
Calculating Criticalities�A. Bundy1 F. Giunchiglia2;3 R. Sebastiani4 T. Walsh2;41Dept of AI, University of Edinburgh, Edinburgh EH1 1HN, Scotland.2IRST, Povo, 38100 Trento, Italy.3University of Trento, Via Inama 5, 38100 Trento, Italy.4DIST, University of Genoa, Viale Causa 15A, 16146 Genova, Italy.A.Bundy@ed.ac.uk, fausto@itc.it, rseba@mrg.dist.unige.it, toby@itc.itAbstractWe present a novel method for building Abstrips style ab-straction hierarchies in planning. The aim of this method is tominimize search by limiting backtracking both between abstrac-tion levels and within an abstraction level. Previous approachesfor building Abstrips style abstractions have determined the crit-icality of operator preconditions by reasoning about plans directly.Here, we adopt a simpler and faster approach where we use nu-merical simulation of the planning process. We develop a simplebut powerful theory to demonstrate the theoretical advantages ofour approach. We use this theory to identify some simple proper-ties lacking in previous approaches but possessed by our method.We demonstrate the empirical advantages of our approach by a setof four benchmark experiments using the AbTweak system. Wecompare the quality of the abstraction hierarchies generated withthose built by the Alpine and Highpoint algorithms.�Authors are listed in alphabetical order. The �rst author is supported by EPSRCgrant GR/J/80702, and the last by a HCM personal fellowship. We thank Qiang Yangfor assistance with AbTweak and Highpoint, and Alessandro Coglio for assistancewith the proof of the rate of convergence of the simpli�ed Probability model.1

1 IntroductionAbstraction is a powerful heuristic for tackling combinatorial complexity.Informally, it can be described as the process of mapping a representationof a problem (often called the \ground", or \concrete", representation)onto a new representation (often called the \abstract" representation)which is simpler to handle [GW92]. This process can be iterated to give ahierarchy of abstract spaces. The aim of abstracting a problem is to factorthe search space into a set of smaller sub-spaces, ordered hierarchicallyby the amount of detail within them. We can then search locally withineach of these spaces. We re�ne the solution between levels by patch-ing the steps which do not go through. Abstraction may not, however,always reduce runtime (for example, see [BJ95]). Whilst the various over-heads (e.g. generating the abstract space) usually have a minor impact[GW91], \thrashing" between and within abstraction levels can result inpoor performance. For instance, in order to prove a goal at one level, itmay be necessary to undo goals satis�ed at the upper levels. This causesbacktracking between levels. Such backtracking can increase runtime ex-ponentially [Giu96]. Determining a good abstraction is therefore vital.The goal of this paper is to propose a general methodology for buildingabstractions automatically which minimize search by limiting both theamount of backtracking within and between abstraction levels.The paper is structured as follows. In Section 2 we describeAbstripsstyle abstractions and previous work in this area. We identify how Ab-strips style abstractions can reduce search in Section 3. We then de�nethe theoretical properties that a method for building such abstractionsshould possess in Section 4. In Section 5, we propose a simple family ofmethods for building Abstrips style abstractions based upon two simpleoperators for adding together criticalities. In Section 6 we prove that thisfamily of methods has all the theoretical properties identi�ed in Section4. We then propose two methods for building abstractions based uponthis framework in Section 7. We illustrate how our methods compute crit-icalities by means of four examples in Section 8. We show the empiricaladvantages of our methods in Section 9 using a set of four benchmark ex-periments with the AbTweak system. In each experiment, we comparethe quality of the abstraction hierarchies generated with those built bytwo state of the art algorithms. Finally, we end with conclusions (Section10). Some parts of this paper appear in [BGSW96].2

2 ABSTRIPSA planning problem is de�ned by the goal to be achieved, a set of factstrue in the initial state, and a set of operators. Operators are describedby a set of preconditions (i.e. a set of conditions which must be true forthe operator to be applicable) and a set of e�ects. E�ects are dividedinto adds (i.e. a set of facts which become true) and deletes (i.e. aset of facts which become false). In addition, one e�ect is labeled as theprimary e�ect of an operator. Unsupervised preconditions are those thatare not the e�ects of any operator. See Appendix A for some examplesof operators.In an Abstrips style abstractions, operator preconditions are rankedaccording to a criticality [Sac73]. The i-th abstract space is constructedby ignoring preconditions with rank i or less. To re�ne a plan at thei-th level, we need to achieve those preconditions of rank i (for a formalde�nition of Abstrips style abstractions using Green's situation calculus[Gre69] see [GW92]). Abstrips style abstractions can give an exponen-tial speed-up in the time needed to build a plan [Kno90, GW91]. However,as mentioned in the introduction, if we have to backtrack, abstraction cangreatly increase the time to �nd a plan. The \downward re�nement prop-erty" [BY94] removes the need to backtrack between abstraction levels asevery abstract plan can be re�ned to a concrete plan. Unfortunately, rel-atively few abstraction hierarchies possess this property. In practice, wetry to build abstractions which limit the amount of backtracking betweenabstraction levels but do not preclude it altogether.Previous approaches for building Abstrips style abstractions havereasoned about plans directly. For example, in Abstrips [Sac73] lowcriticalities were assigned to those preconditions which can be achievedwith short plans assuming all higher criticality preconditions are true.More recently, Alpine reasoned about operators to build abstractionhierarchies which satisfy the \ordered monotonicity" property [Kno94].In [BY94], Bacchus and Yang show that backtracking between abstrac-tion levels may be needed with such abstraction hierarchies. To reducesuch backtracking, they propose the Highpoint procedure. This re�nesthe abstraction hierarchies produced by the Alpine procedure using es-timates of the probability for successful re�nement. The abstractionsproduced by Highpoint are close to having the downward re�nementproperty (in the terminology of [BY94], they are \near-DRP") but maystill cause backtracking.We propose here a novel method for building Abstrips style abstrac-3

tions which is both fast and simple. Instead of reasoning about plansdirectly, we simulate the planning process numerically. The simplicityof this simulation allows us to impose two simple \monotonicity" condi-tions not guaranteed by previous methods. These conditions ensure thatharder preconditions are achieved at higher levels of abstractions. Thisgreatly limits the amount of backtracking. To test our method empiri-cally, we perform the complete set of experiments presented in [Kno94]and [BY94]. On each of these benchmark problems, our method gives hi-erarchies which o�er superior performance to those generated by both theAlpine and Highpoint algorithms. We have not yet found a problemdomain on which our method o�ers worse performance.3 Minimizing searchTo understand how abstraction can reduce search in planning, it is helpfulto visualize the search space associated with a planning problem. Thesearch space can be seen as a directed graph where nodes correspond tostates and arcs correspond to operator applications. A planning problemis then to �nd a path from an initial node to some target node. In whatfollows, we confuse nodes with states, arcs with operator applications andpaths with plans. The search space is a graph as there is usually morethan one path between two states.If we delete preconditions then we construct a new abstract searchspace. Finding a plan in the abstract search space is typically easier than�nding it in the ground space as there is no need to check for the deletedpreconditions. Indeed, the graph corresponding to the abstract spaceusually has more paths between the initial and target nodes. There areboth more arcs (new operators become applicable) and more nodes (newstates become achievable that are impossible in the ground space).To re�ne a plan, we must satisfy the deleted preconditions. Considera single precondition, p deleted from an operator op (our argument willgeneralize to multiple preconditions). Suppose our plan applies the oper-ator to a given state s. There are two possibilities. If p holds in s thenwe are done. Alternatively if p does not hold then we need to �nd a planfrom s to a new state in which p holds. In addition, we hope that we donot clobber any other preconditions along the way. Abstraction therebyrestricts search in the ground space to just the subset of paths which passthrough s.If we cannot �nd a plan to satisfy the deleted precondition p, then4

