left at the root assigning l;, and right assigning —l;. On the
right child, we branch left again assigning /> and right assigning —l2. And so on
through the I; until we reach lj,. However, we do not need to split on I;, as unit
propagation on the clause I3 VI V...V forces this instantiation automatically.
Schematically, this transformation is as follows:

node(ly,la,...,lk) = mnode(ly,node(ly,...node(lp—_1,1lx)...)).

In the induction step, we perform the same transformation except: (a) some
of the instantiations in the DP proof tree may have been performed higher up



and so can be ignored, and (b) the complement of some of the instantiations
may have been performed higher up and so we can close this branch by unit
propagation. The result is a DP proof tree which has no more branches than the
tree explored by MAC. To prove strictness, consider a k-SAT problem with all
2% possible clauses where k > 2. DP explores 2¥~! branches showing that this
problem is unsatisfiable irrespective of the branching heuristic. However, MAC
takes k! branches whatever variable and value ordering we use.

4.4 Non-binary encoding

If the SAT problem contains clauses with more than two literals, the non-binary
encoding contains non-binary constraints. Hence, we compare unit propagation
on the SAT problem with enforcing generalized arc-consistency on the non-
binary encoding. Not surprisingly, generalized arc-consistency on the non-binary
encoding dominates unit propagation.

Theorem 9.

1. If unit propagation commits to particular truth assignments then enforcing
generalized arc-consistency on the non-binary encoding eliminates all con-
tradictory truth values.

2. If unit propagation generates the empty clause then enforcing generalized
arc-consistency on the non-binary encoding causes a domain wipeout (but
the reverse does mot necessarily hold).

Proof. 1. Suppose unit propagation makes a sequence of assignments: Iy, Iz, .. .[;.
The proof uses induction on j. Consider the final assignment ;. Unit propagation
makes this assignment because [; occurs in a clause [{ V. . . [}, in which all the other
literals I} (# ;) have been assigned to false. Consider the non-binary encoding.
By the induction hypothesis, enforcing generalized arc-consistency removes those
values which assign I; (# [;) to false. Enforcing generalized arc-consistency on the
non-binary constraint involving I} eliminates the truth value that assigns false
to [;. Hence, enforcing generalized arc-consistency on the non-binary encoding
eliminates all contradictory values.

2. Unit propagation generates an empty clause if there is a clause, [; V ...l
in which unit propagation assigns each literal [; to false. By the first result,
enforcing generalized arc-consistency on the non-binary encoding eliminates each
truth value which assigns [/; to true. Consider the non-binary associated with this
clause. Enforcing generalized arc-consistency on this constraint causes a domain
wipeout. To show that the proof does not reverse even if we are in a polynomial
subclass of SAT, consider a 2-SAT problem with all possible clauses in two
variables: e.g. 1 V x2, —x1 V x2, 1 V mx2, —x; V nx2. Enforcing (generalized)
arc-consistency shows that this problem is insoluble, whilst unit propagation
does nothing.

With equivalent branching heuristics, DP explores the same size search tree
as nFCO0, the weakest non-binary version of the forward checking algorithm. DP



is, however, dominated by nFC1 (the next stronger non-binary version of forward
checking) and thus an algorithm that maintains generalized arc-consistency at
each node.

Theorem 10. Given equivalent branching heuristics, DP explores the same num-
ber of branches as nFC0 applied to the non-binary encoding.

Proof. We show how to take the proof tree explored by DP and map it onto a
search tree for nFCO with the same number of branches. The proof proceeds by
induction on the number of propositional variables. In the step case, consider
the first variable branched upon by DP. The proof divides into two cases. Either
this is a branching point (and we try both possible truth values). Or this is not a
branching point (and unit propagation makes this assignment). In the first case,
we can branch in the same way in nFCO. In the second case, forward checking
in nFCO will have reduced the domain of this variable to a singleton, and we
can also branch in the same way in nFC0. We now have a subproblem with one
fewer variable, and appeal to the induction hypothesis. The proof reverses in a
straightforward manner.

Theorem 11. Given equivalent branching heuristics, nFC1 applied to the non-
binary encoding strictly dominates DP.

