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Abstract. We study a new but simple model for online fair division
in which indivisible items arrive one-by-one and agents have monotone
utilities over bundles of the items. We consider axiomatic properties of
mechanisms for this model such as strategy-proofness, envy-freeness and
Pareto efficiency. We prove a number of impossibility results that justify
why we consider relaxations of the properties, as well as why we consider
restricted preference domains on which good axiomatic properties can be
achieved. We propose two mechanisms that have good axiomatic fairness
properties on restricted but common preference domains.

1 Introduction

Many studies of fair division problems make some simplifying assumptions such
as: the problem is offline (i.e. the items and agents are all simultaneously avail-
able), and agents have additive utilities over the items. In practice, however, such
assumptions may be violated. Recently, Walsh [28] introduced a simple online
model for the fair division of indivisible items in which, whilst utilities remain
additive, the items become available over time and must be allocated to agents
immediately. Such an online model has many practical applications. For exam-
ple, donated kidneys must be allocated to patients as they become available.
As a second example, places on university courses open each term and must be
allocated before classes begin, and before places open for the following term. As
a third example, a charging station might be allocated to a waiting electric car
immediately it is freed up. And, as a fourth example, perishable items donated
to a food bank might have to be allocated to charities feeding the poor imme-
diately. As a fifth example, when allocating memory to cloud services, we may
not know what and how many services are requested in the next moment.

In this paper, we relax this model of online fair division to deal with monotone
utilities. There are many settings where utilities might not be additive. For
instance, agents may have diminishing returns for multiple copies of an item.
You may, for example, gain less utility for a second bicycle. Agents may also
have complementarities. You may, for example, get little utility for the cricket
bat unless you also get the cricket ball. We thus consider a model of online
fair division in which agents have monotone but possibly non-additive utilities.
Indeed, monotone utilities are especially challenging in an online setting. As
utilities may not be additive, we cannot allocate items independently of previous
or, more problematically, of future items. Suppose agent 1 only likes item a in
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the presence of item b, whilst agent 2 only likes a in the presence of c. Then the
decision to give item a to agent 1 or 2 may depend on whether items b or c will
arrive in the future, which we suppose is not known.

We define firstly the model of online fair division with monotone utilities
and propose to consider non-wasteful marginal mechanisms for it. We then show
that no non-wasteful mechanism can guarantee simple axiomatic properties such
as strategy-proofness, envy-freeness (even approximately) or Pareto efficiency
under weak conditions, whilst that was possible with additive utilities. We then
consider monotone utilities with non-zero marginals. In the offline setting, this
is a natural class of restricted preferences in which agents are assumed to prefer
always having an item to not having it, supposing that their marginal utility for
it could be arbitrarily small. We prove that many axiomatic properties can be
achieved in this domain. We also consider a weaker form of strategy-proofness
adapted to our online setting that supposes agents only have knowledge of the
current item, and not of any future items that might or might not arrive. Finally,
we propose two mechanisms - the Minimum Like and Minimum Utility mech-
anisms - and prove that they satisfy this weaker form of strategy-proofness as
well as envy-freeness up to some item in common domains with identical utilities.

2 Related Work

Our model of online fair division with monotone utilities generalizes an existing
model of online fair division with additive utilities introduced in [28]. Aleksan-
drov et al. [1] analysed two simple randomized mechanisms for this model, called
Like and Balanced Like. The Like mechanism allocates an incoming item
uniformly at random to one of the agents that declares non-zero bid for it. This
is strategy-proof and envy-free in expectation. The Balanced Like mechanism
allocates an incoming item to an agent with the fewest items currently amongst
those that declare non-zero bids for the incoming item. With 0/1 utilities, this
bounds the envy of agents, and is strategy-proof for 2 but not more agents. Some
other online mechanisms (e.g. Maximum Like) that are Pareto efficient ex post
and ex ante are considered in [3]. We can extend these to mechanisms for mono-
tone but not necessarily additive utilities by allocating an incoming item to one
of the agents that declares a non-zero marginal bid for the item. However, we
prove that none of these mechanisms or even any other mechanism is strategy-
proof, envy-free or Pareto efficient in our setting with monotone utilities.

Further, for the model with additive utilities, Benade et al. [9] showed that
the random assignment of each next item (i.e. Like) diminishes the envy over
time. By comparison, we prove that approximations of envy-freeness ex post
such as EF1 (see [12]) and EFX (see [13]) cannot be satisfied in our monotone
setting. On the other hand, we further prove that EF1 can only be satisfied
in two restricted but common preference domains of identical utilities. We also
contrast our results with similar results in (offline) fair division. For example, it
remains an open question if offline EFX allocations exist in general. We prove
that no mechanism for online fair division can return such allocations even when
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they exist. This holds with identical additive utilities in which domain there are
offline algorithms that return such allocations [8]. Further, we can show that
some other (offline) characterizations (e.g. [10,24]) break in the online setting.
In contrast, our results can be mapped to offline settings as online mechanisms
can be applied to offline problems by presenting the items in some (perhaps
random) order.

