Breaking Value Symmetry

£

Toby Walsh
NICTA and UNSW
Sydney, Australia
tw@cse.unsw.edu.au

Abstract

Symmetry is an important factor in solving many
constraint satisfaction problems. One common
type of symmetry is when we have symmetric val-
ues. We can eliminate such value symmetry either
statically by adding constraints to prune symmetric
solutions or dynamically by modifying the search
procedure to avoid symmetric branches. We show
that either method has computational limitations.
With static methods, pruning all symmetric values
is NP-hard in general. With dynamic methods, we
can take exponential time on problems which static
methods solve without search. Finally, we consider
a common type of value symmetry, that due to in-
terchangeable values, where polynomial methods
have been proposed to break symmetries. We show
that despite these theoretical limitations, the meth-
ods proposed to break the symmetries introduced
by interchangeable values are both effective in the-
ory and in practice.

1 Introduction

Many search problems contain symmetries. Symmetry oc-
curs naturally in many problems (e.g. if we have identical
machines to schedule, or identical jobs to process). Sym-
metry can also be introduced when we model a problem
(e.g. if we name the elements in a set, we introduce the
possibility of permuting their order). Unfortunately, sym-
metries increases the size of the search space. We must
therefore try to eliminate symmetry or we will waste much
time visiting symmetric solutions, as well as those parts
of the search tree which are symmetric to already visited
states. One common type of symmetry is when values are
symmetric. For example, if we are assigning colors (val-
ues) to nodes (variables) in a graph coloring problem, we

*NICTA is funded by the Australian Government’s Department
of Communications, Information Technology and the Arts and the
Australian Research Council DCITA and ARC through Backing
Australia’s Ability and the ICT Centre of Excellence program.
Thanks to Chris Jefferson and Jean-Francois Puget for useful com-
ments. A shorter version of this paper without experimental results
appears in the Proceedings of the 13th International Conference on
Principles and Practices of Constraint Programming (CP-2007).

can uniformly swap the names of the colors throughout a
coloring. As a second example if we are assigning nurses
(values) to shifts (variables) in a rostering problems, and
two nurses have the same skills, we may be able to inter-
change them uniformly throughout the schedule. For a prob-
lem with value symmetries, all symmetric solutions can be
eliminated in polynomial time [Roney-Dougal et al., 2004;
Puget, 2005]. However, as we show here, pruning all sym-
metric values is NP-hard in general. Nevertheless, methods
that have been proposed, like those in [Law and Lee, 2004;
Puget, 2005; Aloul, 20061, appear to be effective at dealing
with common types of value symmetry.

2 Background

A constraint satisfaction problem consists of a set of vari-
ables, each with a domain of values, and a set of constraints
specifying allowed combinations of values for given sub-
sets of variables. Variables take one value from a given fi-
nite set. A solution is an assignment of values to variables
satisfying the constraints. Symmetry occurs in many con-
straint satisfaction problems. A value symmetry is a permuta-
tion of the values that preserves solutions. More formally, a
value symmetry is a bijective mapping, o of the values such
that if X; = dy,...,X,, = d, is a solution then X; =
o(dy),..., X, = o(dy) is also. For example, suppose we
wish to assign colors (values) to nodes (variables) in a graph
coloring problem. This problem has a value symmetry that
permits us to interchange any two colors uniformly through-
out a coloring. A variable symmetry, on the other hand, is a
permutation of the variables that preserves solutions. More
formally, a variable symmetry is a bijective mapping, 6 of
the indices of variables such that if X; = dq,..., X,, = d,
is a solution then Xg(1) = di,..., Xg(,) = d, is also. For
example, suppose we wish to assign times (values) to exams
(variables) in an exam scheduling problem and we have two
exams taken by the same set of students. This variable sym-
metry permits us to interchange the two exams.

Symmetries are problematic as they increase the size of
the search space. For instance, if we have m interchangeable
values, symmetry increases the size of the search space by a
factor of m!. The set of symmetries of a constraint satisfac-
tion problem form a group under composition. In this work,
we place no restrictions on the type of group. In particular,
we are not restricted to products of the symmetry group, .S,,.

However, we do assume that the symmetries of the constraint
satisfaction problem are known in advance. For instance, if
we are coloring a graph and use a straight forward model with
variables for nodes and values for colors, we know that the
values are fully interchangeable. A number of methods have
been developed to find symmetries in a constraint satisfaction
problem automatically.

Many constraint solvers explore the space of partial assign-
ments enforcing some local consistency. We consider three
local consistencies. Given a constraint C, a support is assign-
ment to each variable of a value in its domain which satisfies
C. A constraint is generalized arc consistent (GAC) iff for
each variable, every value in its domain belongs to a support.
A set of constraints is GAC iff each constraint is GAC. On bi-
nary constraints, GAC is simply called arc consistency (AC).
A set of binary constraints is singleton arc consistent (SAC)
iff we can assign every variable with each value in its domain
and make the resulting problem arc consistent (AC). Finally,
a set of binary constraint is k-consistent iff each k — 1 as-
signment can be consistently extended to a kth variable, and
is strongly k-consistent iff it is j-consistency for all j < k.
We will compare local consistency properties applied to sets
of constraints, ¢; and co which are logically equivalent. As in
[Debruyne and Bessiere, 19971, a local consistency property
® on ¢; is as strong as ¥ on ¢y iff, given any domains, if ®
holds on ¢; then ¥ holds on cz; ® on ¢y is stronger than ¥ on
co iff @ on ¢; is as strong as ¥ on ¢, but not vice versa; ¢ on
c1 is equivalent to ¥ on ¢ iff ® on c; is as strong as ¥ on ¢,
and vice versa.

