
Filtering Algorithms for the NValue Constraint

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich3, Zeynep Kiziltan4,
and Toby Walsh2

1LIRMM-CNRS
bessiere@lirmm.fr
2NICTA and UNSW

{ehebrard, tw}@cse.unsw.edu.au
3Izmir University of Economics
brahim.hnich@ieu.edu.tr

4University of Bologna
zkiziltan@deis.unibo.it

Abstract. The NValue constraint counts the number of different val-
ues assigned to a vector of variables. Propagating generalized arc consis-
tency on this constraint is NP-hard. We show that computing even the
lower bound on the number of values is NP-hard. We therefore study
different approximation heuristics for this problem. We introduce three
new methods for computing a lower bound on the number of values. The
first two are based on the maximum independent set problem and are in-
comparable to a previous approach based on intervals. The last method
is a linear relaxation of the problem. This gives a tighter lower bound
than all other methods, but at a greater asymptotic cost.

1 Introduction

The NValue constraint counts the number of distinct values used by a vector of
variables. It is a generalization of the widely used AllDifferent constraint [5,
16]. It was introduced in [6] to model a musical play-list configuration problem
so that play-lists were either homogeneous (used few values) or diverse (used
many). There are many other situations where the number of values used are
limited. For example, if values represent resources, we may have a limit on the
number of values used at the same time. A NValue constraint can thus aid
both modelling and solving many real world problems.

Enforcing generalized arc consistency (GAC) on the NValue constraint is
NP-hard [3]. One way to deal with this intractability is to decompose the con-
straint or to approximate the pruning. The NValue constraint can be decom-
posed into two other global constraints: the AtMostNValue and the Atleast-

NValue constraints. Unfortunately, while enforcing GAC on the AtLeast-

NValue constraint is polynomial, enforcing GAC on the AtMostNValue

constraint is also NP-hard. We will therefore focus on various approximation
methods for propagating the AtMostNValue constraint.

2

We introduce three new approximations. Two are based on graph theory
while the third exploits a linear relaxation encoding. We compare the level of fil-
tering achieved with a previous approximation method due to Beldiceanu based
on intervals that runs in O(n log(n)) [1]. We show that the two new algorithms
based on graph theory are incomparable with Beldiceanu’s, though one is strictly
tighter than the other. Both algorithms, however, have an O(n2) time complex-
ity. We also show that the linear relaxation method dominates all other ap-
proaches in terms of the filtering, but with a higher computational cost. Finally,
we demonstrate how all of these methods can be used in a filtering algorithm for
the NValue constraint and provide empirical results to show the value of the
methods proposed.

2 Formal Background

2.1 Constraint satisfaction problems

A constraint satisfaction problem (CSP) consists of a set of variables, each with a
finite domain of values, and a set of constraints that specify allowed combinations
of values for subsets of variables. We use upper case for variables, Xi, or vectors
of variables, X̄, and lower case for values, v, or assignments, v̄. The domain of a
variable Xi, D(Xi) is a set of values. A full or partial assignment v̄ = 〈v1, . . . , vm〉
of X̄ = 〈X1, . . . , Xm〉 is a vector of values such that vi ∈ D(Xi). A solution to a
CSP is a full assignment of values to the variables satisfying the constraints. The
minimum (resp. maximum) value in the domain of a variable Xi is min(Xi) (resp.
max(Xi)). The cardinality of an assignment v̄ is card(v̄), the number of distinct
values used. For instance if v̄ = 〈a, b, a, b, c〉, card(v̄) = 3. The maximum (resp.
minimum) cardinality of a vector of variables X̄, card↑(X̄) (resp. card↓(X̄)) is
the largest (resp. smallest) cardinality among all possible assignments.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C on the variables X̄ , a support for Xi = vj on C
is a partial assignment v̄ of X̄ containing Xi = vj that satisfies C. A value
vj ∈ D(Xi) without support on a constraint is arc inconsistent. A variable Xi is
generalized arc consistent (GAC) on C iff every value in D(Xi) has support on
C. A constraint C is GAC iff each constrained variable is GAC on C. A bound
support on C is a support where the interval [min(Xi), max(Xi)] is substituted
for the domain of each constrained variable Xi. A variable Xi is bound consistent
(BC) on C if min(Xi) and max(Xi) have bound support on C. A constraint is
BC iff all constrained variables are BC on C.

In line with [4], we say that a local consistency property Φ on C is as strong as
Ψ (written Φ � Ψ) iff, given any domains, if Φ holds then Ψ holds; Φ is stronger
than Ψ (written Φ ≻ Ψ) iff Φ � Ψ but not Ψ � Φ; Φ is equivalent to Ψ (written
Φ ≡ Ψ) iff Φ � Ψ and Ψ � Φ; and that they are incomparable otherwise (written
Φ ⊲⊳ Ψ).