There are other related models. For example, Walsh [27] has proposed a
different online model in which items are divisible (not indivisible) and agents
(not items) arrive over time. Also, Kash, Procaccia and Shah [22] have proposed
a dynamic model of fair division in which agents again arrive over time, but there
are multiple homogeneous (not heterogeneous) and divisible items. There is also
a connection between our consideration of marginal bidding and the one for
auctions that has been made by Greenwald and Boyan in [20]. One interesting
difference between our work and theirs is that marginal utility bidding is an
optimal strategy for sequential auctions whereas, as we prove, it may not be for
online mechanisms. Finally, other related works in fair division (e.g. [2,4,18,21]),
voting (e.g. [15,19,29]) and kidney exchange (e.g. [16,17]) exist. However, to the
best of our knowledge, our results do not follow from any existing results.

3 Monotone and Online Fair Division

We consider an online fair division problem with agents from [n] = {1, . . . , n} and
indivisible items from O = {o1, . . . , om}, where m ∈ N≥1. WLOG, we suppose
that items arrive one-by-one from o1 to om. Thus, we write Oj for the subset of
O of the first j items. We suppose that agents have bundle utilities. We write
ui(B) ∈ R≥0 for the (private) utility of i ∈ [n] for each B ⊆ O. We also write
ui(o) for ui({o}). We suppose ui(∅) = 0. We say that the agents have identical
utilities iff, for each i, k ∈ [n] and B ⊆ O, ui(B) = uk(B). In this case, we write
u(B) for ui(B). We further write ui(B ∪ {o}) − ui(B) for the marginal utility
of i ∈ [n] for each B ⊂ O and o ∈ O \ B. We say that this marginal utility is
general iff ui(B∪{o})−ui(B) ∈ R≥0, and non-zero iff ui(B∪{o})−ui(B) ∈ R>0.
We write π = (π1, . . . , πn) for an allocation of the items from B to the agents,
where ∪i∈[n]πi = B and πi ∩ πj = ∅ for i, j ∈ [n] with i �= j. And, we let
Πj = {π|π is an allocation with ∪i∈[n] πi = Oj}.

We consider online mechanisms that allocate each next item without the
knowledge of any future items. We focus on non-wasteful mechanisms that allo-
cate items to agents that declare non-zero marginal utility for item oj , if there
are such agents. At round 1, each agent i ∈ [n] becomes aware of their marginal
utility ui(o1) for o1. And, at round jth (j > 1), each agent i becomes aware
of their marginal utility ui = ui(πi ∪ {oj}) − ui(πi) for oj where π ∈ Πj−1 is
some allocation of the first (j −1) items. The mechanism firstly asks each i ∈ [n]
for a marginal bid vi for oj . Agents may act strategically and bid insincerely,
i.e. vi may be different from ui. We say that i likes oj if ui > 0. The mecha-
nism secondly shares the probability of 1 for oj among those who make non-zero
marginal bids. If there are no such agents, oj is allocated at random.
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A mechanism thus returns a probability distribution over the allocations in
Πj . We write Δj = (p(π)|π ∈ Πj) for it, where p(π) ∈ [0, 1] is the probability of
π ∈ Πj . We have that

∑
π∈Πj

p(π) = 1. We write ui(πk) for the monotone utility
of agent i for the items of agent k in π. We write uik(Πj) for the expected utility
of agent i for the expected allocation of agent k in Πj . We have uik(Πj) =∑

π∈Πj
p(π) · ui(πk). We also write sometime ui(π) for ui(πi) and ui(Πj) for

uii(Πj). Finally, we say that ui(πk) is additive iff it is
∑

o∈πk
ui(o). In this case,

the expected utility of agent i for the expected allocation of agent k in Πj is also
additive. That is, uik(Πj) = uik(Πj−1) +

∑
π∈Πj

p(π) · ui(oj).

4 Axiomatic Properties

Three fundamental axiomatic properties of mechanisms for our setting concern
the incentives of agents to bid strategically for an allocation, the fairness of an
allocation and the economic efficiency of an allocation.

Definition 1 (Strategy-proofness, SP). A mechanism is SP in a problem with m
items if, with complete information of o1 to om, no agent i can strictly increase
ui(Πm) by misreporting ui(πi ∪ {oj}) − ui(πi) for one or more item oj and
allocation π ∈ Πj−1, supposing that every other agent k �= i bid sincerely their
marginal utilities for items o1 to om.

Definition 2 (Envy-freeness, EF). A mechanism is EF ex post (EFP) in a
problem with m items if, for each π ∈ Πm with p(π) > 0, no agent i envies
another agent k, i.e. ∀i, k : ui(πi) ≥ ui(πk). It is EF ex ante (EFA) in a problem
with m items if no agent i envies another agent k in expectation, i.e. ∀i, k :
uii(Πm) ≥ uik(Πm).