3 Static methods

One simple and common mechanism to deal with symme-
try is to add constraints which eliminate symmetric solutions
[Puget, 1993]. Suppose we have a set X of value symme-
tries. Based on [Crawford et al., 1996], we can eliminate
all symmetric solutions by posting a global constraint which
ensures that the solution is ordered lexicographically before
any of its symmetries. More precisely, we post the global
constraint VALSYMBREAK(X, [X1, ..., X,,]) which ensures
[X1,..., Xn] <ilex [0(X1),...,0(Xy)] for all o € ¥ where
X1 to X, is a fixed ordering on the variables and o (X;) rep-
resents the action of the symmetry o on the value assigned to
X;. Unfortunately, pruning all values from such a symmetry
breaking constraint is NP-hard.

Theorem 1 Deciding if VALSYMBREAK(X, [X1,..., X,])
is GAC is NP-complete, even when |X| is linearly bounded.

Proof: Membership in NP follows by giving a support for
every possible assignment. To prove it is NP-hard, we give a
reduction from a 3-SAT problem in /N Boolean variables and
M clauses. We construct a CSP with N + M + 1 variables
over 4N + 2 possible values. The first 4N values partition
into 2NV interchangeable pairs. The values 47 — 3 and 47 — 2
are interchangeable, as are 4¢ — 1 and 44 for 1 < ¢ < N. The
values 47 — 3 and 47 — 2 represent the SAT variable z; being
true, whilst the values 47 —1 and 4: represent the SAT variable
x; being false. The final two values, 4N 4 1 and 4N + 2 are
not interchangeable. The first N CSP variables represent a
“truth assignment”. We have X; € {4i—3,4i—2,4i— 1,41}

for1 <4 < N. The next M CSP variables ensure at least one
literal in each clause is true. For example, if the ¢th clause is
x; V —xy V a;, then the domain of Xy, is {45 — 3,45 —
2,4k — 1,4k, 41 — 3,41 — 2}. The final variable Xy 741
is a “switch” and has the domain {4N + 1,4N + 2}. Note
that if a value is in the domain of a variable then so is every
symmetry of this value.

We have two sets of constraints. First, we have the binary
constraints odd(X N4 ar4+1) — odd(X;) for 1 < i < N and
odd(Xnyri1) — even(Xn4;) for 1 < j < M. Second,
we have the constraints odd(X y4ar41) — PHP(N,N +1)
and even(Xnir41) — PHP(N,N) where PHP(i,j) is
a pigeonhole constraint which holds iff the variables X to
X, take j distinct values. Note that PHP(N,N + 1) is
unsatisfiable and that PH P(N, N) is satisfiable. Thus, the
constructed CSP is unsatisfiable if X741 = 4N + 1 and
satisfiable if Xn1a/41 = 4N + 2. Note that if we take any
solution of the CSP and permute any of the interchangeable
values, we still have a solution. Thus, if X is the set of sym-
metries induced by these interchangeable values, it is permis-
sible to add VALSYMBREAK (Y, [X1,..., X,]) to this con-
straint satisfaction problem to eliminate value symmetry.

Suppose our branching heuristic sets the switch variable
XNim+1 to 4N + 1. Enforcing AC on the binary con-
straints prunes the domains of X; to {4i — 3,47 — 1} for
1 < ¢ < N. Similarly, the domain of Xy, is re-
duced to {4j — 2,4k, 4l — 2}. Consider now finding a sup-
port for VALSYMBREAK given this particular subproblem.
Now, VALSYMBREAK(X, [X7, ..., X,,]) ensures that the in-
terchangeable values first appear in order. In particular, Xy ;
can only take the value 45 — 2 if X; had previously been as-
signed 45 — 3. In other words, X x,; can only take the value
4j — 2 if z; is set to true in the “truth assignment”. Simi-
larly, X y4; can only take the value 4k if X} had previously
been assigned 4k — 1. In other words, X ; can only take
the value 4k if xzj, is set to false in the “truth assignment”.
Finally, X ; can only take the value 4/ — 2 if X; had pre-
viously been assigned 4/ — 3. In other words, X y; can only
take the value 4] — 2 if x; is set to true in the “truth assign-
ment”. Thus, at least one of the literals in the 7th clause must
have been set to true in the “truth assignment”. Hence, there
is a support for VALSYMBREAK iff the original 3-SAT prob-
lem is satisfiable. By Theorem 3, |X| can be linearly bound.
O

This is a somewhat surprising result. Whilst it is poly-
nomial to eliminate all symmetric solutions either statically
[Puget, 2005] or dynamically [Roney-Dougal et al., 20041,
it is NP-hard to lookahead and prune all symmetric values.
Equivalently, whilst we can avoid visiting symmetric leaves
of the search tree in polynomial time, avoiding symmetric
subtrees is NP-hard.