we will have to backtrack to the abstract space and �nd an alternativepath between the initial and target nodes. If there are many alternativepaths, we can spend exponentially more time backtracking than planningwithout abstraction in the original ground space. To limit the amountof backtracking between and within abstract spaces, we therefore wantto ensure that the hardest precondition are satis�ed as soon as possible.In other words, we abstract the hardest preconditions in just the mostabstract space. This agrees with Sacerdoti's original proposal.\... literals omitted will be those that are \details" in the sensethat a simple plan can be found to achieve them once the more\critical" literals have been achieved ..." [Sac73]However, unlike Sacerdoti, we do not consider short plans to be \simple"plans. A classic example is found in the manufacturing domain of [SP92,PS93] (see Sections 4 and 9.4 for more details). The goal of shaping,drilling and painting a steel object has a short plan but this is di�cultto �nd. Simple plans are those that are easy to �nd. As it is usuallytoo expensive to run a planner exhaustively and compare the cost of�nding di�erent plans, we need some method for approximating the costof �nding a plan. In the rest of this paper, we outline a methodology fordoing this based upon simulating the planning process numerically using\criticality functions".4 Criticality functionsTo make �nding the cost of plans easier, we make two simplifying assump-tions. First, we assume that we are building abstractions for a changingworld. We therefore consider just the operators, ignoring the speci�c goalto be achieved and the facts which happen to be true in the initial state.Our methods could, however, be generalized to take into account boththe goal and those facts true in the initial state. Second, to simplify thenumerical simulation, we apply a \granularity" abstraction [GW92] whichdeletes the arguments to literals. Again, this simpli�cation could be liftedif it proved necessary for a particular domain. It is not necessary in anyof the benchmark problems tested in Section 9.Given a set of operators, Ops, we compute the criticality of the oper-ator precondition, p by successive approximation. At the n-th iteration,the criticality function C(p; n) returns the numerical criticality of p. Thisconverges to a limiting value as we iterate n. The intuition is that the5

easier it is to achieve p, the smaller the numerical criticality of p shouldbe. We collect together the limiting numerical criticalities of the samevalue to give the sets Si. We then order these sets using less than, givingS0 < ::: < Sm. Following [Sac73], the criticality of a precondition, p isthe index i such that p 2 Si. In the i-th level of abstraction, we dropall preconditions of criticality i or less. We thereby achieve the hardestpreconditions in the most abstract space.We impose various restrictions on criticality functions. There are sev-eral obvious computational properties required like totality (every precon-dition must have a single criticality) and convergence (numerical criticali-ties must converge to some limiting value). There are also various domaindependent properties. For example, criticality functions should be orderindependent. That is, they should not depend on the order we presentthe operators or their preconditions. This is why we described operatorsand their preconditions as sets. Criticality functions also ought to treatsymmetric preconditions symmetrically. If swapping the precondition pfor the precondition q merely reorders the operators then p and q are saidto be symmetric preconditions.De�nition 1 (Symmetry) If p and q are symmetric preconditions thenthen C(p; n) = C(q; n).Whilst this property (and indeed all the following properties) are onlyactually required of the �nal limiting numerical criticalities, insisting thatthe property holds at each iteration n is a small burden and makes proofsmuch easier. We also demand that criticality functions treat equivalente�ects equivalently. Let Pre(op) be the preconditions of the operator opand Ops(p) be the subset of operators which have p as primary e�ects.We say that a set of operators, S is equivalent to a set of operators, T i�jSj = jT j (that is, the sets are the same size) and for any op1 2 S thereis some op2 2 T with Pre(op1) = Pre(op2) and vice versa.De�nition 2 (Precondition equivalence) If Ops(p) is equivalent toOps(q) then C(p; n) = C(q; n).To reduce backtracking, we demand that the numerical criticality of aprecondition decreases with the number of operators which achieve it(operator monotonicity), and increases with the number of preconditionsto operators which achieve it (precondition monotonicity).De�nition 3 (Operator monotonicity) If Ops(p) is equivalent to asubset of Ops(q) then C(p; n) � C(q; n).6

We say that a set of operators, S is subsumed by a set of operators, T i�jSj = jT j and for any op1 2 S there is some op2 2 T with Pre(op1) �Pre(op2). Note that if S is equivalent to T then S is subsumed by T andT is subsumed by S.De�nition 4 (Precondition monotonicity) If Ops(p) is subsumed byOps(q) then C(p; n) � C(q; n).If operator monotonicity is satis�ed, hard preconditions (those that areprimary e�ects of few operators) will be proved in the higher abstractionlevels. This will tend to minimize backtracking. Similarly, if preconditionmonotonicity is satis�ed, hard preconditions (those primary e�ects of op-erators with many preconditions) will be proved in the higher abstractionlevels. Again this will tend to minimize the need to backtrack. Precondi-tion and operator monotonicity both imply precondition equivalence.Theorem 1 Precondition or operator monotonicity implies preconditionequivalence.Proof: In the �rst case, assume precondition monotonicity holds. IfOps(p) is equivalent to Ops(q) then Ops(p) is subsumed by Ops(q).Hence, by precondition monotonicity, C(p; n) � C(q; n). But by a sym-metric argument, C(q; n) � C(p; n). Thus C(p; n) = C(q; n). And thissatis�es precondition equivalence. A similar argument holds in the secondcase for operator monotonicity. 2Alpine and Highpoint generate abstraction hierarchies which failto satisfy these properties and therefore cause unnecessary backtracking.Consider, for example, the manufacturing domain of [SP92, PS93] listedin Appendix A. There are three operators which shape, drill and paintobjects. The �rst operator has a single precondition Object and hasShaped as its primary e�ect. The second operator also has the singleprecondition Object and has Drilled as its primary e�ect. The thirdoperator paints a steel object. It has Object and Steel as preconditionsand has Painted as its primary e�ect. Precondition monotonicity ensurethat the numerical criticality of Painted is greater or equal to that ofboth Shaped and Drilled. This agrees with our intuitions, as Paintedrequires an extra precondition. Alpine, by comparison, assigns Paintedthe lowest criticality. As we will see in Section 9, this can result in a largeamount of backtracking. 7