Definition 3 (Pareto efficiency, PE). A mechanism is PE ex post (PEP) in a
problem with m items if, for each π ∈ Πm with p(π) > 0, no π′ ∈ Πm is such
that ∀i : ui(π′

i) ≥ ui(πi) and ∃k : uk(π′
k) > uk(πk). It is PE ex ante (PEA) in

a problem with m items if, no other probability distribution over the allocations
in Πm gives to each agent i at least ui(Πm) and to some agent k strictly more
than uk(Πm).

We say that a mechanism satisfies a given property P iff, for each m ∈ N, it
satisfies P on each problem with m items. We are interested in mechanisms for
our model that satisfy combinations of these three properties.

5 General Marginal Utilities

We start with general marginal utilities. As we argued earlier, the monotone and
online nature of our problem makes it more difficult to achieve nice axiomatic
properties. Indeed, we will show that no mechanism is strategy-proof, envy-free
or Pareto efficient even in very limited utility domains, e.g. monotone utilities
with binary marginals, identical monotone utilities, etc.
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5.1 Strategy-Proofness

We prove firstly that strategy-proofness is impossible in general. The problem
here is that the marginal utility of an agent for an item may depend on their
allocation of past items, and thus so is their probability for the item (in a given
allocation). We illustrate this in Example 1.

Example 1. Let us consider the online fair division problem with 2 agents and
O = {o1, o2}. Further, let u1(∅) = 0, u1({o1}) = 2, u1({o2}) = 4, u1(O) = 6
and u2(∅) = 0, u2({o1}) = 5, u2({o2}) = 2, u2(O) = 5. If agent 1 gets o1, the
marginal utilities of agents 1 and 2 for o2 are 4 (i.e. u1(O) − u1({o1})) and 2
(i.e. u2({o2}) − u2(∅)). If agent 2 gets o1, the marginal utilities of agents 1 and
2 for o2 are 4 (i.e. u1({o2}) − u1(∅)) and 0 (i.e. u2(O) − u2({o1})). �

It might, therefore, be beneficial for an agent to report strategically a
marginal utility of zero for the current item in order to increase their chance
for their most favourite bundle of future items. Indeed, for this reason, no mech-
anism is strategy-proof even with very restricted preferences. This contrasts with
the case of additive utilities where, for example, the Like mechanism is strategy-
proof [1].

Theorem 1. No non-wasteful mechanism for online fair division is strategy-
proof, even with identical monotone utilities with 0/1 marginals.

Proof. Consider agents 1 and 2, items o1 to o3 and ordering (o1, o2, o3). The
utilities are identical for each B ⊆ O. If |B| = 1, let u(B) be 1. If |B| = 2, let
u(B) be 2 if B = {o2, o3} and 1 otherwise. Also, let u(O) = 2. Suppose agents are
sincere and the mechanism gives o1 to agent 1 with p ∈ [0, 1] and to agent 2 with
(1 − p). We consider three cases. In the first case, the mechanism is randomized
and p ∈ (0, 1). If it gives o1 to agent 1 with p, then it gives o2 and o3 to agent
2 with probability 1. If it gives o1 to agent 2 with (1 − p) ∈ (0, 1), then it gives
o2 and o3 to agent 1 with probability 1. Therefore, the expected utility of agent
1 is equal to (2 − p). Suppose next that agent 1 report strategically 0 for o1. As
the mechanism is non-wasteful, it gives o1 to agent 2 and o2 and o3 to agent 1
with probability 1. The (expected) utility of agent 1 is equal to 2. This outcome
is strictly greater than (2 − p) as p ∈ (0, 1). In the second case, the mechanism
is deterministic and p = 0. The mechanism gives o1 to agent 2 and o2 and o3 to
agent 1 with probability 1. The (expected) utility of agent 2 is 1. Suppose next
that agent 2 report strategically 0 for o1. The mechanism gives o1 to agent 1
and o2 and o3 to agent 2 with probability 1. The (expected) utility of agent 2 is
2. This is a strict improvement. Analogously, for the third case when p = 1. �

5.2 Envy-Freeeness

We next confirm that no mechanism exists which is guaranteed to return envy-
free allocations even in ex ante sense, supposing agents bid sincerely. The key
idea behind this result is that a given agent may like a given bundle of items but
not the individual items in the bundle. By comparison, with additive utilities,
the Like mechanism for example is envy-free ex ante [1].
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Theorem 2. No non-wasteful mechanism for online fair division is envy-free
ex post or even ex ante, even with monotone utilities with 0/1 marginals.

Proof. Let us consider agents 1 and 2, items o1 and o2 arriving from (o1, o2).
Consider u1(∅) = u1({o1}) = u1({o2}) = 0, u1(O) = 1 and u2(∅) = 0, u2({o1}) =
u2({o2}) = 1, u2(O) = 2. We note that an envy-free (offline) allocation gives
one item to each agent. However, an online and non-wasteful mechanism gives
deterministically both items to agent 2. Hence, agent 1 envies agent 2. �

Interestingly, with identical monotone utilities, a distribution of allocations
that is envy-free in expectation can always be returned. For example, consider
the non-wasteful mechanism that allocates the current item to an agent who
makes a non-zero marginal bid for it and so far has been allocated items with
the least declared utility.