4 Dynamic methods

An alternative to static methods which add constraints to
eliminate symmetric solutions are dynamic methods which
modify the search procedure to ignore symmetric branches.
For example, with value symmetries, the GE-tree method dy-
namically eliminates all symmetric solutions from a back-

tracking search procedure in O(n*log(n)) time [Roney-
Dougal et al., 2004]. However, as we show now, such dy-
namic methods may not prune all the symmetric values which
static methods can do. Suppose we are at a particular node
in the search tree explored by the GE-tree method. Con-
sider the current and all past variables seen so far. The GE-
tree method can be seen as performing forward checking on
a static symmetry breaking constraint over this set of vari-
ables. This prunes symmetric assignments from the domain
of the next branching variable. Unlike static methods, the GE-
tree method does not prune deeper variables. By comparison,
static symmetry breaking constraints can prune deeper vari-
ables, resulting in interactions with the problem constraints
and additional domain prunings. For this reason, static sym-
metry breaking methods can solve certain problems exponen-
tially quicker than dynamic methods.

Theorem 2 There exists a model of the pigeonhole problem
in n variables and n + 1 interchangeable values such that,
given any variable and value ordering, the GE-tree method
explores O(2™) branches, but which static symmetry breaking
methods can solve in just O(n?) time.

Proof: The n + 1 constraints in the CSP are \/|_, X; = j
for 1 < j <n+ 1, and the domains are X; € {1,...,n+ 1}
for 1 < i < n. The problem is unsatisfiable by a simple
pigeonhole argument. Any of the static methods for break-
ing value symmetry presented later in this paper will prune
n + 1 from every domain in O(n?) time. Enforcing GAC
on the constraint \/;_; X; = n + 1 then proves unsatisfiabil-
ity. On the other hand, the GE-tree method irrespective of the
variable and value ordering, will only terminate each branch
when n — 1 variables have been assigned (and the last vari-
able is forced). A simple calculation shows that the size of
the GE-tree more than doubles as we increase n by 1. Hence
we will visit O(2™) branches before declaring the problem is
unsatisfiable. O

This theoretical result supports the experimental results in
[Puget, 2005] showing that static methods for breaking value
symmetry can outperform dynamic methods. Given the in-
tractability of pruning all symmetric values in general, we
focus in the rest of the paper on a common and useful type of
value symmetry where polynomial symmetry breaking meth-
ods have been proposed: we will suppose that values are or-
dered into partitions, and values within each partition are uni-
formly interchangeable.

5 Generator symmetries

One way to propagate VALSYMBREAK is to decom-
pose it into individual lexicographical ordering constraints,
[X1,..., Xn] <lex [0(X1),...,0(X,)] and use one of the
propagators proposed in [Puget, 2006] or [Walsh, 2006al.
Even if we ignore the fact that such a decomposition may hin-
der propagation (see Theorem 2 in [Walsh, 2006al), we have
to cope with X, the set of symmetries being exponentially
large in general. For instance, if we have m interchangeable
values, then ¥ contains m! symmetries. To deal with large
number of symmetries, Aloul et al. suggest breaking only
those symmetries corresponding to generators of the group

[Aloul er al., 2002]. Consider the generators which inter-
change adjacent values within each partition. If the m val-
ues partition into k classes of interchangeable values, there
are just m — k such generators. We prove here that break-
ing just these generator symmetries eliminates all symmetric
solutions. Thus, we have identified a special class of symme-
tries where using just generators is complete.

Theorem 3 If 3 is a set of symmetries induced by inter-
changeable values, and X, is the set of generators cor-
responding to interchanging adjacent values then posting
VALSYMBREAK(Xy, [X1,..., X,)]) eliminates all symmet-
ric solutions.

Proof: Assume VALSYMBREAK(X,, [X1,...,X,]). Con-
sider any two interchangeable values, j and k where 7 < k,
Let o; € X, be the symmetry which swaps just j with j + 1.
To ensure [X1,...,X,] <iex [0;(X1),...,0,(Xy,)], j must
occur before j + 1 in X; to X,,. By transitivity, j there-
fore occurs before k. Thus, for the symmetry o’ which swaps
just j with &, [X1,..., X,] <iex [0'(X1),...,0"(Xy)]. Con-
sider now any symmetry o € 3. The proof proceeds by con-
tradiction. Suppose [X1,..., X»] >1ex [0(X1),...,0(X5)]-
Then there exists some j with X; > o(X;) and X; =
o(X;) for all ¢ < j. Consider the symmetry o’
which swaps just X; with o(X;). As argued before,
[X1,..., Xn] <iex [0'(X1),...,0'(X,)]. But this contra-
dicts [X1,...,Xn] >lex [0(X1),...,0(X,)] as o and o’
act identically on the first j variables in X; to X,,. Hence,
(X1, Xo] <jex [0(X1),...,0(X,)]. O

Not surprisingly, reducing the number of symmetry break-
ing constraints to linear is not without consequence. Whilst
restricting symmetry breaking to just these generators elimi-
nates all symmetric solutions, we may not necessarily prune
all symmetric values. Equivalently, whilst restricting symme-
try breaking to just these generators eliminates all symmetric
leaves of the search tree, we may not necessarily avoid all
symmetric subtrees.