Note that the trivial criticality function which assigns every precondi-tion the same numerical criticality satis�es every one of these properties.This corresponds to no abstraction levels. We therefore maximize thenumber of abstraction levels by treating the \greater than or equal to"relations derived from the monotonicity properties as \strictly greaterthan" relations wherever possible. There are many non-trivial functionswhich satisfy these properties. However, these properties are often su�-cient to rank numerical criticalities. For example, the abstraction hier-archies generated by the methods proposed in the next Section for theexamples of Section 9 follow immediately from these properties.5 Additive criticality functionsWe can identify a family of solutions by interpreting C(p; n), the numeri-cal criticality of the precondition p as the di�culty of �nding a plan for pof depth 0 to n. To simplify presentation, we also introduce the numericalcriticality of the operator op, C(op; n) for n > 0. This is interpreted asthe di�culty of �nding a plan of depth 1 to n which ends with applicationof the operator op. Since the plan contains an application of op, it mustbe at least of depth 1.We now de�ne a family of additive criticality functions based uponthis interpretation. In the step case, the di�culty of �nding a plan for pof depth 0 to n is a function of the di�culty of �nding a plan of depth 0and of the di�culty of �nding plans of depth 1 to n ending in an operatorthat achieves p. And the di�culty of �nding a plan of depth 1 to n endingin the operator op is a function of the di�culty of �nding plans of depth 0to n�1 for the preconditions of op. In the base case (that is, at the zerothiteration), we assign all preconditions the same numerical criticality, a0.Our de�nition of an additive criticality function hinges upon two \ad-ditive" operators,
 and � used to add together numerical criticalities.The operator
 determines how the criticality of a precondition is com-puted as a function of the criticalities of the operators that achieve it. Bycomparison, the operator � determines how the criticality of an operatoris computed as a function of the criticalities of its preconditions.De�nition 5 (Additive criticality functions)1. C(p; 0) = a0;2. C(p; n) is non-negative; 8

3. there are two associative and commutative operators,
 and � with,C(p; n) = C(p; 0)
 C(op1; n)
 :::
 C(opm; n)C(op; n) = C(pre1; n� 1)� :::�C(prel; n� 1)where opi 2 Ops(p) and prei 2 Pre(op) and for y � z,x� y � x x
 y � xx� y � x� z x
 y � x
 z:Property 1 and 2 state that every precondition is given the same initialnumerical criticality, a0 � 0. This condition can be weakened to allowdi�erent initial values provided these initial values satisfy order indepen-dence, symmetry and precondition and operator monotonicity. Property3 is then su�cient to guarantee all the required properties like precondi-tion and operator monotonicity continue to hold at every iteration n.For precondition monotonicity to hold, an operator is harder if it hasmore preconditions. Since � is the operator for \adding" the numeri-cal criticalities of preconditions to an operator, we therefore require thatx � y � x. And an operator is easier if it has easier preconditions. Wetherefore also require that y � z implies x � y � x � z. For operatormonotonicity to hold, a precondition p is easier if we have more operatorsto achieve it. Since
 is the operator for \adding" the numerical criti-calities of operators that achieve p, we therefore require that x
 y � x.And a precondition is easier if the operators that achieve it are easier.We therefore also require that y � z implies x
 y � x
 z.6 Theoretical propertiesWe now show that additive criticality functions satisfy the theoreticalproperties identi�ed in Section 4. By simulating the planning processnumerically it is easy both to identify and to prove these properties. Itis more di�cult to guarantee such properties in previous approaches asthey reason directly with plans. To simplify proofs, we introduce somenotation for repeated application of
 and �. If the set S contains theelements, y1 up to yn then,x
y2S y = x
 y1
 :::
 yn�y2S y = y1 � :::� yn9

To show convergence, we �rst prove that, with an additive criticalityfunction, the numerical criticality of preconditions is monotonically de-creasing.Theorem 2 C(p; n+ 1) � C(p; n).Proof: By induction on n. In the base case,C(p; 1) = a0
op2Ops(p) C(op; 1)� a0= C(p; 0)Thus C(p; 1) � C(p; 0).In the step case,C(p; n+ 1) = a0
op2Ops(p) C(op; n + 1)= a0
op2Ops(p) (�q2Pre(op)C(q; n))By the induction hypothesis,C(q; n) � C(q; n� 1)By repeated application of such hypotheses and the fact that y � z impliesx� y � x� z,�q2Pre(op)C(q; n) � �q2Pre(op)C(q; n� 1)By repeated application of this result and the identity, y � z impliesx
 y � x
 z,C(p; n+ 1) = a0
op2Ops(p) (�q2Pre(op)C(q; n))� a0
op2Ops(p) (�q2Pre(op)C(q; n� 1))= C(p; n)Thus, C(p; n+ 1) � C(p; n). 2Numerical criticalities computed by an additive criticality function aretherefore bounded.Theorem 3 C(p; n) 2 [0; a0]. 10

Proof: By induction on n. In the base case, C(p; 0) = a0. In thestep case, the numerical criticality is monotonically decreasing. HenceC(p; n + 1) � C(p; n) � a0. But C(p; n) is non-negative by de�nition.Hence C(p; n) 2 [0; a0]. 2Note that both ends of this bound can be achieved.As a simple consequence of the last two theorems, the numerical crit-icality converges to a limiting value irrespective of the operators.Theorem 4 C(p; n) is convergent.Proof: Any bounded monotonically decreasing sequence is convergent.2 Just as importantly as convergence, additive criticality functions sat-isfy the other properties identi�ed in Section 4. They are order inde-pendent and symmetric since � and
 are associative and commutativeoperators. Additive criticality function also treat equivalent preconditionsequivalently.Theorem 5 C(p; n) is precondition equivalent.Proof: By cases. If n = 0, all preconditions are assigned the samenumerical criticality, a0. Equivalent preconditions therefore have the samenumerical criticality. If n > 0, we assume that p and q are equivalentpreconditions.C(p; n) = a0
op2Ops(p) (�r2Pre(op)C(r; n� 1))= a0
op2Ops(q) (�r2Pre(op)C(r; n� 1))= C(q; n)2 Additive criticality functions also satisfy both the monotonicity prop-erties. To simplify the inductive proof, we introduce a more general mono-tonicity property that subsumes both operator and precondition mono-tonicity.De�nition 6 (Monotonicity) If Ops(p) is subsumed by a subset of Ops(q)then C(p; n) � C(q; n). 11

The precondition p is more di�cult to achieve than the precondition q asthere are fewer operators for achieving p compared to q, and the operatorsfor achieving p each have more preconditions. Trivially, monotonicityimplies both operator and precondition monotonicity.Theorem 6 C(p; n) is monotonic.Proof: The proof uses induction on n. The base case is trivial as allpreconditions have the same numerical criticality, a0. In the step case, weassume that Ops(p) is subsumed by a subset of Ops(q). ThenC(p; n+ 1) = a0
op2Ops(p) (�r2Pre(op)C(r; n))We compare this term for term with,C(q; n+ 1) = a0
op2Ops(q) (�r2Pre(op)C(r; n))As Ops(p) is a subsumed by a subset of Ops(q), jOps(p)j � jOps(q)j.Hence C(p; n+1) has fewer terms in the
 repeated sum than C(q; n+1).As Ops(p) is subsumed by a subset of Ops(q), the preconditions of an op-erator achieving p are a superset of one of the operators achieving q. Thecommon terms in the
 repeated sum of C(p; n + 1) thus contain morerepeated � terms than the corresponding terms in the repeated
 sumof C(q; n+ 1). Thus, by repeated application of x � y � x, the commonterms in the repeated
 sum of C(p; n+ 1) never have a smaller numer-ical criticality than the corresponding terms in the repeated
 sum ofC(q; n+1). With fewer terms and common terms having a larger numer-ical criticality, by repeated application of x � x
 y and y � z implyingx
 y � x
 z, the repeated
 sum with fewer and larger terms never hasa smaller numerical criticality. Hence, C(p; n+ 1) � C(q; n+ 1). 2We could de�ne even more general properties which, instead of com-paring the preconditions to operators, merely compared the numericalcriticalities of the preconditions. For example, we say that a set of oper-ators, S is weakly equivalent to a set of operators, T i� for any op1 2 Sthere is some op2 2 T with the numerical criticalities of Pre(op1) equal tothe numerical criticalities of Pre(op2) and vice versa. Equivalence impliesweak equivalence but not vice versa. Similar de�nitions could be madefor weak subsumption, and weak precondition and operator monotonic-ity. All the theorems proved in this section would still hold under suchmore general de�nitions as the proofs depend just on the value of the12