Proof. Trivially nFC1 dominates nFCO0. To show strictness, consider a 3-SAT
problem with all possible clauses in 3 variables: x1 V 2 V 3, ~x1 V 22 V x3,
I \Y L9 V£E3, L1 \Y L9 V;L'3, X1 V T2 \Y xr3, I V T2 \Y —r3, I \Y L9 \Y —-rs3,
—x1 V —xy V —x3. DP takes 4 branches to prove this problem is unsatisfiable
whatever branching heuristic is used. nFC1 by comparison takes just 2 branches.
Suppose we branch on z;. The binary projection of the non-binary constraints
on x1, ¥o and x3 onto x; and x> is the empty (unsatisfiable) constraint. Hence,
forward checking causes a domain wipeout.

5 Encoding CSPs into SAT

We now consider mappings in the reverse direction. There are two common ways
to encode a (binary) CSP as a SAT problem.

Direct encoding: We associate a propositional variable, x;; with each value
J that can be assigned to the CSP variable X;. We have clauses that ensures
each CSP variable is given a value: for each i, z;; V ... z;,. We optionally have
clauses that ensure each variable takes no more than one values: for each i, j, k
with j # k, -@;; V —x;. Finally, we have (binary) clauses that rule out any
(binary) nogoods. For example, if X; = 2 and X3 = 1 is not allowed then we
have the clause —x12 V —x31.

Log encoding: We have n[log,(m)] propositional variables. The propositional
variable z;; is set iff the CSP variable X; is assigned a value in which the j-th
bit is set. We have a clause for each (binary) nogood. For example, if X; = 2 and



X3 = 1is not allowed, and each CSP variable has the domain {0, 1, 2,3} then we
have the clause x19 V =11 V 20 V o1 (which is logically equivalent to (—z19 A
x11) = —(—wa9 Axe21)). Note that we do not need clauses to ensure that each CSP
variable is given a value, nor to ensure that each CSP variable is given only one
value (any complete assignment for the propositional variables corresponds to an
assignment of a single value to each CSP variable). If [log,(m)] > log,(m) then
we also have clauses that rule out (spurious) values at the top of each domain.
For example, if variable X; has only 3 values, then we have a clause -3 V —x31
which prohibits us assigning a fourth value to Xj.

5.1 Direct encoding

We first prove that enforcing arc-consistency on the original problem does more
work than unit propagation on the direct encoding.

Theorem 12.

1. If unit propagation commits to particular truth assignments on the direct
encoding, then enforcing arc-consistency on the original problem eliminates
all contradictory values.

2. If unit propagation generates the empty clause in the direct encoding then
enforcing arc-consistency on the original problem causes a domain wipeout
(but the reverse does not necessarily hold).

Proof. 1. Suppose unit propagation makes a sequence of assignments: {1, Iz, ...[;.
The proof uses induction on j. Consider the final assignment [. Unit propagation
makes this assignment because [ occurs in a clause in which all the other literals
have been assigned to false. The proof divides into three cases. If the clause
is of the form z; V ...z, then, by the induction hypothesis, enforcing arc-
consistency eliminates from the domain of X; all but the value assigned by .
Hence all contradictory values have been eliminated for X;. If the clause is of the
form —z;; V -y, and (without loss of generality) | = —x;; then, by the induction
hypothesis, enforcing arc-consistency eliminates the value g from the domain of
Xp. Hence, enforcing arc-consistency on the constraint associated with the clause
x5 V p, eliminates j from the domain of X;. Hence all contradictory values
have been eliminated for X;. Finally, if the clause is of the form —z;; V -z
where j # k and (without loss of generality) | = —;; then X; has been assigned
the value k (and so cannot be assigned the contradictory value 7).

2. Unit propagation generates an empty clause if there is a clause, I; V ...l
in the direct encoding in which unit propagation assigns each literal I; to false.
The proof divides into three cases. If the clause is of the form x;; V ... x;,, then,
by the first result, enforcing arc-consistency on the direct encoding eliminates all
contradictory values. Hence X; has a domain wipeout. The other two cases are
similar. To show that the reverse may not hold, consider a CSP in two variables
and two values in which there is a binary constraint ruling out every possible as-
signment. The direct encoding of this problem does not contain any unit clauses
so unit propagation does nothing. However, enforcing arc-consistency causes a
domain wipeout.