Theorem 4 If 3 is a set of symmetries induced by inter-
changeable values, and Y, is the set of generators cor-
responding to interchanging adjacent values then GAC on
VALSYMBREAK(X, [X1,..., X,]) is stronger than GAC on
[(X1,..., Xn] <iex [0(X1),...,0(Xy)] forall o € X,

Proof: Clearly it is at least as strong. To show it is
stronger, suppose all values are interchangeable with each
other. Consider X; = 1, Xy, € {1,2}, X3 € {1,3},
X4 € {1,4} and X5 = 5. Then enforcing GAC on
VALSYMBREAK(X, [X1,...,X5]) prunes 1 from X5, Xj
and X4. However, [X1,..., X5] <jex [0(X1),...,0(X5)]
isGACforallo € 3,. . O

Itis not hard to see that there are other sets of generators for
the symmetries induced by interchangeable values which do
not necessarily eliminate all symmetric solutions (e.g. with
the generators which interchange the value 1 with any ¢, we
do not eliminate either the assignment X; = 1, Xy = 2 or
the symmetric assignment X; = 1, X5 = 3). Thus we have
shown that the choice of generators is important.

6 Puget’s decomposition

With value symmetries, a second method that eliminates all
symmetric solutions is a decomposition due to [Puget, 2005].
Consider a surjection problem (where each value is used at
least once) with interchangeable values. We can channel into
dual variables, Z; which record the first index using the value
J by posting the binary constraints: X; = j — Z; < ¢ and
Zij=1— X; =jforalll <i<n,1<j < m. Wecan
then eliminate all symmetric solutions by insisting that inter-
changeable values first occur in some given order. That is, we
place strict ordering constraints on the Z; within each class
of interchangeable values. Puget notes that any problem can
be made into a surjection by introducing m additional new
variables, X,,+1 to X,,+,,, where X,,;; = i. These variables
ensure that each value is used at least once. In fact, we don’t
need additional variables. It is enough to ensure that each Z;
has a dummy value, which means that j is not assigned, and to
order (dummy) values appropriately. Unfortunately, Puget’s
decomposition into binary constraints hinders propagation.

Theorem S If X is a set of symmetries in-
duced by interchangeable values, then GAC on
VALSYMBREAK(Y, [X1,...,X,]) is stronger than AC
on Puget’s decomposition into binary constraints.

Proof: It is clearly at least as strong. To show it is stronger,
suppose all values are interchangeable with each other. Con-
sider X1 = 1, Xo € {1,2}, X5 € {1,3}, Xy € {3,4},
Xs = 2, Xe =3, X7 = 4,721 =1, Zo € {2,5},
Z3 € {3,4,6}, and Z4 € {4,7}. Then all Puget’s symme-
try breaking constraints are AC. However, enforcing GAC on
VALSYMBREAK(Y, [X7, ..., X5]) will prune 1 from Xo. O

If all values are interchangeable with each other, we only
need to enforce a slightly stronger level of local consistency
to prune all symmetric values. More precisely, enforcing sin-
gleton arc consistency on Puget’s binary decomposition will
prune all symmetric values.

Theorem 6 If all values are interchangeable and ¥ is
the set of symmetries induced by this then GAC on
VALSYMBREAK(Y, [X1,..., X,]) is equivalent to SAC on
Puget’s decomposition into binary constraints.

Proof: Suppose Puget’s encoding is AC. We will show that
there is at least one support for VALSYMBREAK. We assign
Z1 to Zp, in turn, giving each the smallest remaining value
in their domain, and enforcing AC on the encoding after each
assignment. This will construct a support without the need
for backtracking. At each choice point, we ensure that a new
value is used as soon as possible, thus giving us the most
freedom to use values in the future. Suppose now that Puget’s
encoding is SAC. Then, by the definition of SAC, we can
assign any variable with any value in its domains and be sure
that the problem can be made AC without a domain wipeout.
But if the problem can be made AC, it has support. Thus
every value in every domain has support. Hence enforcing
SAC on Puget’s decomposition ensures that VALSYMBREAK
is GAC. O

We might wonder if singleton arc-consistency is enough
for arbitrary value symmetries. That is, does enforcing SAC
on Puget’s encoding prune all symmetric values? We can

prove that no fixed level of local consistency is sufficient.
Given the intractability of pruning all symmetric values in
general, this result is not surprising.

Theorem 7 For any given k, there exists a value symme-
try and domains for which Puget’s encoding is strongly k-
consistent but is not k + 1-consistent.

Proof: We construct a CSP problem with 2k + 1 variables
over 2(k + 1) possible values. The 2(k + 1) values partition
into k£ + 1 pairs which are interchangeable. More precisely,
the values ¢ and k411 are interchangeable for 1 <13 < k+1.
The first k variables of the CSP have k + 1 values between
them (hence, one value is not taken). More precisely, X; €
{#,1+ 1} for 1 < i < k. The remaining k + 1 variables then
take the other k + 1 values. More precisely, X;4; = k+1-+1¢
for 1 < i < k+ 1. The values 1 to k& + 1 need to be used by
the first k£ variables, X to X}, so that the last k + 1 variables,
X410 Xo(41) can use the values £+2 to 2(k+1). But this
is impossible by a pigeonhole argument. Puget’s encoding of
this is strongly k-consistent. since any assignment of £ — 1 or
less variables can be extended to an additional variable. On
the other hand, enforcing k + 1-consistency will discover that
the CSP has no solution. O

Finally, we compare this method with the previous method
based on breaking the symmetries corresponding to the gen-
erators which interchange adjacent values.