Minimum Like: At round j ∈ [m], given π ∈ Πj−1, we let Like =
{i|vi(πi ∪ {oj}) > vi(πi)} and MinLike = {i|i ∈ Like, vi(πi) =
mink∈Like vk(πk)}. The mechanism gives oj to some i ∈ MinLike with
probability (1/|MinLike|) if MinLike �= ∅ and, otherwise, to some i ∈ [n]
with probability 1/n.

Theorem 3. With identical monotone utilities, the non-wasteful Minimum Li-
ke mechanism is envy-free ex ante.

Proof. The proof of the result hinges on any pair of agents getting a particular
bundle of items with the same probability. Pick agents i, k. We show uii(Πj) ≥
uik(Πj) for j ∈ [1,m]. Let Δuikj = uii(Πj)−uik(Πj). We have Δuikj =

∑
π p(π)·

ui(πi)−
∑

π p(π)·ui(πk) where π ∈ Πj . We derive the below expression for Δuikj .

Δuikj =
∑

A⊆O,B⊆O\A

( ∑

πi=A,πk=B

p(π) · ui(A) +
∑

πi=B,πk=A

p(π) · ui(B)

−
∑

πi=A,πk=B

p(π) · ui(B) −
∑

πi=B,πk=A

p(π) · ui(A)
)

Pick an allocation π ∈ Πj . Let agent i get A ⊆ O, agent k �= i get B ⊆ O \A
and each other agent h �= i, k get πh in π. By the symmetry of the utilities,
there is another allocation, say π′ ∈ Πj , such that i get B, k get A and h get πh.
With Minimum Like, p(π′) = p(π). Moreover, with this mechanism, the number
of returned allocations that give A to i and B to k is equal to the number of
returned allocations that give B to i and A to k. Therefore, we derive Δuikj = 0
for each j ∈ [m]. �

Further, we consider two common approximations of envy-freeness ex post:
EF1 and EFX [11,13]. However, many other such approximations that are
stronger than EF1 have been studied in the recent years, e.g. GMMS, PMMS,
EFL [5–7].
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Definition 4 (EF up to some item, EF1). A mechanism is EF1 if, for each
π ∈ Πm with p(π) > 0, for all i, k with πk �= ∅, ∃o ∈ πk with ui(πi) ≥ ui(πk\{o}).

Definition 5 (EF up to any item, EFX). A mechanism is EFX if, for each
π ∈ Πm with p(π) > 0, for all i, k, o ∈ πk with ui(o) > 0, ui(πi) ≥ ui(πk \ {o}).

Unfortunately, we cannot guarantee to only return allocations that are even
envy-free up to some item. This holds under very strong restrictions on the
preference domain. Consequently, there are no EF1 (and, therefore, GMMS,
PMMS or EFL) mechanisms for our setting in general.

Theorem 4. No non-wasteful mechanism for online fair division is EF1, even
with identical monotone utilities with 0/1 marginals.

Proof. Consider agents 1 and 2, items o1 to o4 and ordering (o1, o2, o3, o4). Let
B ⊆ O. If |B| = 1, let u(B) = 1. If |B| = 2 and o1 ∈ B, let u(B) = 1. If
|B| = 2 and o1 �∈ B, let u(B) = 2. If |B| = 3 and B = {o2, o3, o4}, let u(B) = 3.
If |B| = 3 and B �= {o2, o3, o4}, let u(B) = 2. Also, let u(O) = 3. By these
preferences, a non-wasteful mechanism gives o1 to agent 1 and o2, o3, o4 to agent
2, or o1 to agent 2 and o2, o3, o4 to agent 1. WLOG, let agent 1 get o1 and
agent 2 get o2, o3, o4. The utilities of agents 1 and 2 in this allocation are 1 and
3 respectively. The allocation is not envy-free because agent 1 envies agent 2.
Moreover, the envy of agent 1 remains even after the removal of any single item
from the bundle of agent 2. Consequently, the allocation is not EF1. However,
we note that an EF1 (offline) allocation gives two items to each agent. �

By Theorem 4, the Minimum Like mechanism is not EF1. The result in
Theorem 4 also contrasts with the offline setting where, with general monotone
utilities, an EF1 allocation, bounding the envy from above by the maximum
marginal utility of any agent for any item, can always be achieved [23,26].

5.3 Pareto Efficiency

We lastly consider Pareto efficiency supposing agents bid sincerely. In the offline
setting with general monotone utilities, Pareto efficiency is guaranteed [14,25].
In our setting, we show that there is no mechanism that is Pareto efficient, even
just ex ante.

Theorem 5. No non-wasteful mechanism for online fair division is Pareto effi-
cient ex post or even ex ante, even with identical monotone utilities.