3

2.2 Graph theoretic concepts

Given a family of sets F = {S1, . . . , Sn} and a graph G = (V, E) with the set of
vertices V = {v1, . . . , vn} and set of edges E, G is the intersection graph of F iff

∀i, j · 〈vi, vj〉 ∈ E ↔ Si ∩ Sj 6= ∅

For any graph G, there exists a family of sets F such that the intersection graph
of F is G. The class of intersection graphs is simply the class of all undirected
graphs [12]. The class of graphs obtained by the intersection of intervals, instead
of sets, is known as interval graphs.

Given a vector of variables X̄ = 〈X1, . . . , Xm〉, we use GX̄ = (V, E) for the
induced intersection graph, i.e the graph where V = {v1, . . . , vm} and ∀i, j ·
〈vi, vj〉 ∈ E ↔ D(Xi) ∩ D(Xj) 6= ∅. Similarly, we use Ī for the same vector
of variables, where all domains are seen as intervals instead, i.e., for each i,
D(Xi) = [min(Xi), max(Xi)]. GĪ is the induced interval graph, defined like GX̄ ,
but on the intervals instead. For instance, the domains in Figure (1,a) induce
the intersection graph in (1,b) and the interval graph in (1,c).

X1 ∈ {2, 3}
X2 ∈ {3, 4}
X3 ∈ {1, 4, 5}
X4 ∈ {5, 6}
X5 ∈ {6, 7}
X6 ∈ {2, 3, 7}

(a) domains

v2

v6

v1

v4

v5

v3

(b) GX̄

v2

v6

v1

v4

v5

v3

(c) GĪ

Fig. 1. Domains, intersection graph and interval graph.

Finally, we recall that an independent set is a set of vertices with no edge
in common. The independence number α(G) of a graph G, is the number of
vertices in an independent set of maximum cardinality. A clique is the dual
concept: a set of vertices such that any pair are connected by an edge. A clique
cover of G is a partition of the vertices into cliques. The cardinality of the
minimum clique cover is θ(G). For instance, the interval graph of Figure (1,c) has
{{v1, v2, v3}{v4, v5, v6}} as a minimal clique cover, hence θ(GĪ) = 2. Similarly,
the intersection graph of Figure (1,b) has {v1, v3, v5} as a maximal independent
set, hence α(GX̄) = 3.

3 The NValue constraint

In this section we define the NValue constraint and we show that it can be
decomposed into two simpler constraints. Whereas one of these constraints is
polynomial to propagate using a maximum matching algorithm, the second is
NP-hard so we look at approximation methods.

4

Definition 1. NValue(N, [X1, . . . , Xm]) holds iff N = |{Xi| 1 ≤ i ≤ m}|

Enforcing GAC on the NValue constraint is NP-hard in general [3]. We can,
however, decompose it into two simpler constraints: the AtLeastNValue and
the AtMostNValue constraints.

Definition 2. AtLeastNValue(N, [X1, . . . , Xm]) holds iff N ≤ |{Xi| 1 ≤ i ≤
m}|. AtMostNValue(N, [X1, . . . , Xm]) holds iff N ≥ |{Xi| 1 ≤ i ≤ m}|.

We can identify precisely when the decomposition of a NValue constraint
does not hinder propagation. In order to prove Theorem 1 we first state the two
following lemmas.

Lemma 1. Any value in D(N) is GAC for NValue if and only if it is lower
than or equal to card↑(X̄) and greater than or equal to card↓(X̄).

Proof. Let S be any assignment of X̄ . Consider assigning X̄ as in S, one variable
at a time. Let X̄k be X̄ at step k, that is, with k ground variables. Hence, since
X̄ involves m values, X̄m corresponds to S. At a step k, the value of card↓(X̄k)
(resp. card↑(X̄k)) increases (resp. decreases) by at most one with respect to step
k − 1. Moreover, when every variable is assigned, card↓(X̄m) =card↑(X̄m) =
card(S). Therefore, for any value p between card↓(X̄0) and card↑(X̄0), there
exists k such that either card↓(X̄k) = p or card↑(X̄k) = p. Consequently p has
a support for a sub-domain X̄k and is thus GAC. ⊓⊔

Second, the variables in X̄ are GAC if either D(N) = [card↓(X̄), card↑(X̄)]
or there exists at least one value lower than card↑(X̄) and greater than card↓(X̄).

Lemma 2. If either D(N) = [card↓(X̄), card↑(X̄)] or card↓(X̄)+1 < card↑(X̄)
and [card↓(X̄) + 1, card↑(X̄) − 1] ∩ D(N) 6= ∅ then X̄ is GAC.

Proof. We first show the first part of the disjunction. Recall that card↓(X̄) (resp.
card↑(X̄)) is the cardinality of the smallest (resp. largest) possible assignment.
Therefore, if the domain of N is equal to the interval [card↓(X̄), card↑(X̄)] it
means that all assignments of X̄ have a cardinality in D(N).