Theorem 8 If 3 is a set of symmetries induced by inter-
changeable values, and Y, is the set of generators inter-
changing adjacent values then AC on Puget’s decomposi-
tion for ¥ is stronger than GAC on [Xi,...,X,] <iex
[0(X1),...,0(Xy)] forall o € ¥,

Proof: Suppose Puget’s decomposition is AC. Consider the
symmetry o which interchanges j with j + 1. Consider any
variable and any value in its domain. We show how to con-
struct a support for this assignment. We assign every other
variable with j if it is in its domain, otherwise any value other
than j + 1 and failing this, j + 1. Suppose this is not a support
for [X1,...,Xn] <iex [0(X1),...,0(X,)]. This means that
in the sequence from X; to X,,, we had to use the value j + 1
before the value j. However, as Puget’s decomposition is AC,
there is a value in the domain of Z; smaller than Z; ;. This
contradicts j + 1 having to be used before j. Hence, this must
be a support. Thus [X1, ..., X,] <iex [0(X1),...,0(X,)] is
GACforall o € ¥,. To show that AC on Puget’s decomposi-
tion is stronger consider again the example used in the proof
of Theorem 4. The lexicographical ordering constraint for
each generator o € X, is GAC without any domain pruning.
However, enforcing AC on Puget’s decomposition prunes 1
from X5, X5 and X,. O

7 Value precedence

A third method to eliminate all symmetric solutions in-
duced by interchangeable values uses the global prece-
dence constraint [Law and Lee, 2004]. The constraint
PRECEDENCE([X71,..., X,]) holds iff min{i | X; = jVi=
n+1} < min{i | X; = kVi=mn+2}foralj < k.
That is, the first time we use j is before the first time we
use k for all j < k. Posting such a precedence constraint

eliminates all symmetric solutions due to interchangeable val-
ues. In [Walsh, 2006b], a GAC propagator for such a prece-
dence constraint is proposed which takes O(nm) time. It is
not hard to show that PRECEDENCE([X7, ..., X,;]) is equiva-
lent to VALSYMBREAK(X, [X1, ..., X,]). Hence, enforcing
GAC on such a precedence constraint prunes all symmetric
values in polynomial time.

Precedence constraints can also be defined when values
partition into more than one interchangeable class. We just
insist that the values within each class first occur in a fixed
order. In [Walsh, 2006b], a propagator for such a prece-
dence constraint is proposed which takes O(n [], m;) time
where m; is the size of the ith class of interchangeable values.
Whilst this prunes all symmetric values, it is only polynomial
if we can bound the number of classes of interchangeable val-
ues. This complexity is now not surprising. We have shown
that pruning all symmetric values is NP-hard when the num-
ber of classes of interchangeable values is unbounded.

8 Breaking variable and value symmetry

Variable symmetries can also be broken statically by post-
ing constraints. Following [Crawford er al., 1996], we can
eliminate all symmetric solutions with a global constraint
which ensures that the solution is ordered lexicographically
before any of the symmetries of the solution. More pre-
cisely, give a set of variable symmetries ©, we can elimi-
nate all symmetric solutions with a global constraint which
ensures [X1,..., Xn] <jex [Xoa1),-.., Xom] forall € ©
where X; to X,, is a fixed ordering on the variables. Prun-
ing all values from such a symmetry breaking constraint is
NP-hard in general [Crawford et al., 1996; Bessiere et al.,
2004]. Consider, for example, a model of the rehearsal prob-
lem (prob039 in CSPLib) where we have a variable for each
time slot whose value is the piece to rehearse. This model has
a variable symmetry as we can invert any rehearsal scheduling
without violating any constraints. This is equivalent to swap-
ping X; with X,,_;4+1. We eliminate this symmetry by post-
ing the constraint: [X1,..., X,] <jex [Xn,...,X1]. Such
variable symmetry breaking constraints are consistent with
the value symmetry breaking constraints discussed here. We
must, however, ensure that all are based on the same fixed
variable ordering. Whilst we can consistently post both vari-
able and value symmetry breaking constraints, this may not
eliminate all symmetric solutions resulting from the interac-
tion of variable and value symmetry (see, for example, Theo-
rem 3 in [Walsh, 2006al).

9 Experimental results

We now compare these value symmetry breaking methods ex-
perimentally. Puget has shown that his static symmetry break-
ing method significantly outperforms the dynamic GE-tree
method. We therefore look at just the three static methods.

Generator symmetries: we post lexicographical ordering
constraints for the generators of the symmetry group that
interchange adjacent values and enforce GAC using a
linear time propagator [Walsh, 2006a].

Puget’s decomposition: we enforce AC using the solver’s
built-in propagators.

Value precedence: we post a single global value precedence
constraint and enforce GAC using a linear time propa-
gator [Walsh, 2006b].