Proof. Consider agents 1 and 2, items o1 to o4 and ordering (o1, o2, o3, o4). The
utilities are identical for each B ⊆ O. If |B| = 1, let u(B) be 2 if B = {o3}
or B = {o4}, and 1 otherwise. If |B| = 2, let u(B) be 1 if B = {o1, o2} and 2
otherwise. If |B| = 3, let u(B) be 3 if B = {o1, o2, o4} and 2 otherwise. Also, let
u(∅) = 0 and u(O) = 3. Further, consider below all possible allocations.
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o1
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({o2, o4}, {o1, o3})

({o1, o3}, {o2, o4})

({o2, o3}, {o1, o4})

({o1, o4}, {o2, o3})

p
1

1

r

q

1

1

1

1

Key: agent 1-dashed line, agent 2-solid line

Each mechanism induces some probabilities p, r, q ∈ [0, 1]. Such a mechanism
allocates deterministically o2 and o4 to agents. For example, suppose that agent
2 get o1 with probability p. Then, agent 1 gets o2 with probability 1. Suppose
that agent 2 gets o3 with probability r. Then, agent 1 gets o4 with probability 1.
Each agent receives utility of 2 in each of the four allocations. Hence, the agents’
(expected) utilities are both equal to 2. These allocations are Pareto dominated
by ({o1, o2, o4}, {o3}) in which agents 1 and 2 get utilities 3 and 2 respectively.
The result follows. �

6 Non-zero Marginal Utilities

We continue with non-zero marginal utilities. Interestingly, we can achieve most
axiomatic properties in this domain. Suppose we are interested in strategy-
proofness, Pareto efficiency ex post and ex ante. Consider a simple mechanism
that gives deterministically each next item to some fixed agent, say i ∈ [n].
Potentially, agent i may wish to manipule the outcome. However, they then
could only receive less items and, therefore, strictly less utility. Consequently,
this mechanism is strategy-proof and, for the same reason, it is Pareto efficient
even ex ante. Suppose we wish to achieve strategy-proofness, Pareto efficiency ex
post and envy-freeness ex ante. Consider a mechanism that picks an agent, say
i ∈ [n], uniformly at random with probability 1

n and then gives deterministically
each next item to i. This mechanism is strategy-proof and Pareto efficient ex
post for the reasons that we mentioned above. It is further envy-free ex ante
as it returns a distribution of n allocations (say πi for i ∈ [n] that occurs with
probability 1

n and, WLOG, gives all items to agent i) in which the expected
utility of an agent for their own allocation and the allocation of another agent
is the same.

Unfortunately, both of the above mechanisms are unappealing because they
give all items to some agent. Therefore, they are not EFX or even just EF1. In
our online and monotone setting, there are no mechanisms that are EF1 even
when the utilities are positive and additive, a special case of non-zero marginal
utilities.

Theorem 6. No mechanism for online fair division is EF1, even with positive
additive utilities.
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Proof. Let us consider agents 1 and 2, items o1 to o3 and ordering (o1, o2, o3).
Further, consider a mechanism and suppose that it is EF1. We consider two cases.
In the first one, we assume that it gives o1 to agent 1 with positive probability.
Then, the utilities of agents for items are given in the below table.

o1 o2 o3

Agent 1 50 100 100

Agent 2 100 50 100

WLOG, we can assume that the mechanism allocates o1 at the first round.
As it is EF1, it gives o2 to agent 2. Given this partial allocation, there are only
two possible allocations of o3, resulting in ({o1, o3}, {o2}) and ({o1}, {o2, o3}). It
is easy to check that none of them is EF1.

In the second case, we assume that the mechanism gives o1 to agent 2 with
probability 1. Then, we consider different utilities of the agents for items o2 and
o3. These are given in the below table.

o1 o2 o3

Agent 1 50 40 410

Agent 2 100 200 200

The mechanism gives o1 to agent 2. As it is EF1, it would then give o2 to
agent 1. Given this partial allocation, the only two possible allocations after
the third round are ({o2}, {o1, o3}) and ({o2, o3}, {o1}). It is easy to check that
neither of them is EF1.�

In contrast, a simple round-robin procedure returns an EF1 allocation in the
offline setting with general additive utilities [13]. There is some more hope for
restricted preference domains on which to achieve EF1. For example, EF1 can
be guaranteed in the special case of identical monotone utilities with non-zero
marginals.

Theorem 7. With identical monotone utilities with non-zero marginals, the
non-wasteful Minimum Like mechanism is EF1.

Proof. We use induction on j ∈ [m]. In the base case, the allocation of o1 is
trivially EF1. In the step case, the induction hypothesis requires that π ∈ Πj−1

with p(π) > 0 is EF1. Let 1 ∈ MinLike and the mechanism allocate oj to agent
1 given π. Consider π′ = (π′

1, . . . , π
′
n) where π′

1 = π1 ∪ {oj} and π′
i = πi for each

i �= 1. We next show that π′ is EF1. We note that the set Like = [n] as the
agents’ marginal utilities are non-zero.
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Case 1 : Suppose i �= 1 and k �= 1. We have ui(π′
i) = ui(πi) and uk(π′

k) = uk(πk)
as π′

i = πi and π′
k = πk. By the hypothesis, we have ui(πi) ≥ ui(πk \ {o}) for

some o ∈ πk �= ∅. Hence, ui(π′
i) ≥ ui(π′

k \ {o}) holds. Or, agent i is EF1 of agent
k in π′.