For the second part, we use again the argument that assigning a single vari-
able can affect the bounds by at most one. In other words, for all Xi ∈ X̄,
a value v ∈ D(Xi) (without loss of generality) belongs to an assignment of
cardinality either card↓(X̄), card↓(X̄) + 1, card↑(X̄) or card↑(X̄) − 1. More-
over, let X̄Xi=v be X̄ where the domain of Xi is reduced to {v}. We have
card↓(X̄Xi=v) ≤ card↓(X̄) + 1 and card↑(X̄Xi=v) ≥ card↑(X̄) − 1. Hence, by
assumption D(N)∩ [card↓(X̄Xi=v), card↑(X̄Xi=v)] 6= ∅, and by applying Lemma
1, we know that there exists a tuple satisfying NValue with Xi = v. ⊓⊔

Theorem 1. If AtLeastNValue and AtMostNValue are GAC and (|D(N)| 6=
2 or min(N) + 1 = max(N)), then NValue is GAC.

Proof. Suppose that the decomposition is GAC. Then we have card↓(X̄) ≤
min(N) and card↑(X̄) ≥ max(N). Thus, by Lemma 1, N is GAC for NValue.

5

Furthermore, we know that if D(N) contains a value v such that card↓(X̄) < v <
card↑(X̄), then all variables in X̄ are GAC (see Lemma 2). Therefore we only
need to cover the three cases where D(N) does not contain any value between
card↓(X̄) and card↑(X̄):

– D(N) = {card↑(X̄)}. Let v be an arc inconsistent value in X̄. There is no
assignment whose cardinality is greater than card↑(X̄), therefore v is arc
inconsistent because it participates only in assignments of cardinality below
N . Hence v is arc inconsistent for AtLeastNValue, which contradicts the
hypothesis.

– D(N) = {card↓(X̄)}. Analogous to the previous case.

– D(N) = {card↓(X̄), card↑(X̄)}: |D(N)| is not different from 2, so by as-
sumption, min(N) + 1 = max(N), which implies that card↓(X̄) + 1 =
card↑(X̄). Then NValue is GAC (see Lemma 2).

⊓⊔

The only case where AtMostNValue and AtLeastNValue are GAC but
NValue may not be is when the domain of N contains only card↓(X̄) and
card↑(X̄) and there is a gap between these bounds. For instance, consider the
domains: X1 ∈ {1, 2, 3}, X2 ∈ {1, 2}, X3 ∈ {1}, N ∈ {1, 3}. Whilst enforcing
GAC on NValue(X1, X2, X3, N) will prune X1 = 2, these domains are GAC
for the decomposition. In section 7, we show that we can make GAC on the
decomposition equivalent, by performing extra pruning in this situation.

3.1 The AtLeastNValue constraint

We first have a brief look at the AtLeastNValue constraint. It is known [1]
that card↑(X̄) is the cardinality of the maximal matching of the bipartite graph
with a class of vertices representing the variables, another the values, and where
an edge links two vertices if and only if it corresponds to a valid assignment.
Indeed, this is the basic idea behind Régin’s algorithm for enforcing GAC on the
AllDifferent constraint [16]. We can easily derive a propagation procedure for
AtLeastNValue using the variable-based violation cost for the SoftAllDiff

constraint as described in [14]. This violation cost counts the number of variables
that need to be reassigned to satisfy the constraint and is thus equal to n −
card↑(X̄). The value of card↑(X̄) is shown in [14] to be equal to the size of
the maximal matching in the bipartite graph described above. Moreover, we can
prune the values in X̄ that do not belong to a maximal matching. This provides
us with an algorithm for enforcing GAC on AtLeastNValue. One difference
is that we do not always want to prune the values that do not participate in a
maximal matching. We shall see how the method described in [14] can be used
when pruning the variables in X̄ in section 7. We refer the reader to [14] for more
details about this algorithm, and we focus on the constraint AtMostNValue

for the rest of the paper.

6

3.2 The AtMostNValue constraint

We adapt the proof of NP-hardness for NValue [3] to show that enforcing GAC
on an AtMostNValue constraint alone is intractable.

Theorem 2. Enforcing GAC on an AtMostNValue(N, [X1, . . . , Xm+k]) con-
straint is NP-hard, and remains so even if N is ground.

Proof. We use a reduction from 3SAT. Given a formula in k variables and m
clauses, we construct the AtMostNValue(N, [X1, . . . , Xm+k]) constraint in
which D(Xi) = {i,¬i} for all i ∈ [1, k], and each Xi for i > k represents one
of the m clauses. If the jth clause is x ∨ ¬y ∨ z then D(Xk+j) = {x,¬y, z}. By
construction, the variables [X1, . . . , Xk] will consume k distinct values, hence
if N = k, the constructed AtMostNValue constraint has a solution iff the
original 3SAT problem has a satisfying assignment. Consider for instance the
following 3SAT formula φ:

φ = c1 : a ∨ ¬b ∨ c ∧

c2 : ¬a ∨ b ∨ d ∧

c3 : ¬b ∨ ¬c ∨ d

We create an instance of AtMostNValue with 7 variables, 4 standing for atoms
and 3 standing for clauses, as follows:

X1 ∈ {a,¬a}, X2 ∈ {b,¬b}, X3 ∈ {c,¬c}, X4 ∈ {d,¬d}

X5 ∈ {a,¬b, c}, X6 ∈ {¬a, b, d}, X7 ∈ {¬b,¬c, d}

Any assignment of 〈X1, X2, X3, X4〉 corresponds to an interpretation of φ, and
uses exactly 4 different values. Therefore, such an interpretation is a model of
φ if and only if it intersects the domain of every variable standing for a clause,
i.e., an assignment using no more than 4 values exists. It follows that testing a
value for support is NP-complete, and enforcing GAC is NP-hard. ⊓⊔

Note that this proof is a reduction of 3SAT into the problem of propagating
GAC on X̄ when N is ground. This means that pruning X̄ alone is NP-hard.
Indeed, even computing just the lower bound on N , given X̄ is not easier.