Graph coloring

As in an earlier study of interchangeable values [Law and
Lee, 20061, we experimented with graph coloring problems
from the DIMACS benchmark suite. We use a straight for-
ward model with one decision variable for each vertex. The
values represent colors and are completely interchangeable.
We coded the graph coloring problems in BProlog and ran
them on a PowerPC 1GHz G4 processor with 1.25 GB RAM.
Table 1 gives results. There is little to choose between the
different symmetry breaking methods. However, the genera-
tor symmetry method is never fastest on any problem so can
perhaps be excluded on these grounds. Although the differ-
ences between Puget’s method and the global value prece-
dence constraint are slight, breaking symmetry using a global
value precedence constraint solves the most problems within
the 2 hour time-out. It also often has the fewest branches or
the shortest runtime.

We will make some additional observations about these re-
sults. On the fifth problem DSJC125. 1, we actually find
the optimal coloring faster without any symmetry breaking
constraints. We conjecture that symmetry breaking in this
case is conflicting with the branching heuristic. However, this
problem is exceptional and symmetry breaking constraints
are usually essential to be able to prove optimality within the
2 hour time-out. On the final problem ash331GPIA, we
also find the optimal coloring and prove optimality quicker
without symmetry breaking constraints. However, when we
have an additional color available, the symmetry breaking
constraints help keep the branching heuristic on track.

Note that as the number of colors (and thus the number
of interchangeable values) increases, we see greater bene-
fits using the global value precedence constraint compared
to Puget’s method or using generator symmetries. With the
largest number of interchangeable values, the global value
precedence constraint can be up to two orders of magni-
tude faster at reaching its fixed point than the other symme-
try breaking methods. Finally, whilst the different symmetry
breaking methods in theory prune the search tree differently,
this is only seen on a few problem instances.

9.1 nbyn queens

As in the first experiment on value symmetry breaking in
[Puget, 2005], we used a simple model of the n by n queens
problem. The aim is to color each square in a n by n chess-
board with one of n colors so that no line (row, column or
diagonal) has the same color twice. This is equivalent to find-
ing n non-intersecting solutions to the n-queens problems.
This is a difficult combinatorial problem. The existence of
a solution for n = 12 was open until recently. We model
this with n? variables, each with n possible values, and an all
different constraint along each line. The model has 8 vari-
able symmetries corresponding to the rotations and reflec-
tions of the chessboard. We break these by posting the or-
dering constraints: X7 < X,, X1 < X2 5,41, Xi < X2
and Xy < X,,+1. The model also has n! value symmetries as

problem colors value symmetry breaking
vertices/ k none generator symmetries Puget’s method value precedence
edges b t b t b t b t
myciel5 4 6,264 0.31 261 0.08 261 0.04 261 0.06
47/236 5 43,001,880 1,334.71 | 286,994 53.66 286,994 16.41 286,994 21.45
6* 1 0.01 1 0.02 1 0.02 1 0.01
GEOM50_5a 7 5,504 0.89 3,047 0.83 4,928 0.33
50/238 8 61,430 7.81 61,430 10.24 65,398 3.11
9" 1 0.01 25 0.03 257 0.03 1 0.01
R50_5gb8 8 3,047 1.57 3,047 0.83 3,061 0.41
50/612 9 92,302 48.59 92,202 19.98 95,685 12.11
10" 2 0.01 1,901 0.89 1,897 0.43 2,139 0.26
queen8_8 7 5,040 0.31 0 0.04 0 0.04 0 0.03
64/1456 8 149,573 159.09 149,573 25.89 149,573 15.87
9* 12,674 0.71 12,674 8.31 12,674 1.83 12,674 1.40
DSJC125.1 4 1,463 0.15 3,093 0.92 3,093 0.84 3,094 0.89
125/736 5 79,990 5.69 | 401,777 290.58 401,777 77.40 408,691 110.30
6" 1 0.03 1 0.06 1 0.07 3 0.04
miles250 3 6 0.03 11 0.05 11 0.06 11 0.05
128/774 4 26,542,104 1,674.00 770 0.17 770 0.44 770 0.12
5 73,666 11.68 73,666 34.24 73,666 7.20
mulsol.i.l 23 5,040 14.66 5,040 8.58 5,040 1.52
197/3925 24 40,320 133.15 40,320 71.73 40,320 14.90
25 7,869,767 6,971.80 362,880 129.76
26 3,628,800 886.12
schooll 13 762 209.83 762 13.82 762 50.46
385/19095 14 2,358 1,079.66 2,358 27.14 2,358 56.71
15* 130 29.95 130 3.81 105 3.16
fpsol2.i.2 22 720 4.14 720 71.01 720 0.77
451/8691 23 5,040 20.00 5,040 292.47 5,040 2.23
24 40,320 133.55 40,320 1,517.75 40,320 14.38
25 362,880 126.86
ash331GPIA 3 24 0.43 4 0.47 4 0.77 4 0.49
662/4185 4" 1,563 1.01 67,952 26.90 67,952 18.04 67,952 16.71
5 125,240 47.15 3,815 3.51 3,815 2.86 3,815 2.06
TOTALS
Instances solved/total 15/32 29/32 30/32 32/32
Best method/instances 9/32 10/32 20/32 0/32 22/32 4/32 23/32 20/32
Average (solved by all) 4,585,083 204.30 51,952 25.71 51,967 7.95 52,427 10.26
Average (all solved) 4,585,083 204.30 43,430 77.25 304,231 306.52 175,873 46.24

Table 1: Graph coloring problems: branches and time in seconds to find a proper coloring or prove one does not exist. Blank
entries are problems not solved in 2 hours. Colorings marked with * are optimal, “Best method/instances” is the fraction of
instances on which the method is best, “(solved by all)” is the average over the 15 instances all methods solve before the
time-out, whilst “(all solved)” is the average over all instances solved by the given method.

all colors are interchangeable. We break these with one of the
three methods mentioned above.