Case 2 : Suppose i �= 1 and k = 1 ∈ MinLike. We have ui(π′
i) = ui(πi) as π′

i = πi.
By the mechanism, we have ui(πi) ≥ u1(π1). As the utilities are identical, we
have u1(π1) = ui(π1). Hence, ui(πi) ≥ ui(π1), or agent i is envy-free of agent 1
in π. We derive ui(π′

i) ≥ ui(π1) = ui(π′
1 \ {oj}) as π′

1 = π1 ∪ {oj}. Hence, agent
i is EF1 of agent 1 in π′.

Case 3 : Suppose that i = 1 ∈ MinLike and k �= 1. We have u1(π′
1) > u1(π1) as

π′
1 = π1 ∪ {oj} and the utilities are with non-zero marginals. By the hypothesis,

u1(π1) ≥ u1(πk \ {o}) for some o ∈ πk �= ∅. Hence, u1(π′
1) > u1(πk \ {o}) =

u1(π′
k \ {o}) as π′

k = πk. Therefore, agent 1 is EF1 of agent k in π′. �
By Theorem 3, the Minimum Like mechanism is envy-free ex ante with

identical monotone utilities with non-zero marginals. However, it is not strategy-
proof. In fact, no other EF1 mechanism satisfies this property.

Theorem 8. No mechanism for online fair division is EF1 and strategy-proof,
even with identical additive utilities.

Proof. Let us consider two agents, items o1 and o2 arriving in (o1, o2). Further,
let both agents value o1 with 1 and o2 with 2. We consider two cases. In the first
one, suppose that the mechanism is randomized and allocates o1 to agent 1 with
probability p ∈ (0, 1) supposing agents 1 and 2 declare their sincere utilities for
o1 and o2. Suppose it gives o1 to agent 1. As the mechanism is EF1, it must
give o2 to agent 2 with probability of 1. Suppose it gives o1 to agent 2. As the
mechanism is EF1, it must give o2 to agent 1 with probability of 1. Hence, agent
1 receives expected utility (2−p). If agent 1 report strategically 0 for o1, then the
mechanism gives o1 to agent 2 and o2 to agent 1 with probability 1. The expected
utility of agent 1 is now 2 which is strictly higher than (2−p) as p > 0. Hence, the
mechanism is not strategy-proof. In the second case, suppose that the mechanism
is deterministic and allocates o1 to agent 1 with probability 1. Therefore, as it
is EF1, it then allocates o2 to agent 2 again with probability 1. The utility of
agent 1 in this returned allocation is 1. If agent 1 report strategically 0 for o1,
then the mechanism swaps the items of the agents. The utility of agent 1 is now
2. This is a strict improvement. We reached contradictions in both cases.�

By Theorems 3 and 8, we conclude that the Minimum Like mechanism
returns an EF1 and envy-free ex ante allocation with identical additive utilities.
In this case, the agents’ utilities in each allocation is equal to the total sum of
an agent’s utilities for the items. For this reason, the mechanism is also Pareto
efficient ex post and ex ante in this case. Unfortunately, this no longer holds
whenever the utilities are monotone.

Theorem 9. No mechanism for online fair division is EF1 and Pareto efficient
ex post or even ex ante, even with identical monotone utilities with non-zero
marginals.
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Proof. Let us consider two agents, items o1 to o3 arriving in (o1, o2, o3). The
utilities are given in the below table.

o1 o2 o3 {o1, o2} {o1, o3} {o2, o3} O

Agent 1 1 2 3 4 4 4 5

Agent 2 1 2 3 4 4 4 5

Let us consider a mechanism that gives item o1 to agent 1 with probability
p ∈ [0, 1]. Suppose agent 1 receives item o1. As the mechanism is EF1, it then
gives deterministically item o2 to agent 2 and item o3 to agent 1. Hence, the
allocation π1 = ({o1, o3}, {o2}) is returned with probability p. Suppose agent
2 receives item o1. By the symmetry of the preferences, we conclude that the
allocation π2 = ({o2}, {o1, o3}) is returned with probability (1 − p). We observe
that π1 is Pareto dominated by π3 = ({o1, o2}, {o3}) and π2 is Pareto dominated
by π4 = ({o3}, {o1, o2}). Hence, the mechanism is not Pareto efficient ex post.
Further, with the mechanism, the expected utilities of agents 1 abd 2 are (2+2·p)
and (4− 2 · p) respectively. For p ≥ [12 , 1), the first of these outcomes is less than
4 and the second one is at most 3. For p = 1, they are 4 and 2. These expected
allocations are Pareto dominated by π3 in which agent 1 receive utility 4 and
agent 2 receive utility 3. For p ∈ (0, 1

2 ), the first expected outcome is less than 3
and the second one is less than 4. For p = 0, they are 2 and 4. These expected
allocations are Pareto dominated by π4 in which agent 1 receive utility 3 and
agent 2 receive utility 4. Hence, the mechanism is not Pareto efficient ex ante. �

In the offline setting, an EF1 (even EFX) and Pareto efficient ex post (and,
therefore, Pareto efficient ex ante) allocation can always be returned with identi-
cal monotone utilities whose marginals are non-zero [26]. Further, by Theorem 6,
we cannot even hope for mechanisms that satisfy the stronger concept of EFX
with positive additive utilities. In fact, this holds even in the more special case
of identical utilities. This contrasts with the offline setting [8].