Theorem 3. Computing the value of card↓(X̄) is NP-hard.

Proof. Computing card↓(X̄) is equivalent to finding the cardinality of a mini-
mum hitting set of X̄ seen as a family of sets. A hitting set of a family of sets
F , is a set that intersects each member of F . Computing the cardinality of the
smallest possible hitting set is NP-hard [9]. If we have one variable Xi in X̄ for
each set Si ∈ F , and D(Xi) = Si, then card↓(X̄) is equal to the cardinality of
a minimum hitting set of F . ⊓⊔

7

4 Existing algorithm for the AtMostNValue constraint

We first recall Beldiceanu’s algorithm [1] in figure 2, then we introduce a graph
theoretic view of his method. We shall refer to Beldiceanu’s algorithm as OI,
for ordered intervals. The first step is to order the domains by increasing lower
bound. Then the following procedure (algorithm 1) can be applied, the value
returned (Ndistinct) is a lower bound on card↓(X̄).

Algorithm 1: OI

Data : X̄
Result : Ndistinct

Ndistinct ← 1;
reinit← true;
i← 1;
low← −∞;
up←∞;
while i < m do

if ¬reinit then i← i + 1;
if reinit or (low < min(Xi)) then low ← min(Xi);
if reinit or (up > max(Xi)) then up← max(Xi);
reinit← (low > up);
if reinit then Ndistinct ← Ndistinct + 1;

return Ndistinct;

Fig. 2. The interval-based algorithm introduced in [1].

The intervals are explored one at a time, and a new group, i.e. a clique of the
interval graph, is completed when an interval is found that does not overlap with
all previous ones in the group. The time complexity is O(n log(n)) for sorting,
and then the algorithm itself is linear, the loop visits each domain at most twice
(when this domain is distinct from the previous). Hence, the worst case time
complexity is dominated by O(n log(n)). This algorithm is proved correct, that
is, it returns a valid lower bound, by noticing that the intervals with smallest
maximum value for each group are pairwise disjoint. Consequently, at least as
many values as groups, that is, Ndistinct, have to be used. As there was no proof
given in [1], we present one here:

Proposition 1. Let {C1, . . . , Ck} be a partition of the intervals, output of OI.
If Ī = 〈I1, . . . , Ik〉 is the vector of intervals where Ii is the element of Ci with
least maximum value, then all elements of Ī have empty pairwise intersections.

Proof. OI scans all intervals by increasing lower bound, partitioning into groups
on the way. When the algorithm ends, we have k groups C1, . . . , Ck. For any
group Ci, consider the interval I1 with least upper bound. This interval does not
intersect any interval in any group Cj such that j > i. Suppose it was the case,

8

i.e, there exists I2 ∈ Cj which intersects with I1, since the intervals are ordered
by increasing lower bound, I2 cannot be completely below any interval in Ci. It
must then be either completely above or overlapping. However, since Il has the
least upper bound and intersects I2, all intervals in Ci must also intersect I2. It
follows that I2 should belong to Ci hence the contradiction. The set containing
the interval with least upper bound of every group is then pairwise disjoint, and
is of cardinality k. ⊓⊔

Moreover, it is easy to see that, when the domains are intervals, this bound
can be achieved. If, for each group, we assign all the variables of this group to
one of the common values, then we obtain an assignment of cardinality Ndistinct.
This argument is used in [1] to show that OI achieves BC on N .

Now, recall that GX̄ is the intersection graph of the variables in X̄, whereas
GĪ is the interval graph of the same variables. It is easy to see that OI computes
at once a clique cover and an independent set of GĪ . Moreover, since for any
graph α(G) ≤ θ(G), if a graph G contains an independent set and a clique cover
of cardinality n, we must conclude that n = α(G) = θ(G). Indeed, interval graphs
belong to the class of perfect graphs, for which, by definition, the independence
number is equal to the size of the minimum clique cover. Therefore, we know
that the output of OI, i.e., Ndistinct is equal to α(GĪ) and also to θ(GĪ). It can
be shown that, in this case, the cardinality of the minimum clique cover on the
interval graph is equal to the cardinality of the minimum hitting set on Ī itself.
This is due to the fact that a set of intervals that pairwise intersect always share a
common interval, any element of this interval hitting all of them. To summarize,
in the special case where the domains of all variables in X̄ are intervals (denoted
Ī), the following equality holds: α(GĪ) = θ(GĪ) = card↓(Ī).