numerical criticality of a precondition. Substituting a precondition fora di�erent one of the same numerical criticality will therefore leave theresult una�ected. However, as we demonstrate in the next sections, wedo not need such a generalization to build good abstractions hierarchiesfor our benchmark experiments.7 Two solutionsTo calculate criticalities, we now merely need to decide on a pair of as-sociative and commutative operators
 and � for \adding" criticalitiesthat satisfy the simple properties of an additive criticality function. Since
 and � are commutative, x
 y � x means that x
 y � min(x; y) andx � y � x means that x � y � max(x; y). One of the simplest solutionstreats these inequalities as equalities. That is, we de�ne,x
 y = min(x; y)x� y = max(x; y)The numerical criticality of a precondition is therefore the same as thatof the easiest operator that achieves it. And the numerical criticality ofan operator is the same as that of its hardest precondition. As min andmax satisfy Property 3 of the de�nition of an additive criticality function,this solution has all the required theoretical properties like operator andprecondition monotonicity. Unfortunately, it is not a very interestingsolution as C(p; n) = a0 for all p and n. We can obtain non-identicallimiting criticalities if we allow di�erent initial values. However, the �nallimiting criticalities will always have limited diversity as they must be asubset of the initial values. To get non-trivial solutions, we need morecomplex operators for
 and �. In Sections 7.1 and 7.2 we propose twonovel solutions. The �rst is based on an analogy with electrical resistancewhilst the second uses ideas from probability theory. We demonstratethese solutions are empirically useful in Section 9.7.1 The Resistor modelOur �rst solution is based upon the notion of \resistance to change" us-ing an analogy with electrical resistance. This solution �rst appeared in[BGSW96]. To capture the di�culty of achieving preconditions, we modelthem like resistors. The preconditions to an operator act like resistors inseries. Increasing the number of preconditions makes an operator harder13

to apply. Treating operator preconditions like resistors in series ensuresprecondition monotonicity is satis�ed. Operators with the same primarye�ects act like resistors in parallel. Increasing the number of operatorswith the e�ect p reduces the di�culty of achieving p since we have par-allel paths for achieving p. Treating operators with the same e�ects likeresistors in parallel ensures that operator monotonicity is satis�ed. Weshall refer to this as the Resistor model for computing criticalities.As with serial resistors, the numerical criticality of an operator is thussimply the sum of the numerical criticalities of its preconditions. Wetherefore de�ne, x� y = x+ y:As with electrical resistors in parallel, the numerical criticality of aprecondition is thus simply the parallel sum of the numerical criticalitiesof the operators with this precondition as primary e�ects. We thereforede�ne, 1x
 y = 1x + 1y :Or equivalently, x
 y = 11x + 1y :A simple induction shows that,1x1
 :::
 xn =Xi 1xi :The Resistor model therefore satis�es the following equations.C(p; 0) = a0 (1)1C(p; n) = 1C(p; 0) + Xop2Ops(p) 1C(op; n) (2)C(op; n) = Xp2Pre(op)C(p; n� 1) (3)Note that a0 always factors out of the �nal numerical criticalities. Therecursive nature of these de�nitions naturally leads to an iterative pro-cedure for computing numerical criticalities. The numerical criticalitiesde�ned by these equations are always rational numbers. Whilst the limit-ing value of a rational sequence can be irrational, in practice the limiting14

values are usually rational. For e�ciency, we compute the numerical crit-icalities to some prede�ned accuracy and terminate computation when aniteration produces no change to the values.We now show that this model is indeed an additive criticality function.It therefore satis�es all the theoretical properties identi�ed in Section 4like convergence and operator and precondition monotonicity.Theorem 7 The Resistor model is an additive criticality function.Proof: We need to verify that
 and � satisfy the de�nition of anadditive criticality function. Property 1 holds by de�nition. Property 2holds as numerical criticalities correspond to resistances, and so cannotbe negative. We thus merely need to check Property 3.The operator
 is trivially an associative and commutative operator.And x
 y = x+ y � x. If y � z then x
 y = x+ y � x+ z = x
 z.The operator � is trivially a commutative operator. It is an associativeoperator since,1(x
 y)
 z = 1x
 y + 1z = (1x + 1y) + 1z = 1x + (1y + 1z) = 1x + 1y
 z = 1x
 (y
 z) :As y cannot be negative, x
 y � x. In addition, if y � z then 1y � 1z andx
 y = 11x + 1y � 11x + 1z = x
 z:2 Previous methods have conventionally given unsupervised precondi-tions, those that cannot be changed by any operator, the maximum crit-icality. By Equation (1), unsupervised preconditions are assigned thenumerical criticality a0 at n = 0. By Equation (2), their numerical criti-cality remains at a0 for all subsequent n. In Section 6 we proved that a0is the largest numerical criticality possible for an additive criticality func-tion. Unsupervised preconditions are therefore assigned the maximumcriticality as required.Since the Resistor model is an additive criticality function it con-verges. Indeed convergence is typically very rapid. In the domains studiedin Section 8, each iteration adds approximately another decimal digit ofprecision. This suggests that the di�erence between criticalities at each15

iteration decreases by at least a constant factor. To explore this ana-lytically, we developed a simple model of the Resistor model in whicheach operator has m preconditions (that is, for any op, jPre(op)j = m)and each precondition can be achieved by l distinct operators (that is,for any p, jOps(p)j = l). This gives an and-or search tree in which m isthe and-branching and l is the or-branching. Under these assumptions,the numerical criticality of a precondition converges rapidly. In AppendixB, we show that the di�erence between successive iterations is O((l=m)n)for l < m, O(1=n2) for l = m, and O((m=l)n) for l > m. This supportsour empirical evidence that convergence is usually very rapid, and thatthe di�erence between successive iterations tends to decrease by at leasta constant factor with each iteration.7.2 The Probability modelOur second solution is based upon a probabilistic interpretation of C(p; n).We interpret C(p; n), the di�culty of a precondition p as the probabilitythat there does not exist a plan for p of depth 0 to n. As a simplifying as-sumption, we assume that these probabilities are statistically independentevents for di�erent p and n. Since the model is based on probabilities, weassume that the initial numerical criticality, a0 � 1.The preconditions to an operator behave probabilistically like con-junctive events since each must be simultaneously true. Increasing thenumber of events/preconditions increases the probability of a plan notexisting with this operator. By comparison, operators with the same pri-mary e�ects behave probabilistically like disjunctive events. Increasingthe number of events/operators with the same primary e�ect p reducesthe probability of a plan not existing that achieves p. We shall refer tothis as the Probability model for computing criticalities.As with independent and disjunctive events, the probability that noplan exists for a precondition is simply the product of the probabilitiesthat no plan exists for any of the operators which achieve it. We thereforede�ne, x
 y = x � yAs with independent and conjunctive events, the probability that no planexists for an operator with two preconditions is simply the sum of theprobabilities that no plan exists for the two preconditions less their prod-uct. We therefore de�ne, x� y = x+ y � x � y16