Theorem 10. No mechanism for online fair division is EFX, even with iden-
tical additive utilities.

Proof. Consider agents 1 and 2, items o1 to o3 and (o1, o2, o3). For i ∈ {1, 2, 3},
let each agent have utility i for item oi. We note that two EFX allocations
exist: ({o1, o2}, {o3}) and ({o3}, {o1, o2}). Consider a non-wasteful mechanism
and suppose that it is EFX. Hence, it would give o1 and o2 to different agents
because it is online and cannot predict that o3 will also arrive. WLOG, let agent
1 get o1 and agent 2 get o2. Given this allocation, it is easy to see that any
allocation of o3 leads to a violation of EFX. �
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7 Extensions

In this section, we consider several extensions of our work as a response to
our impossibility results in the previous sections, that highlight the technical
difficulty of our online and monotone setting.

7.1 Online Strategy-Proofness

In deciding if agents have any incentive to misreport preferences in an online
setting, we may consider the past fixed but the future unknown. Indeed, we
might not know what items will arrive next, or even if any more items will
arrive. This leads to a new and weaker form of online strategy-proofness.

Definition 6 (Online strategy-proofness, OSP). A mechanism is OSP in a
problem with m items if, for each item oj ∈ O, fixed information of o1 to oj−1

and no information of oj+1 to om, no agent i can strictly increase ui(Πj) by
misreporting ui(πi ∪ {oj}) − ui(πi) given any allocation π ∈ Πj−1, supposing
that agent i bid sincerely their marginal utilities for o1 to oj−1 and each agent
k �= i bid sincerely their marginal utilities for o1 to oj.

Interestingly, the Minimum Like mechanism is online strategy-proof. The
key idea is that the probability of an agent for each next item given an allocation
of the past items is constant for each their positive marginal bid, supposing all
other bids are fixed.

Theorem 11. The non-wasteful Minimum Like mechanism is online strategy-
proof.

Proof. Consider a problem of m items. Let us pick an arbitrary round j ∈ [m],
allocation π ∈ Πj−1 and agent i ∈ [n]. We consider two cases. In the first
one, i �∈ MinLike. Then, this agent cannot increase ui(Πj) by misreporting
ui(πi ∪ {oj}) − ui(πi) because, for any such misreported value, they remain
outside MinLike. In the second case, i ∈ MinLike. Hence, they receive oj with
probability 1/|MinLike| supposing they bid ui(πi∪{oj})−ui(πi) that is positive.
In fact, this holds for any other positive marginal bid that they report for this
item. However, this probability becomes 0 whenever they report zero marginal
bid for the item. We conclude that ui(Πj) cannot increase. �

7.2 Wasteful Mechanisms

We say that a mechanism is wasteful iff it is not non-wasteful. Clearly, no waste-
ful mechanism is Pareto efficient ex post or even ex ante simply because one can
improve the outcome of the mechanism by taking an item that is allocated to an
agent who report a zero marginal bid for it and giving it to some other agent who
make a positive marginal bid for the item. We, therefore, focus on envy-freeness
and strategy-proofness. Let us consider the uniform mechanism that gives each
next item to an agent with probability 1

n given any allocation of past items.
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This mechanism is strategy-proof and envy-free ex ante because no agent can
increase their own outcome and each agent receives the same probability for a
given bundle of items. By Theorem 6, no wasteful mechanism is EF1 in general.
However, we can bound the envy ex post with identical monotone utilities. For
example, consider the wasteful version of the Minimum Like mechanism, i.e.
the Minimum Utility mechanism. This one is EF1 in this domain.

Minimum Utility: At round j ∈ [m], given π ∈ Πj−1, we let MinUtil =
{i|i ∈ [n], vi(πi) = mink∈[n] vk(πk)}. The mechanism gives oj to some
i ∈ MinUtil with probability (1/|MinUtil|).

Theorem 12. With identical monotone utilities, the wasteful Minimum Uti-
lity mechanism is EF1.

Proof. We can use induction on j ∈ [m] as in the proof of Theorem 7. In
the base case, the allocation of o1 is trivially EF1. In the step case, consider
π′ = (π′

1, . . . , π
′
n) where π′

1 = π1∪{oj} and π′
i = πi for each i �= 1, supposing that

π ∈ Πj−1 with p(π) > 0 is EF1. We next show that π′ is EF1. Suppose i �= 1 and
k �= 1. This follows by Case 1 in Theorem 7. Suppose i �= 1 and k = 1 ∈ MinUtil.
This follows by Case 2 in Theorem 7. Suppose that i = 1 ∈ MinUtil and k �= 1.
We have u1(π′

1) ≥ u1(π1) as π′
1 = π1 ∪ {oj}. As π is EF1, u1(π1) ≥ u1(πk \ {o})

for some o ∈ πk �= ∅. Hence, u1(π′
1) ≥ u1(πk \ {o}) = u1(π′

k \ {o}) as π′
k = πk.