As a consequence, the value Ndistinct is exact, hence OI achieves bound consis-
tency on N for the constraint AtMostNValue. However, considering domains
as intervals may be in some case a very crude approximation. If we consider the
intersection graph GX̄ instead of the interval graph GĪ , the relation becomes:
α(GX̄) ≤ θ(GX̄) ≤ card↓(X̄)

Any of those three quantities is a valid lower bound, though they are NP-
hard to compute. They are, on the other hand, tighter approximations that do
not consider domains as intervals. Indeed, since GX̄ has less edges than GĪ , it
follows immediately that: α(GX̄) ≥ α(GĪ) (= θ(GĪ) = card↓(Ī)).

5 Three new approaches

We present two algorithms approximating α(GX̄) and a linear relaxation ap-
proximating directly the minimum hitting set problem, and hence card↓(X̄).

5.1 A greedy approach

We have seen that OI approximates the lower bound on N by computing the
exact value of α(GĪ), the independence number of the interval graph induced by
X̄. Here the idea is to compute the independence number of GX̄ , α(GX̄).

9

Whilst computing the exact value of α(GX̄) is intractable for unrestricted
graphs, some efficient approximation schemes exist for that problem. We use
here a very simple heuristic algorithm for computing the independence number
of a graph, referred to as “the natural greedy algorithm”. We denote it MD, for
minimum degree. This procedure, represented in figure 3, consists of removing
the vertex v of minimum degree as well as its neighborhood Γ (v) in turn. We
define the neighborhood of a vertex as the set of vertices sharing an edge with
it (Γ (v) = {w | (vw) ∈ E}).

Algorithm 2: MD

Data : G = (V, E)

Result : Ndistinct

if G = ∅ then return 0;
choose v ∈ V such that d(v) is minimum;
return 1+MD(G = (V \ (Γ (v) ∪ {v}), E));

Fig. 3. A greedy algorithm approximating the maximum independent set of a graph.

The number of iterations i is such that i ≤ α(G). This algorithm is studied
in detail in [10]. If we suppose that the intersection graph is constructed once
and maintained during search, then an efficient implementation runs in O(n+m)
where n is the number of vertices and m is the number of edges (linear in the size
of the graph). However, computing the intersection graph requires n(n + 1)/2
tests of intersection. Each of those may require at most d equality checks, where
d is the size of the domains in X̄. Notice that efficient data structures, such as bit
vectors, are often used to represent domains and thus allow intersection checks
in almost constant time in practice. This suggests an implementation where the
graph is never actually computed, but an intersection check is done each time we
need to know if an edge links two nodes. The worst case time complexity is then
O(dn2) if intersection is linear in the size of the sets or O(n2) if it is constant.

5.2 Turán’s approximation

One alternative is to use an even simpler approximation to the independence
number. Turán proposed a lower bound for α(G) in [17], where n is the number
of vertices and m the number of edges (figure 4, relation 1). This inequality was
subsequently improved by Favaron et al. [7], see relation 2 in figure 4. However,
we restrict our study to the original lower bound of Turán (relation 1). Assuming
that m is computed once, and revised whenever a domain changes or whenever
the constraint is called again, this formula gives a lower bound in constant time.
The worst case time complexity is the same as MD’s (because of the initialization).
However, this heuristic can be much more efficient in practice. We refer to this
method as Turan.

10

α(G) ≥

‰

n2

2m + n

ı

(1) α(G) ≥

2

6

6

6

2n− 2m

⌈ 2m

n
⌉

⌈ 2m

n
⌉+ 1

3

7

7

7

(2)

Fig. 4. Graph theoretic lower bounds on the independence number of a graph

5.3 A linear relaxation approach

We have seen that the cardinality of the minimum hitting set problem where the
family of sets is formed by the domains of the variables in X̄ is equal to the lower
bound on N , that is, card↓(X̄). One difficulty is that approximation algorithms
proposed in the literature for minimum hitting set return an approximation by
above, and so do not provide a valid lower bound. However, we consider here
a linear relaxation that can be solved in polynomial time that gives a lower
bound on the minimum hitting set cardinality, and thus, of N . Given a vector
of variables X̄ = 〈X1, . . . Xn〉, let V =

⋃

v∈X̄ D(x) be the total set of values.
Then let {yv| v ∈ V } be a set of linear variables, and the program, denoted LP,
is shown in figure 5.

LP : min
∑

v∈V
yv subject to

∑

v∈D(Xi)
yv ≥ 1 ∀Xi ∈ X̄

yv ≥ 0 ∀v ∈ V

Fig. 5. Linear program to approximate the minimum hitting set problem

The best polynomial linear program solvers based on the interior point meth-
ods run in O(v3L) where v is the number of variables and L is the number of bits
in the input. The number of variables in our linear program is nd (d = |D(Xi)|)
and we have n = |X̄| inequalities of size d. Therefore, the worst case time com-
plexity is O(n4d4). In practice, the simplex method may behave better even
though it has an exponential worst case time complexity.