Or equivalently, (1� x� y) = (1� x) � (1� y)This equation demonstrates the duality between two conjunctive eventsnot occurring and two disjunctive events occuring. A simple inductionshows that, (1 � x1 � :::� xn) =Yi (1 � xi)The Probability model therefore satis�es the following equations.C(p; 0) = a0 2 [0; 1] (4)C(p; n) = C(p; 0) � Yop2Ops(p)C(op; n) (5)1 � C(op; n) = Yp2Pre(op)1 � C(p; n� 1) (6)We again prove that this is an additive criticality function. It thereforesatis�es all the theoretical properties identi�ed in Section 4 like conver-gence and operator and precondition monotonicity.Theorem 8 The Probability model is an additive criticality function.Proof: We need to verify that
 and � satisfy the de�nition of anadditive criticality function. Property 1 holds by de�nition. Property 2holds as numerical criticalities correspond to probabilities and so cannotbe negative. We thus merely need to check Property 3.The operator
 is trivially an associative and commutative operatorwith x
 y = x � y � x as 0 � y � 1. In addition, if y � z thenx
 y = x � y � x � z = x
 z.The operator � is trivially a commutative operator. It is also asso-ciative as,x� (y � z) = x+ (y � z)� x � (y � z)= x+ (y + z � y � z)� x � (y + z � y � z)= (x+ y � x � y) + z � (x+ y � x � y) � z= (x� y)� zIn addition, x� y = x + y � x � y = x + y � (1 � x) � x as (1 � x) � 0.And if y � z then x� y = x+ y � (1� x) � x+ z � (1� x) = x� z. 217

By Equation (4), unsupervised preconditions are assigned the numer-ical criticality a0 at n = 0. By Equation (5), their numerical criticalityremains at a0 for all subsequent n. Unsupervised preconditions are againassigned the maximum numerical criticality, a0 as required.One disadvantage of the Probability model over the Resistormodel is that the Probability model is more computationally expen-sive to compute. In addition, by repeatedly taking di�erences, errors maypropagate more easily in the computation. Interestingly, the initial valuea0 does not factor out of the calculations. Because of this sensitivity toinitial values, this model may be most useful when we allow precondi-tions to take di�erent initial numerical criticalities, perhaps according toan estimate of their probability of being true in the initial state. In thispaper, we compute numerical criticalities in the absence of any domainknowledge. We set a0 = 1=2 to re
ect our ambivalence about whether agiven preconditions holds in the initial state. With this value, the Prob-ability model gave very similar results to the Resistor model on thebenchmark problems.Since the Probability model is an additive criticality function itconverges. Convergence is again typically very rapid. In the domainsstudied in Section 8, each iteration adds at least another digit of precision.To explore this analytically, we used the same simple model as before inwhich each operator has m preconditions (that is, for any op, jPre(op)j =m) and each precondition can be achieved by l distinct operators (thatis, for any p, jOps(p)j = l). In Appendix B, we show that there exists� < 1 and m such that for n � m,jC(p; n+ 1)� C(p; n)jjC(p; n)� C(p; n� 1)j < �In other words, the di�erence between successive iterations decreases byat least a constant factor, � with each iteration.8 Test examplesWe will illustrate our approach by computing the numerical criticalitiesfor four benchmark domains using the Resistormodel. The Probabil-ity model computes the same abstraction hierarchies as the Resistormodel on these domains, taking a similar number of iterations to converge18

on the �nal numerical criticalities. For reasons of space, we therefore onlygive the computations of both the Resistor and Probability modelson the �rst domain. The criticalities computed on these domains aretested empirically in Section 9 using the AbTweak system. These ex-periments demonstrate that the abstraction hierarchies computed by theResistor and Probability models tend to minimize the amount ofbacktracking between abstraction levels. The operators for these fourdomains are given in Appendix A.8.1 Tower of HanoiThe representation of this well known problem consists of a single unsu-pervised precondition Is-peg, and three predicates On-small, On-mediumand On-large. There are three operators: one moves the large disk, an-other the medium size disk and the third the small disk. In Tables 1and 2, we give the numerical criticalities computed by the Resistor andProbability models for the di�erent preconditions in this domain. Ev-ery iteration gives approximately another decimal place of precision tothe computation.X C(X;n)=a0n = 0 n = 1 n = 2 n = 3 n = 4 n =1unsupervised 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000On-Large 1.0000 0.8750 0.8580 0.8561 0.8559 0.8559On-Medium 1.0000 0.8333 0.8125 0.8106 0.8104 0.8104On-Small 1.0000 0.7500 0.7333 0.7321 0.7321 0.7321Table 1: Numerical criticalities for the Tower of Hanoi domain using theResistor model.We group these numerical criticalities together, and order them usingthe less than relation. Both models gives the same abstraction hierarchy.On-Small is assigned the lowest criticality of 0, On-Medium is given acriticality of 1, On-Large is assigned a criticality of 2, and Is-peg isgiven the highest criticality of 3. This is in line with our intuitions for thisdomain. The operator for moving the medium disk subsumes the operatorfor moving the large disk since it is has strictly fewer preconditions. Thelarge disk is therefore more di�cult to move than the medium disk. Byprecondition monotonicity the criticality of On-Large is greater than that19

X C(X;n)=a0n = 0 n = 1 n = 2 n = 3 n = 4 n =1unsupervised 1.0000 1.000 1.0000 1.0000 1.0000 1.0000On-Large 1.0000 0.9922 0.9894 0.9889 0.9888 0.9889On-Medium 1.0000 0.9687 0.9592 0.9577 0.9575 0.9575On-Small 1.0000 0.8750 0.8593 0.8574 0.8572 0.8572Table 2: Numerical criticalities for the Tower of Hanoi domain using theProbability model.of On-Medium. Similarly the medium disk is more di�cult to move thanthe small disk. On-Medium is therefore given a greater criticality thatOn-Small.8.2 Robot-Box domainThis domain comes from [BY94] and is a variant of the well-known Ab-strips robot domain [Sac73]. The robot can either carry or pull boxesbetween one of six rooms. The doors connecting rooms may be eitheropen or closed. Closed doors may be either openable or not openable.A typical con�guration is given in Figure 1. In Table 3, we give the
Room1 Room2 Room3

Room5

robot
box

Room6
Door35

Door23

Door25

Door45

Door26

Door56 Room4

Door12

Figure 1: The robot-box domain.numerical criticalities computed by the Resistor model for the di�er-ent preconditions in this domain. The unsupervised preconditions are20