Results are given in Table 2. To look in more detail at the
propagation, we ran this experiment using SICSTUS 3.12.7.
This also provides statistics on the number of domain prun-
ings performed in propagating constraints. For n = 5 and 7,
there is an unique solution up to symmetry. For n = 6 and 8§,
there are no solutions. Despite the theoretical differences be-
tween the three static symmetric breaking methods identified
in Theorems 4 and 5, we see no difference in the size of the
search trees explored on these n by n queens problems. The
specialized propagator for value precedence is, however, two
or so times faster than Puget’s method which itself is two or
so time faster than the generator symmetry method. The more
detailed statistics suggest that the value precedence constraint
often reaches the same fixed point as Puget’s method but with
fewer domain prunings.

10 Related work

Puget proved that symmetric solutions can be eliminated by
the addition of suitable constraints [Puget, 1993]. Craw-
ford et al. presented the first general method for construct-
ing variable symmetry breaking constraints [Crawford et al.,
1996]. To deal with large number of symmetries, Aloul
et al. suggest breaking only those symmetries correspond-
ing to generators of the group [Aloul er al., 2002]. Aloul
et al. also improved the runtime of this method by reduc-
ing the size of a CNF encoding of such a symmetry break-
ing constraint from quadratic to linear [Aloul et al., 2003].
Petrie and Smith adapted this symmetry breaking method to
value symmetries by posting a suitable lexicographical or-
dering constraint for each value symmetry [Petrie and Smith,
2003]. Puget and Walsh independently proposed propagators
for such value symmetry breaking constraints [Puget, 2006;
Walsh, 2006a]. To deal with the exponential number of
such value symmetry breaking constraints, Puget proposed
a global propagator which does forward checking in polyno-
mial time [Puget, 2006].

To eliminate symmetric solutions due to interchangeable
values, Law and Lee formally defined value precedence for
finite domain and set variables and proposed a specialized
propagator for a pair of interchangeable values [Law and Lee,
2004]. Walsh extended this to a propagator for any num-
ber of interchangeable values [Walsh, 2006b]. Value prece-
dence enforces the so-called “lowest index color ordering”
which eliminates value symmetry in graph coloring problems
[Aloul, 2006]. Finally, an alternative way to break value sym-
metry statically is to convert it into a variable symmetry by
channelling into a dual viewpoint and using lexicographical
ordering constraints on this dual view [Flener et al., 2002;
Law and Lee, 2006].

A number of dynamic methods have been proposed to deal
with value symmetry. Van Hentenryck et al. gave a labelling
schema for eliminating all symmetric solutions due to inter-
changeable values [Hentenryck et al., 2003]. Inspired by this
method, Roney-Dougal ef al. gave a polynomial method to
construct a GE-tree, a search tree without value symmetry
[Roney-Dougal et al., 2004]. Finally, Sellmann and van Hen-

tenryck gave a O(nd>5 + n?d?) dominance detection algo-
rithm for eliminating all symmetric solutions when both vari-
ables and values are interchangeable [Sellmann and Henten-
ryck, 2005].

11 Conclusion

Value symmetries can be broken either statically (by adding
constraints to prune symmetric solutions) or dynamically
(by modifying the search procedure to avoid symmetric
branches). We have shown that both approaches have com-
putational limitations. With static methods, we can elimi-
nate all symmetric solutions in polynomial time but prun-
ing all symmetric values is NP-hard in general (or equiva-
lently, we can avoid visiting symmetric leaves of the search
tree in polynomial time but avoiding symmetric subtrees is
NP-hard). With dynamic methods, we typically only per-
form forward checking and can take exponential time on
problems which static methods solve without search. We
have studied a common type of value symmetry where val-
ues are interchangeable and static methods are polynomial.
We considered three different symmetry breaking constraints
for interchangeable values: lexicographical ordering con-
straints based on generators of the symmetry group, sym-
metry breaking constraints proposed by Puget [Puget, 2005],
and a specialized precedence constraint [Law and Lee, 2004;
Walsh, 2006b]. We have shown that despite theoretical dif-
ferences in their ability to prune symmetric values, the three
methods appear to explore very similar search spaces in prac-
tice. However, the specialized propagator offers runtime sav-
ings by reaching its fixed point quicker. There are many open
questions raised by this research. For example, are there other
types of symmetry where all symmetric values can be pruned
tractably? Are there other types of symmetry where it is
enough to use just generators?

References

[Aloul et al., 2002] F.A. Aloul, A. Ramani, I. Markov, and
K.A. Sakallah. Solving difficult SAT instances in the pres-
ence of symmetries. In Proceedings of the Design Automa-
tion Conference, pages 731-736, 2002.