6 Theoretical Analysis

We will compare the level of local consistency computed by these different meth-
ods. We refer to the level of local consistency achieved by an algorithm A as A as
well. The AtMostNValue constraint is locally consistent iff the lower bound
returned by the propagation algorithm does not exceed max(N). Φ � Ψ means
that the lower bound on N returned by the algorithm enforcing Φ is greater

11

X1 ∈ {4, 5}
X2 ∈ {3, 6}
X3 ∈ {2, 7}
X4 ∈ {1, 8}

(a) domains

I2

I1

I3

I4

(b) intervals

v1 v2

v3v4

(c) GX̄

v1 v2

v3v4

(d) GĪ

Fig. 6. Example for OI 6� MD and for OI 6� Turan.

than or equal to the lower bound returned by the algorithm enforcing Ψ . We will
compare the level of local consistency achieved by the following algorithms: OI,
MD, Turan, and LP.

Note that, since only the lower bound on N is considered in this comparison,
OI is then equivalent to BC. We do not compare with generalized arc consistency
either, as this is NP-hard to enforce and all our algorithms are polynomial and
strictly weaker.

Theorem 4. MD ≻ Turan

Proof. For a proof that MD is as strong as Turan see [10]. Moreover, it is easy to
find an example showing that MD is strictly stronger. For instance consider the
following domains: X1 ∈ {1, 2, 3, 4, 5, 6, 7, 8}, X2 ∈ {1, 2}, X3 ∈ {3, 4}, X4 ∈
{5, 6} , and X5 ∈ {7, 8}. The induced intersection graph is as follows:

v5 v1 v3

v2

v4

When applying MD, we obtain an independent set of size 4. However, Turan

returns:
⌈

n2

2m+n

⌉

=
⌈

25
13

⌉

= 2. ⊓⊔

Theorem 5. Turan ⊲⊳ OI

Proof. To see that Turan is not as strong as OI, consider the example used in
the proof of Theorem 4. The domains being intervals, we know that OI computes
the exact lower bound, 4. However the Turán heuristics gives us 2.

To see that OI is not as strong as Turán, consider the domains in Figure 6. The
induced intersection graph GX̄ has 4 vertices (n = 4) and no edges (m = 0), thus
Turan returns 4. However, the interval graph GĪ induced by the same domains
is a clique and then OI returns 1. ⊓⊔

Theorem 6. MD ⊲⊳ OI

Proof. To see that MD 6� OI, consider the interval graph in Figure (7,a) induced
by the intervals of Figure (7,b). The exact independence number is 4 (for in-
stance {v2, v3, v8, v9} is an independent set of cardinality 4), and thus OI returns

12

v3 v1 v2

v5

v7

v9

v11

v4

v6

v8

v10

(a) graph (GĪ)

I1

I2 I3

I4

I6

I8

I5

I9

I7

I11I10

(b) intervals (Ī)

Fig. 7. Example for MD 6� OI.

4. However, the vertex with minimal degree is v1, and no independent set of
cardinality 4 involves v1, therefore MD is not as strong as OI.

Figure 6 shows that OI 6� MD. The domains in Figure (6,a) induce a complete
interval graph. So, OI returns 1. But the intersection graph is unconnected, so
MD returns 4. Therefore OI is not as strong as MD. ⊓⊔

Theorem 7. LP ≻ MD, LP ≻ OI and LP ≻ Turan.

Proof. We first show that the value returned by LP is greater or equal to α(GX̄).
Consider a maximum independent set A of the intersection graph. We know
that any two variables in A have no value in common. However for each variable
Xi ∈ A we have:

∑

v∈D(Xi)
yv ≥ 1. Since the domains of those variables are

disjoint, we have:
∑

v∈
S

Xi∈A
D(Xi)

yv ≥ |A| = α(GX̄)

And thus the total sum to minimize is greater than or equal to α(GX̄). However,
recall that OI, MD and Turan all approximate α(GX̄) by giving a lower bound.
Therefore LP is as strong as OI, MD and Turan. Moreover, the variables X1 ∈
{1, 2}, X2 ∈ {2, 3}, X3 ∈ {1, 3} constitute an example showing that LP is strictly
stronger, as the optimal sum for LP is 1.5, whilst α(GX̄) = 1. ⊓⊔

Figure 8 summarizes the relations between the consistencies covered in this
section.

7 A propagation algorithm for the NValue constraint

A template for an approximate propagation algorithm for NValue is given in
Algorithm 3. In this template, one may use any of the methods described in
the previous sections to replace the procedure approx (line 2). Notice that in
Algorithm 3 (and in Algorithms 4, 5 and 6, we assume that the procedure stops
and a backtrack occurs in the event of a domain being wiped out. The pruning
on N is straightforward (lines 3 and 4). When we have max(N) < min(N),
there is clearly an inconsistency, D(N) is wiped out, and the algorithm fails.
In the following subsections, we consider the cases of lines 5, 6 and 7, where
some filtering may be achieved. All other cases (line 8) satisfy the preconditions

13

LP

MD OI ≃

≺

≺ ≺

BC

⊲⊳

⊲⊳

Turan

GAC

≺

Fig. 8. Relations between pruning performed by the different algorithms on the At-

MostNValue constraint.

of Lemma 2. Therefore, either the constraint is GAC, or we are unable to de-
duce any inconsistency because the lower bound lb for card↓(X̄) is not tight
enough. In the rest of this section we use lb (resp. ub) to denote the value of
card↓(X̄) (resp. card↑(X̄)) used in algorithm 3. However, whilst ub is exact, lb
is an approximation.