Connects, Is-Box, Is-Door, Is-Room, and Openable. As in the Tower ofHanoi domain, every iteration gives approximately another decimal placeof precision to the computation.X C(X;n)=a0n = 0 n = 1 n = 2 n = 3 n = 4 n =1unsupervised 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000Box-In-Room 1.0000 0.8000 0.7830 0.7812 0.7810 0.7810Open 1.0000 0.7500 0.7333 0.7321 0.7321 0.7321Loaded 1.0000 0.6667 0.6250 0.6190 0.6182 0.6182Attached 1.0000 0.6667 0.6250 0.6190 0.6182 0.6182Table 3: Numerical criticalities for the robot domain using the Resistormodel.As before, we group these numerical criticalities together, and orderthem using the less than relation. Attached and Loaded are assignedthe lowest criticality of 0, Open is given a criticality of 1, Box-In-Room isassigned a criticality of 2, and the unsupervised preconditions are givena criticality of 3. Again this is in line with our intuitions for the domain.The unsupervised preconditions cannot be changed so are the most im-portant. Getting a box into a given room is then the next most di�cultstate to achieve. Opening a door is the next most di�cult task to per-form. Finally, attaching and loading boxes have equivalent preconditionsand are equally easy to achieve.8.3 Computer hardwareThis domain has four operators which print �les, turn on devices, plugdevices into power outlets, and transfer �les onto computers [BY94]. InTable 4, we give the numerical criticalities computed by the Resistormodel for the di�erent preconditions in this domain. The unsupervisedpreconditions are CableCanReach, Functional, IsComputer, IsOutlet,and IsPrinter. As in the previous domains, every iteration gives ap-proximately another decimal place of precision to the computation.We group these numerical criticalities together, and order them us-ing the less than relation. Loaded is assigned the lowest criticality of 0,PowerOn is given a criticality of 1, PluggedIn is assigned a criticality of 2,Printed is given a criticality of 3 and the unsupervised preconditions are21

X C(X;n)=a0n = 0 n = 1 n = 2 n = 3 n = 4 n =1unsupervised 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000Printed 1.0000 0.8333 0.8000 0.7949 0.7946 0.7946PluggedIn 1.0000 0.6667 0.6667 0.6667 0.6667 0.6667PowerOn 1.0000 0.6667 0.6250 0.6250 0.6250 0.6250Loaded 1.0000 0.6667 0.6250 0.6190 0.6190 0.6190Table 4: Numerical criticalities for the computer hardware domain usingthe Resistor model.given the highest criticality of 4. This is again in line with our intuitionsfor this domain. The unsupervised preconditions cannot be changed somust be achieved in the most abstract space. The next hardest precon-dition to achieve is Printed since we must have a computer and printerturned on, and the �le to print loaded on the computer. As we must plugin a device before turning it on, PluggedIn is assigned a greater numericalcriticality than PowerOn. Finally, as loading a �le onto a computer is lessimportant than getting computers and printers plugged in and turned on,Loaded is given the lowest numerical criticality.8.4 ManufacturingWe return to the manufacturing domain of [SP92, PS93] in which there arethree operators which shape, drill and paint various objects from stock.Table 5 gives the numerical criticalities computed by theResistormodelfor the di�erent preconditions in this domain.Drilled and Shaped are assigned the lowest criticality of 0, Paintedis given a criticality of 1, and the unsupervised preconditions are giventhe highest criticality of 2. The Shaped and Drilled preconditions areequivalent and should be placed at the bottom of the abstraction hierar-chy. The Painted precondition appears above them as the operator forachieving it has an additional unsupervised precondition. By precondi-tion monotonicity, Painted is therefore given a greater criticality. Thishierarchy agrees with the suggestions of Smith and Peot in [SP92].22

X C(X;n)=a0n = 0 n = 1 n = 2 n =1unsupervised 1.0000 1.0000 1.0000 1.0000Painted 1.0000 0.6667 0.6667 0.6667Shaped 1.0000 0.5000 0.5000 0.5000Drilled 1.0000 0.5000 0.5000 0.5000Table 5: Numerical criticalities for the manufacturing domain using theResistor model.9 Empirical resultsTo demonstrate the empirical advantages of the criticalities computedby the two models, we ran a set of four benchmark experiments usingthe AbTweak system [YTW96], a state-of-the-art non-linear plannercombining Abstrips style abstractions [Sac73] with Tweak-style partial-order planning [Cha87]. In each experiment, we compared the quality ofthe abstraction hierarchies generated by the Resistor and Probabil-ity models with those built by the Alpine and Highpoint algorithms[Kno94, BY94]. These are two of the best available procedures for gen-erating abstraction hierarchies. Recall that the abstraction hierarchiescomputed by the Probability model on these four examples were iden-tical to those computed by the Resistor model. The results of thissection therefore also apply to the Probability model (except that theCPU time needed to compute the criticalities is, of course, slightly di�er-ent).The four experiments use standard benchmark problems taken fromthe literature. The �rst domain appears in [Kno94] and [YTW96]. Thenext three are presented in [BY94]. We either repeated exactly thesame experiments (for example, in the manufacturing domain), or we runthem in a more exhaustive manner (for example, in the robot-box do-main). We used two di�erent measurements to evaluate the performanceof AbTweak with the di�erent abstraction hierarchies: CPU time andthe number of nodes expanded. The later is often a more reliable mea-surement of performance. All experiments were on a SUN Sparc 10 work-station with 32Mbytes RAM running compiled Allegro CL 4.2 underthe Solaris 2 operating system1.1Code used in these experiments can be found at ftp://ftp.mrg.dist.unige.it/23

9.1 Tower of HanoiThe goal is to move a pile of three disks of di�erent sizes from one pegto another using a third intermediate peg. At no time is a larger diskallowed to sit on a smaller one. Recall that the representation consists ofan unsupervised type predicate Is-peg, and three predicates On-small,On-medium and On-large. Alpine, Highpoint and Resistor all pro-duced the same abstraction hierarchy in which preconditions are ab-stracted according to their size. Thus, in the most abstract space, wejust consider the large disk. In the next level of abstraction, we considerboth the medium and large disks. And in the ground space, we con-sider all the disks. Alpine generates this hierarchy in 0.01s, Resistorin 0.06s, and Highpoint in 7.79s. Similar abstraction levels are gen-erated for problems with more disks. In [Kno90], Knoblock shows thatsuch abstraction hierarchies reduce a breadth �rst search from exponen-tial to linear. To determine the savings possible in practice, we ran anexperiment with and without abstraction. Using abstraction, the Towerof Hanoi was solved in 11.56 seconds, expanding out 57 nodes. Withoutabstraction, the Tower of Hanoi took more than three times as long tobe solved; AbTweak used 38.5 seconds and expanded 379 nodes before�nding a solution.9.2 Robot-box domainFor this domain, both Alpine or Highpoint return criticalities whichare order dependent. The lowest three preconditions can be permutedby reordering the operators. This is because Alpine constructs a partialorder on preconditions which is then topologically sorted. To compareresults, we used the ordering of operators which generates the same ab-straction hierarchy as in [BY94].We ran experiments with both \easy" and \hard" problems. In the�rst set of experiments, all doors are openable. Highpoint then con-structs the same abstraction hierarchy as Alpine . The criticalities aregiven in Table 6. Alpine took 0.01s, Highpoint 22.32s and Resistor0.18s to generate these hierarchies. We ran AbTweak on all 30 possiblegoals of moving between di�erent rooms using these criticalities. Table 7shows that while Resistor performs marginally better than Alpine andHighpoint, the di�erences between the hierarchies are not signi�cant asbacktracking is never needed.in /pub/mrg-usr/rseba/sources/criticalities.24