[Aloul et al., 2003] F.A. Aloul, K.A. Sakallah, and IL.
Markov. Efficient symmetry breaking for Boolean satis-
fiability. In Proceedings of the 18th International Joint
Conference on Al, pages 271-276. International Joint Con-
ference on Artificial Intelligence, 2003.

[Aloul, 2006] F.A. Aloul. Breaking instance-independent
symmetries in exact graph coloring. Journal of Artificial
Intelligence Research, 26:289-322, 2006.

[Bessiere et al., 2004] C. Bessiere, E. Hebrard, B. Hnich,
and T. Walsh. The complexity of global constraints. In
Proceedings of the 19th National Conference on Al. Amer-
ican Association for Artificial Intelligence, 2004.

[Crawford ef al., 1996] J. Crawford, G. Luks, M. Ginsberg,
and A. Roy. Symmetry breaking predicates for search
problems. In Proceedings of the 5th International Con-

ference on Knowledge Representation and Reasoning, (KR
’96), pages 148-159, 1996.

problem value symmetry breaking

n none generator symmetries Puget’s method value precedence

c b P t c b P t c b P t c b P t
4 22 7 219 0.01 444 1 628 0.02 399 1 591 0.02 156 1 317 0.00
5 28 59 2,781 0.02 928 2 1,651 0.02 782 2 1,251 0.03 253 2 601 0.02
6 34 3949 200,395 0.65 1,654 30 9,624 0.07 1,335 30 7,245 0.07 358 30 3,611 0.02
7 40 882,813 53,528,368 170.75 2,686 838 278,678 1.20 2,104 838 193,901 0.67 481 838 130,695 0.28
8 4,078 148,564 54,091,553 238.52 3,125 148,564 36,865,615 119.83 622 148,564 19,899,573 50.12
9

Table 2: n by n queens problem: constraints posted, branches, domain prunings and time to find all solutions in secs using the
fail first heuristic. Blank entries are problems not solved in 1 hour. Results are similar to find first solution.

[Debruyne and Bessiere, 1997] R. Debruyne and
C. Bessicre. Some practicable filtering techniques
for the constraint satisfaction problem. In Proceedings
of the 15th IJCAI, pages 412-417. International Joint
Conference on Artificial Intelligence, 1997.

[Flener et al., 2002] P. Flener, A. Frisch, B. Hnich, Z. Kizil-
tan, I. Miguel, J. Pearson, and T. Walsh. Breaking row and
column symmetry in matrix models. In 8th International
Conference on Principles and Practices of Constraint Pro-
gramming (CP-2002). Springer, 2002.

[Hentenryck et al., 2003] P. Van Hentenryck, M. Agren,
P. Flener, and J. Pearson. Tractable symmetry breaking for
CSPs with interchangeable values. In Proceedings of the
18th International Conference on Al. International Joint
Conference on Artificial Intelligence, 2003.

[Law and Lee, 2004] Y.C.Law and J.H.M. Lee. Global con-
straints for integer and set value precedence. In Pro-
ceedings of 10th International Conference on Principles
and Practice of Constraint Programming (CP2004), pages
362-376. Springer, 2004.

[Law and Lee, 2006] Y.C. Law and J.M.H. Lee. Symmetry
Breaking Constraints for Value Symmetries in Constraint
Satisfaction. Constraints, 11(2-3):221-267, 2006.

[Petrie and Smith, 2003] Karen E. Petrie and Barbara M.
Smith. Symmetry Breaking in Graceful Graphs. Techni-
cal Report APES-56a-2003, APES Research Group, June
2003.

[Puget, 1993] J.-F. Puget. On the satisfiability of symmetri-
cal constrained satisfaction problems. In J. Komorowski
and Z.W. Ras, editors, Proceedings of ISMIS’93, LNAI
689, pages 350-361. Springer-Verlag, 1993.

[Puget, 2005] J-F. Puget. Breaking all value symmetries in
surjection problems. In P. van Beek, editor, Proceedings of
11th International Conference on Principles and Practice
of Constraint Programming (CP2005). Springer, 2005.

[Puget, 2006] J-F. Puget. An efficient way of breaking value
symmetries. In Proceedings of the 21st National Con-
ference on Al. American Association for Artificial Intel-
ligence, 2006.

[Roney-Dougal et al., 2004] C. Roney-Dougal, 1. Gent,
T. Kelsey, and S. Linton. Tractable symmetry breaking us-
ing restricted search trees. In Proceedings of ECAI-2004.
1OS Press, 2004.

[Sellmann and Hentenryck, 2005] M. Sellmann and P. Van
Hentenryck. Structural symmetry breaking. In Proceed-
ings of 19th IJCAI. International Joint Conference on Ar-
tificial Intelligence, 2005.

[Walsh, 2006a] T. Walsh. General symmetry breaking con-
straints. In 12th International Conference on Princi-
ples and Practices of Constraint Programming (CP-2006).
Springer-Verlag, 2006.

[Walsh, 2006b] T. Walsh. Symmetry breaking using value
precedence. In Proceedings of the 17th ECAI. European
Conference on Artificial Intelligence, IOS Press, 2006.