With equivalent branching heuristics, DP applied to the direct encoding ex-
plores the same size search tree as the forward checking algorithm FC applied
to the original problem. DP is, however, dominated by MAC. Given equivalent
branching heuristics, DP applied to the direct encoding also explores the same
size search tree as the nFC0 algorithm applied to a non-binary problem. DP is
again dominated by nFC1.

Theorem 13. Given equivalent branching heuristics, DP applied to the direct
encoding explores the same number of branches as FC applied to the original
problem.

Proof. We show how to take the proof tree explored by DP and map it onto a
search tree for FC with the same number of branches. The proof proceeds by
induction on the number of propositional variables. In the step case, consider
the first variable branched upon by DP. The proof divides into two cases. Either
this is a branching point (and we try both possible truth values). Or this is
not a branching point (and unit propagation makes this assignment). In the
first case, we can branch in the same way in FC. In the second case, forward
checking in FC will have reduced the domain of this variable to a singleton, and
we can also branch in the same way in FC. We now have a subproblem with one
fewer variable, and appeal to the induction hypothesis. The proof reverses in a
straightforward manner.

Theorem 14. Given equivalent branching heuristics, MAC applied to the orig-
inal problem strictly dominates DP applied to the direct encoding.

Proof. MAC trivially dominates DP applied to the direct encoding since MAC
dominates FC which itself dominates DP applied to the direct encoding. To show
strictness, consider again the CSP in two variables and two values in which each
possible assignment is ruled out. MAC solves this without search whilst DP takes
two branches on the direct encoding.

5.2 Log encoding

We first prove that unit propagation on the log encoding is less effective than
unit propagation on the direct encoding. As enforcing arc-consistency on the
original problem is more effective than unit propagation on the direct encoding,
it follows by transitivity that enforcing arc-consistency on the original problem
is more effective than unit propagation on the log encoding.

Theorem 15.

1. If unit propagation commits to particular truth assignments on the log en-
coding, then unit propagation commits to the same truth assignments on the
direct encoding.

2. If unit propagation generates the empty clause in the log encoding then unit
propagation generates the empty clause in the direct encoding then (but the
reverse does not necessarily hold).



Proof. 1. Suppose unit propagation makes a sequence of assignments in the
log encoding: Iy, I3, ...l;. The proof uses induction on j. Consider the final
assignment [. Unit propagation makes this assignment because ! occurs in a
clause in which all the other literals have been assigned to false. By construction,
this will assign [log,(m)] (i.e. all) bits associated with one CSP variable and
[log,(m)] —1 (i.e. all but one) bits associated with another. That is, one variable
will have a value assigned, By the induction hypothesis, unit propagation will
have assigned the propositional variable associated with this value to true. Hence,
unit propagation on the clause associated with this nogood will set the other
variable (and thus its last bit).

2. Unit propagation generates an empty clause in the log encoding if there is
a clause, l; V...l in which unit propagation assigns each literal /; to false. This
means that two CSP variables are effectively assigned values which contradict the
nogood associated with this clause. By the first result, enforcing arc-consistency
on the direct encoding makes the same assignments. Hence unit propagation on
the direct encoding also generates an empty clause. To show that the reverse may
not hold, consider a CSP in two variables, the first with one value, the second
with four values, all o incompatible with the first value. Then unit propagation
on the direct encoding generates the empty clause, but not on the log encoding.

With equivalent branching heuristics, the forward checking algorithm FC ap-
plied to the original problem strictly dominates DP applied to the log encoding.
To simplify the proof, we assume that the branching heuristic in FC enumerates
values in (numerical) order. The ability of FC to assign values in any order gives
it an even greater edge over DP applied to the log encoding.

Theorem 16. Given equivalent branching heuristics, FC applied to the original
problem strictly dominates DP applied to the log encoding.