Alpine / Highpoint4 ConnectsIs-BoxIs-DoorIs-RoomOpenable3 Box-In-Room2 Attached1 Loaded0 Open
Resistor3 ConnectsIs-BoxIs-DoorIs-RoomOpenable2 Box-In-Room1 Open0 AttachedLoadedTable 6: Criticalities for the \easy" robot-box domain.plan mean CPU times (secs) mean nodes expanded sampleslength Alp/High RESIST Alp/High RESIST3 0.66 0.62 28.86 27.86 146 4.24 4.07 143.64 142.64 148 12.95 12.55 379.50 378.50 2Table 7: The \easy" robot-box domain with unlocked doors.In the harder set of experiments, certain doors are locked. As in theResistor model, Highpoint increases the criticality of Open so that itis above Attached and Loaded. This reduces the probability of the robotmeeting a locked door and thus the amount of backtracking. All othercriticalities remain the same. Alpine and Resistor return the samecriticalities as before. We ran four sets of experiments. In each, door25and one of door23, door26, door35 and door56 are locked. In each case,there is just one unique path connecting any pair of rooms. For each setof experiments, we ran AbTweak on all 30 possible goals. In 8 out ofthe 120 problems, AbTweak exceeded the cut o� bound of 2000 nodesusing the Highpoint and Resistor abstraction hierarchies. Using theAlpine hierarchy, an additional problem also failed. The results are givenin Table 8.On this harder domain, the Resistor and Highpoint hierarchiesgive similar results. Both perform signi�cantly better than the Alpinehierarchy as there is less backtracking caused by meeting locked doors.The poor mean performance of the Alpine hierarchy was, in fact, en-25

plan mean CPU times (secs) mean nodes expanded sampleslength Alp High Resist Alp High Resist3 0.91 0.74 0.82 28.30 28.30 27.30 406 6.20 5.33 5.32 162.92 160.32 159.32 408 39.42 29.03 28.99 775.08 752.67 751.67 2410 82.58 69.64 67.45 1729.78 1654.87 1653.87 7/8/8Table 8: The \hard" robot-box domain with two locked doors.tirely due to a small number of problems where AbTweak backtrackedextensively.9.3 Computer hardwareIn the computer hardware domain of [BY94], the goal is to print a �lein an environment where there are a number of computers and printers.Computers and printers may not be turned on, may not be functional,or located near to a power outlet. As in [BY94], we ran experiments ina domain in which at the initial situation just one computer and printerare within reach of a power outlet. The criticalities generated by thedi�erent methods are given in Table 6. Alpine took 0.01s, Highpoint15.26s and Resistor 0.12s to generate these hierarchies. As in [BY94],we ran AbTweak on 30 di�erent problems involving between 1 and 3�les to print, and with between 1 and 10 computers, using a time limit of1800 seconds. The results are given in Figures 2 to 4.Alpine4 Cable-Can-ReachFunctionalIs-ComputerIs-PrinterIs-Outlet3 Printed2 Loaded1 Power-On0 Plugged-In
Highpoint3 Cable-Can-ReachFunctionalIs-ComputerIs-PrinterIs-Outlet2 Printed1 Loaded0 Power-OnPlugged-In

Resistor4 Cable-Can-ReachFunctionalIs-ComputerIs-PrinterIs-Outlet3 Printed2 Plugged-In1 Power-On0 LoadedTable 9: Criticalities for the computer hardware domain.Alpine performs poorly in this domain, again due to backtrackingwhen devices are not plugged-in. Resistor and Highpoint both require26

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(s
ec

s)

computers #

ALPINE
HIGHPOINT
RESISTOR

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

no
de

s
#

computers #

ALPINE
HIGHPOINT
RESISTOR

Figure 2: CPU time and nodes explored, 1 �le to print.
0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

C
P

U
 ti

m
e

(s
ec

s)

computers #

ALPINE
HIGHPOINT
RESISTOR

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

no
de

s
#

computers #

ALPINE
HIGHPOINT
RESISTOR

Figure 3: CPU time and nodes explored, 2 �les to print.much less backtracking. The Resistor hierarchy gives slightly betterperformance, most noticeably on the larger problems.9.4 ManufacturingWe return to the manufacturing domain of [SP92, PS93]. The goal is toshape, drill and paint an object from stock. Recall that only steel objectscan be painted. We assume that just one out of the large number ofobjects in stock are made from steel. The criticalities generated by thedi�erent methods are given in Table 10. Alpine took 0.01s, Highpoint13.33s and Resistor 0.68s to generate these hierarchies.Alpine 's abstraction hierarchy violates the precondition monotonic-ity property as the Painted precondition should not be lower than eitherthe Shaped or Drilled preconditions. Highpoint compensates for the27

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9

C
P

U
 ti

m
e

(s
ec

s)

computers #

ALPINE
HIGHPOINT
RESISTOR

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9

no
de

s
#

computers #

ALPINE
HIGHPOINT
RESISTOR

Figure 4: CPU time and nodes explored, 3 �les to print.Alpine3 ObjectSteel2 Shaped1 Drilled0 Painted Highpoint1 ObjectSteel0 PaintedDrilledShaped Resistor2 ObjectSteel1 Painted0 ShapedDrilledTable 10: Criticalities for the manufacturing domain.low probability of an object from stock being paintable by collapsing to-gether the bottom three levels of Alpine's abstraction hierarchy. Thisreduces the need to backtrack but gives just one level of abstraction. Bycomparison, Resistor is able to generate an additional level of abstrac-tion.As in [BY94], we ran AbTweak on problems with between 100 and200 objects in stock. Results are plotted in Figure 5. The Resistorhierarchy results in less backtracking than the Alpine hierarchy, andperforms signi�cantly better than the Highpoint hierarchy due to theadditional level of abstraction.10 ConclusionsWe have proposed a novel method for building Abstrips style abstrac-tions automatically based upon a simple theory of numerical criticalities.The aim of our method is to minimize the amount of backtracking within28

0

5

10

15

20

25

30

35

40

100 120 140 160 180 200

C
P

U
 T

IM
E

 (
S

E
C

S
)

PIECES #

ALPINE
HIGHPOINT
RESISTOR

100

200

300

400

500

600

700

800

900

1000

1100

100 120 140 160 180 200

N
O

D
E

S
 #

PIECES #

ALPINE
HIGHPOINT
RESISTOR

Figure 5: CPU time and nodes explored for the manufacturing domain.and between abstraction levels. Unlike previous approaches which rea-soned about plans directly, we simulate the planning process numerically.We have identi�ed a family of solutions for building abstractions in thisway based upon two general operators. The �rst operator computes thecriticality of an operator in terms of the criticalities of its preconditions,whilst the second computes the criticality of a precondition in terms ofthe criticalities of the operators that achieve it. We give two examples ofsolutions. The �rst is based upon an analogy with electrical resistance,whilst the second takes ideas from probability theory. Both solutions arefast and simple to compute. The simplicity of our approach allows us toguarantee that various theoretical properties hold which are lacking in pre-vious approaches. In particular, the abstraction hierarchies constructedby our method satisfy two simple \monotonicity" properties. These en-sure that the harder preconditions are achieved in the higher abstractlevels. These monotonicity properties limit the amount of backtrackingrequired between and within abstraction levels. We have compared ourmethod with those in the Alpine and Highpoint procedures. Usingfour benchmark experiments, we have demonstrated that the hierarchiesconstructed are better than those generated by Alpine and Highpoint.In addition, our methods build these hierarchies rapidly.References[BJ95] C. Backstrom and P. Jonsson. Planning with abstractions hi-erarchies can be exponentially less e�cient. In Proceedings of29