Algorithm 3: Nval-pruning

Data : X̄, N

1 ub← card↑(X̄);
2 lb←approx(card↓(X̄));
3 max(N)← min(max(N), ub);
4 min(N)← max(min(N), lb);
5 case (ub = min(N) = max(N) 6= lb) : pruning from below;
6 case (lb = min(N) = max(N) 6= ub) : pruning from above;
7 case (|D(N)| = 2 and min(N) + 1 < max(N)) : pruning from within;
8 otherwise return;

Fig. 9. Algorithm for propagating the NValue constraint.

7.1 Pruning from below

This pruning is triggered when ub = min(N) and lb < min(N). In this situation,
we know that some assignments may have too small cardinality, and therefore
some values may not participate in assignments of cardinality ub = min(N),
which is the only cardinality satisfying the constraint. Making AtLeastNValue

GAC is then sufficient to make the whole constraint GAC as this corresponds
to the first of the three possible cases discussed in the proof of Theorem 1. In
this situation, we can use a polynomial procedure for enforcing GAC on the
SoftAllDiff constraint [14].

14

7.2 Pruning from above

This is the dual case, we know that some assignments may have too large car-
dinality, and therefore some values may participate only in assignments of car-
dinality above max(N). This corresponds to the second case of the proof of
Theorem 1. Making AtMostNValue GAC is then sufficient to make the whole
constraint GAC. If lb is a sharp approximation of card↓(X̄), then we achieve
GAC. However, if lb < card↓(X̄), then card↓(X̄) > max(N) and there is no
solution, but we do not detect that fact.

In [1] two observations are made in order to prune X̄ which are relevant
when using MD to compute min(N). First, let A be a set of variables that form
an independent set of the intersection graph, and let Xi ∈ (X̄ \ A) be assigned
to a value v which does not belong to any domain in A. It follows that the
minimum number of values required will be at least α(GX̄) + 1. Hence we can
prune the value v from the domain of Xi when N is equal to α(GX̄). This way of
pruning the variables can be used with MD as well as with OI. There are no further
difficulties when going from interval graphs to intersection graphs. Consequently,
given an independent set A, we can propagate the following constraint.

∀Xi ∈ X̄, ∃Xj ∈ A s.t. Xi = Xj

Now, suppose that A′ is another distinct independent set. Thus, we have:

∀Xi ∈ X̄, ∃Xj1 ∈ A, ∃Xj2 ∈ A′ s.t. (Xi = Xj1 ∧ Xi = Xj2)

Therefore, one can prune values in X̄ by finding a set of independent sets A =
{A1, . . . Ak}. The set of consistent values V is defined as follows:

∀A ∈ A, UA =
⋃

Xi∈A

D(Xi), V =
⋂

A∈A

UA

It may be difficult to compute all independent sets of cardinality equal to N .
One must therefore find a set which is as large as possible. In [1], from the
first one found with OI, each independent set that differs by only one vertex is
deduced. This can be computed in linear time, without increasing the algorithm’s
complexity. As a result of the way X̄ is pruned, the algorithm described in [1]
does not enforce BC on AtMostNValue. The following domains are a counter
example:

X1 ∈ {1, 2}, X2 ∈ {2, 3}, X3 ∈ {3, 4}, X4 ∈ {4, 5}, N ∈ {2}

Only the values 2 for X1, X2 and 4 for X3, X4 are bound consistent. However,
the independent sets considered will be {X1, X3} and {X1, X4}. Therefore, the
values that are consistent are {1, 2, 4}. On the other hand, this way of pruning
can make holes in domains. Therefore the level of consistency achieved on At-

MostNValue is incomparable with bound consistency. Although they are not
equivalent, one can easily derive a procedure to enforce BC from OI. To check the
(say lower) bound of a variable Xi, we assign this bound to Xi and recompute

15

N . If the value of lb, after this assignment, is greater than N , this bound is not
BC.

With algorithms that do not compute independent sets in order to get a
lower bound on N , like the linear relaxation method or the Turán heuristic,
we are in a different situation. One possibility is simply not to do any pruning
and thus backtrack only when the domain of N is emptied. Alternatively, using
any method to compute a lower bound, we can use a brute-force method for
pruning. We implemented our filtering algorithms based on Turan and LP using
the second approach. Consider a value v in

⋃

X∈X̄ D(X), then suppose that we
commit to this value being used and compute the contingent lower bound on
N . A value strictly greater than N for this new lower bound means that v is
inconsistent and can be removed from any domain it appears in. This procedure
can be iteratively applied until all values have been checked.