Proof. We map the search tree explored by FC onto a proof tree for DP with at
least as many branches. The proof proceeds by induction on the number of CSP
variables. In the step case, consider the first variable z; branched upon by FC.
We assume FC orders the values for this variable numerically. We branch in DP
on z;p then @1, ... Tin0g,(m))- We now have a CSP subproblem with one fewer
variable, and appeal to the induction hypothesis. To show strictness, consider a
CSP in two variables, both with 3 values, in which all pairs of assignments are
nogood. FC will take 3 branches to show that the problem is insoluble. DP on
the log encoding will take 8 branches since both bits for one variable and one
bit for the second variable must be set before we generate the empty clause.

6 Related work

Bennaceur studied the literal encoding for encoding SAT problems as CSPs
[Ben96]. He proved that enforcing arc-consistency on the literal encoding is
equivalent to unit propagation. We re-prove this result and extend it to arc-
inconsistency. Bennaceur also proved that a CSP is arc-consistent iff its literal



encoding has no unit clauses, and strong path-consistent iff it has no unit or
binary clauses. The direct encoding of a CSP into a SAT problem appears in
[dK89]. Génisson and Jégou proved that, with suitable branching heuristics, DP
is equivalent to FC applied to the direct encoding [GJ96].

Apt has also looked at propagation rules for Boolean constraints [A99].
He proves an equivalence between Boolean constraint propagation and unit
propagation, and between Boolean constraint propagation and generalized arc-
consistency. Our results complete the triangle, characterizing the relationship
between generalized arc-consistency and unit propagation.

Frisch and Peugniez studied the performance of local search procedures like
WalkSAT on encodings of non-Boolean formulae into propositional satisfiability
[FP99]. The unary and binary encodings studied there are closely related to the
direct and log encodings of CSPs into SAT problems studied here.

Bacchus and van Beek present a study of encodings of non-binary CSPs into
binary CSPs [BvB98]. The dual and hidden variable encodings studied here can
be constructed by composing the non-binary encoding of SAT problems into
non-binary CSPs, with the dual and hidden variable encodings of non-binary
CSPs into binary CSPs. Bacchus and van Beek’s work is limited to the FC
algorithm and a simple extension called FC+. Stergiou and Walsh look at the
maintenance of higher levels of consistency, in particular arc-consistency within
these encodings [SW99]. They prove that arc-consistency on the dual encoding
is strictly stronger than arc-consistency on the hidden variable, and this itself is
equivalent to generalized arc-consistency on the original non-binary CSP.

7 Conclusions

We have performed a comprehensive study of mappings between constraint satis-
faction problems (CSPs) and propositional satisfiability (SAT). We analysed four
different mappings of SAT problems into CSPs: the dual, hidden variable, literal
and non-binary encodings. We proved that achieving arc-consistency on the dual
encoding does more work than unit propagation on the original SAT problem,
whilst achieving arc-consistency on the hidden variable and literal encodings
does essentially the same work. We then extended these results to algorithms
that maintain some level of arc-consistency during search like FC and MAC, and
DP which performs unit propagation at each search node. DP strictly dominates
FC applied to the dual encoding, is incomparable to MAC applied to the dual
encoding, explores the same number of branches as MAC applied to the hidden
variable encoding, and strictly dominates MAC applied to the literal encoding.
We also analysed two different mappings of CSPs into SAT problems: the di-
rect and log encodings. We proved that unit propagation on the direct encoding
does less work than achieving arc-consistency on the original problem, but more
work than unit propagation on the log encoding. DP on the direct encoding
explores the same size search tree as FC applied to the original problem, but is
strictly dominated by MAC. By comparison, DP on the log encoding is strictly
dominated by both FC and MAC applied to the original problem.



What general lessons can be learned from this study? First, the choice of
encoding can have a large impact on the level of consistency achieved. For in-
stance, the dual encoding allows us to achieve higher levels of consistency than
the literal encoding. Second, the choice of encoding also has a large impact on
the branching structure of our search trees. In particular, the dual and literal
encodings require us to branch using a variable ordering based upon the clauses.
DP applied to the original SAT problem can therefore sometimes beat MAC
applied to the dual encoding. Fourth, whilst a clearer picture of the relationship
between SAT problems and CSPs is starting to emerge, there are several ques-
tions that remain unanswered. For example, how do local search methods like
GSAT and Min-Conflicts compare on these different encodings?
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