the 14th IJCAI, pages 1599{1604. International Joint Confer-ence on Arti�cial Intelligence, 1995.[BY94] F. Bacchus and Q. Yang. Downward re�nement and the e�-ciency of hierarchical problem solving. Arti�cial Intelligence,71:43{100, 1994.[BGSW96] A. Bundy, F. Giunchiglia, R. Sebastiani and T. Walsh. Com-puting Abstraction Hierarchies by Numerical Simulation. Toappear in Proceedings AAAI-96, Portland, 1996.[Cha87] D. Chapman. Planning for Conjunctive Goals. Arti�cial In-telligence, 32:333{377, 1987.[Giu96] F. Giunchiglia. Using Abstrips abstractions { where do westand? IRST-Technical Report, IRST, Trento, Italy, 1996.[Gre69] C. Green. Application of theorem proving to problem solving.In Proc. of the 1st International Joint Conference on Arti�cialIntelligence, pages 219{239, 1969.[GW91] F. Giunchiglia and T. Walsh. Using abstraction. In Proc. ofthe 8th Conference of the Society for the Study of Arti�cialIntelligence and Simulation of Behaviour, Leeds, UK, 1991.Also IRST-Technical Report 9010-08 and DAI Research Paper515, University of Edinburgh.[GW92] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Arti�-cial Intelligence, 56(2-3):323{390, 1992. Also IRST-TechnicalReport 9001-14, IRST, Trento, Italy.[Kno90] C. A. Knoblock. Abstracting the Tower of Hanoi. In Work-ing Notes of AAAI-90 Workshop on Automatic Generation ofApproximations and Abstractions, pages 13{23. AAAI, 1990.[Kno94] C. A. Knoblock. Automatically generating abstractions forplanning. Arti�cial Intelligence, 68:243{302, 1994.[PS93] M.A. Peot and D.A. Smith. Threat-Removal Strategies forPartial-Order Planning. In Proceedings AAAI-93, Washing-ton D.C., 1993. 30

[Sac73] E.D. Sacerdoti. Planning in a Hierarchy of AbstractionSpaces. In Proceedings of the 3rd International Joint con-ference on Arti�cial Intelligence, 1973.[SP92] D. E. Smith and M. A. Peot. A Critical Look at Knoblock'sHierarchy Mechanism. In Proc. 1st International conferenceArti�cial Intelligence planning systems (AIPS-92), pages 307{308, 1992.[YTW96] Qiang Yang, Josh Tenenberg, and Steve Woods. On the im-plementation and evaluation of abtweak. Computatinal Intel-ligence, Vol. 12, 1996.Appendix A: Problem domainsThe following are the operators for the problem domains used in Section9. All the operators are taken from [YTW96, BY94]. The columns ofeach table give the preconditions, adds and (where appropriate) deletesrespectively. The \�" symbol identi�es the primary e�ects.A.1 Tower of Hanoi domainMove-large(x y)Is-peg(x) On-large(y)� : On-large(x)Is-peg(y): On-small(x): On-medium(x): On-small(y): On-medium(y)On-large(x) Move-medium(x y)Is-peg(x) On-medium(y)� : On-medium(x)Is-peg(y): On-small(x): On-small(y)On-medium(x) Move-small(x y)Is-peg(x) On-small(y)� : On-small(x)Is-peg(y)On-small(x) 31

A.2 Robot-Box domainCarry-Thru-Door(b d r1 r2)Is-Door(d) Box-In-Room(b r2)� : Box-In-Room(b r1)Is-Box(b)Is-Room(r1)Is-Room(r2)Connects(d r1 r2)Loaded(b)Box-In-Room(b r1)Open(d) Pull-Thru-Door(b d r1 r2)Is-Door(d) Box-In-Room(b r2)� : Box-In-Room(b r1)Is-Box(b)Is-Room(r1)Is-Room(r2)Connects(d r1 r2)Attached(b)Box-In-Room(b r1)Open(d) Attach-Box(b)Is-Box(b) Attached(b)�: Attached(b) Load-Box(b)Is-Box(b) Loaded(b)�: Loaded(b) Open-Door(d)Is-Door(d) Open(d)�Openable(d): Open(d)
32

A.3 Computer Hardware domainPrint(file computer printer)Power-On(computer) Printed(file)�Power-On(printer)Is-Computer(computer)Is-Printer(printer)Loaded(file computer)Turn-On(device)Plugged-In(device) Power-On(device)�Functional(device)Plug-In(device outlet)Is-Outlet(outlet) Plugged-In(device)�Cable-Can-Reach(device outlet)Load(file computer)Is-Computer(computer) Loaded(file computer)�Power-On(computer)A.4 Manufacturing domainShape(x)Object(x) Shaped(x)� : Drilled(x): Painted(x)Drill(x)Object(x) Drilled(x)� : Painted(x)Paint(x)Object(x) Painted(x)�Steel(x)Appendix BConvergence of simple Resistor modelRecall that each operator has m preconditions and each precondition canbe achieved by l distinct operators. Unfolding the de�nitions gives,C(p; 0) = a01C(p; n+ 1) = 1a0 + lm: 1C(p; n)33

To identify a closed form solution, we compute the �rst few iterations,1C(p; 1) = 1a0 (1 + lm)1C(p; 2) = 1a0 (1 + lm + lm!2)1C(p; 3) = 1a0 (1 + lm + lm!2 + lm!3)...A simple induction therefore shows,1C(p; n) = 1a0 0@ nXi=0 lm!i1AThus, C(p; n)a0 = 8<: 1n+1 if l = m1�ml1�(ml)n+1 if l 6= m:The di�erence between successive iterations is therefore O((l=m)n) forl < m, O(1=n2) for l = m, and O((m=l)n) for l > m.Convergence of simple Probability modelEach operator again has m preconditions and each precondition can beachieved by l distinct operators. Unfolding the de�nitions gives,C(p; 0) = a0C(p; n+ 1) = a0(1 � (1 � C(p; n))m)lTo simplify notation, we write cn for C(p; n). We therefore have,cn+1 = c0(1 � (1 � cn)m)lWe will identify a bound on the rate of convergence of this equation byconsidering the �xed points of the following function,f(x) =def c0(1� (1� x)m)l34

Note that cn+1 = f(cn). We assume that c0 < 1 since if c0 = 1 thencn = 1 for all n.For all l and m, it is easy to see that f(0) = 0, f(1) = c0 and f(x) iscontinuous in [0; 1]. In addition, f 0(0) = f 0(1) = 0 and f 0(x) > 0 for allx 2 (0; 1).Let b1 < b1::: < bk be the the �xed points of f in [0; 1] (i.e. f(bi) = bi).Note that b1 = 0 so k � 1. The following diagram illustrates how cnconverges towards bk, the greatest �xed point as n increases.
y=f(x)

y=x
ccc 012...

c

c
c

0

1
2:

bk

1

1Since f 0(x) > 0 in (0; 1), it follows that bk < c0. If k > 1 then forx 2 (bk�1; bk), f(x) > x. And for x 2 (bk; 1], f(x) < x. Hence, at bkthe gradient of y = f(x) must be less than that of y = x. In otherwords, f 0(bk) < 1. Alternatively if k = 1, then f 0(bk) = 0 < 1. By thede�nition of di�erentiation, there exists � < 1 and b > bk such that forall x1; x2 2 [bk; b], f(x1)� f(x2)x1 � x2 < �:Hence, there exists m with cm�1 < b such that for all n � m,f(cn)� f(cn�1)cn � cn�1 < �:That is, cn+1 � cncn � cn�1 < �:35

As cn is monotonically decreasing,jcn+1 � cnjjcn � cn�1j < �:The di�erence between successive iterations thus decreases by at least aconstant factor after the mth iteration.

36