Therefore, agent 1 is EF1 of agent k in π′. We conclude that π′ is EF1. �
It is easy to see that the Minimum Utility mechanism is online strategy-

proof with general utilities and envy-free ex ante with identical utilities. However,
by Theorems 8, 9 and 10, we conclude that no wasteful mechanism, including
Minimum Utility, is EF1 and strategy-proof or EF1 and Pareto efficient, or
just EFX.

As strategy-proofness is possible (e.g. the uniform mechanism), we might
wish to achieve even a stronger form of strategic robustness. For example, group
strategy-proofness captures the ability of groups of agents to manipulate mech-
anisms in their joint favor [4].

Definition 7 (Group strategy-proofness, GSP). A mechanism is GSP in a
problem with m items if, with complete information of o1 to om, no group of
agents G can strictly increase

∑
i∈G ui(Πm) by misreporting their marginal bids

for one or more item oj and allocation π ∈ Πj−1, supposing that every agent
k �∈ G bid sincerely their marginal utilities for items o1 to om.

Surprisingly, the (wasteful) uniform mechanism is group strategy-proof in
general as the outcome of a given group can only decrease supposing some
agents from the group bid strategically marginal zeros for some items, and can-
not increase if some of these agents bid strategically any combination of positive
bids for some of these items. By comparison, no non-wasteful mechanism is
group strategy-proof even with two agents who cooperate and have different
positive utilities for one item [4]. However, it remains an interesting open ques-
tion if group strategy-proofness is achievable with a non-wasteful mechanism
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in the case of identical monotone utilities with non-zero marginals, or identical
additive utilities. Nevertheless, by Theorem 8, such a mechanism cannot be EF1.

Table 1. Key: �� - impossibility, � - possibility, + - discussion after, − - discussion
before.

Non-wasteful mechanisms Wasteful mechanisms

General utilities Identical utilities General utilities Identical utilities

Property Possibly 0

marginals

Non-zero

marginals

Possibly 0

marginals

Non-zero

marginals

Possibly 0

marginals

Non-zero

marginals

Possibly 0

marginals

Non-zero

marginals

OSP � [T11] � [T11] � [T11] � [T11] � [T12]+ � [T12]+ � [T12]+ � [T12]+

SP �� [T1] � [T6]− �� [T1] � [T6]− � [T12]− � [T12]− � [T12]− � [T12]−

GSP �� [T1] �� [T12]+ �� [T1] open � [T12]+ � [T12]+ � [T12]+ � [T12]+

EF1 �� [T4] �� [T6] �� [T4] � [T7] �� [T6] �� [T6] � [T12] � [T12]

EFX �� [T10] �� [T10] �� [T10] �� [T10] �� [T10] �� [T10] �� [T10] �� [T10]

EFA �� [T2] � [T6]− � [T3] � [T3] � [T12]− � [T12]− � [T12]− � [T12]−

PEP+PEA �� [T5] � [T6]− �� [T5] � [T6]− �� [T12]− �� [T12]− �� [T12]− �� [T12]−

Table 2. Key: × - does not hold, � - holds, + - discussion after, − - discussion before.

Mechanism SP OSP EFA EF1 EFX PEA PEP

Identical monotone utilities

Minimum Like × [T1] � [T11] � [T3] × [T4] × [T10] × [T5] × [T5]

Minimum Utility × [T8] � [T12]+ � [T12]+ � [T12] × [T10] × [T12]− × [T12]−

Identical monotone utilities with non-zero marginals

Minimum Like × [T8] � [T11] � [T3] � [T7] × [T10] × [T9] × [T9]

Identical additive utilities

Minimum Like × [T8] � [T11] � [T3] � [T7] × [T10] � [T9]− � [T9]−

8 Conclusions

We consider a model for online fair division in which agents have monotone
utilities for bundles of items. We studied common axiomatic properties of mech-
anisms for this model such as strategy-proofness, envy-freeness and Pareto effi-
ciency. We analysed these properties for several utility domains, e.g. general
marginal utilities, non-zero marginal utilities, identical utilities, etc. For non-
wasteful mechanisms, most properties cannot be guaranteed. For wasteful mech-
anisms, most properties can be guaranteed in isolation. However, we also proved
some impossibility results for combinations of axiomatic properties. We summa-
rize our results in Table 1. We also proposed two new mechanisms - Minimum
Like and Minimum Utility - that satisfy a relaxed form of strategy-proofness
in general as well as envy-freeness ex ante and ex post up to some item in two
domains with identical utilities. We summarize these results in Table 2. Finally,
our results hold in offline fair division as well because online mechanisms can be
applied to offline problems by picking up an order of the items. In future, we
will consider other utility domains such as sub- and super-additive, or sub- and
sup-modular utilities. We will also consider other relaxations of the considered
properties and other (e.g. not marginal) mechanisms for our model.
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