7.3 Pruning from within

This pruning is triggered when |D(N)| = 2, lb = min(N), ub = max(N) and
lb + 1 < ub. This is the last of the three cases in the proof of Theorem 1. In this
case AtMostNValue and AtLeastNValue can be GAC whilst NValue is
not. However, when these conditions are met, the following constraints perform
this extra filtering:

(AtMostNValue(Min, X̄) ∨ AtLeastNValue(Max, X̄))

Min and Max are two extra variables. We have the following theorem:

Theorem 8. If (D(N) = {card↓(X̄), card↑(X̄)} and card↓(X̄)+1 < card↑(X̄))
then NValue(N, X̄) is GAC iff both the decomposition and the above constraints
are GAC.

Proof. (⇒) The case where D(N) = {card↓(X̄), card↑(X̄)} or card↓(X̄) + 1 <
card↑(X̄) does not hold is covered by Theorem 1. Now suppose this condition
holds, and there is a value vi ∈ D(Xi) which is not GAC for NValue. By
definition, this implies that any assignment such that the ith element is vi has
a cardinality different from card↓(X̄) and from card↑(X̄), since these values are
in D(N). Moreover, there is no assignment with cardinality above card↑(X̄)
or below card↓(X̄). Therefore we deduce that any assignment v̄ involving vi is
such that card↓(X̄) < card(v̄) < card↑(X̄). Hence, if Min = lb ∧ Max = ub
holds, then vi would be inconsistent for both AtMostNValue(Min, X̄) and
AtLeastNValue(Max, X̄)).

(⇐) If a value vi belongs to a support, i.e., an assignment whose cardinality is
either lb or ub, then either AtMostNValue(Min, X̄) or AtLeastNValue(Max, X̄))
or both are GAC. ⊓⊔

Hence, we simply assign N to lb, then we compute B1, the set of values
inconsistent for AtMostNValue. Similarly, we assign N to ub and compute
B2, the set of values inconsistent for AtLeastNValue, In both cases, we use
the methods described in section 7.1 and 7.2. Once this is done, we restore
the domain of N , and prune all values in B1 ∩ B2. Notice that B1 may be
underestimated, hence we do not achieve GAC.

16

8 Implementation

In this section we detail the implementation of the filtering algorithms used in
the experimental section (section 9). We give the pseudo code of Turan and MD.

8.1 Ordered intervals

We implemented OI following exactly the pseudo-code in page 8 of Beldiceanu,
Carlsson and Thiel’s technical report [2]. The intervals were ordered at each
call using a quick sort algorithm. There is little need to consider incremental
algorithm for sorting as all intervals may have been modified between two calls
to the propagator.

8.2 Intersection graph methods

In this case we again observed that incrementally updating the intersection graph
was an overhead more than an optimisation. We used instead a simple method
to reduce the size of the graphs considered. Clearly any value actually assigned
to a variable will be part of the total set of values. We therefore compute gvar,
the set of grounded variables, as well as the corresponding set gval of values
assigned to variables in gvar. We have three interesting cases:

1. |gval| > max(N)
2. |gval| = max(N)
3. |gval| = (max(N) − 1)

In the first case, there is obviously an inconsistency which results in a failure
of the propagation algorithm. In the second case, the situation is simple, the
maximum number of values has already been used, and thus any value outside
gval is inconsistent. The third case is slightly more tricky. We know that the
variables in X̄ \ gvar can only use up to one extra value. We define dvar to
be the set of variables that have no intersection with gval, i.e., dvar = {X ∈
X̄ | D(X)∩ gval = ∅}. The domain of any variable X in X̄ can be then reduced
to D(X) ∩ (gval ∪

⋂

Y ∈dvar
D(Y)).

If none of the previous cases hold, the lower bound on N is computed using
either Turan or MD. However, notice that for a variable X whose domain intersects
with gval, assigning X to a value contained in gval will not increase the distinct
number of values used and is therefore always the “best” choice. Hence these
variables do not need to be considered in the intersection graph. The effective
size of the intersection graph can thus be greatly reduced. Algorithm 4 performs
this preliminary step, i.e., computes gvar, gval and dvar and checks the three
cases above, before giving the hand to either MD or Turan.

In Algorithm 5, we use the Turán inequality to compute a lower bound on
card↓(dvar) as well as for pruning values of variables in X̄. The lower bound on

card↓(dvar) is obtained by adding |gval| to the quantity n2

2m+n
where n stands

for the number of nodes and m the number of edges in the subgraph restricted

17

Algorithm 4: AtMostNval-pruning

Data : X̄, N

gval ← ∅;
gvar ← ∅;
E ← ∅;
V ← X̄;
foreach X ∈ X̄ do

if |D(X)| = 1 then

gval ← gval ∪D(X);
gvar ← gvar ∪ {X};

min(N)← max(min(N), |gval|);
K ← max(N)− |gval|;
dvar ← X̄ \ gvar;
foreach X ∈ X̄ \ gvar do

if D(X) ∩ gval 6= ∅ then dvar ← dvar \ {X};

if K = 0 then

foreach X ∈ X̄ \ gvar do D(X)← D(X) ∩ gval;

if K = 1 then

foreach X ∈ X̄ \ gvar do

D(X)← D(X) ∩ (gval ∪
T

Y ∈dvar
D(Y));

Fig. 10. Shared procedure for propagating the AtMostNValue constraint.

Algorithm 5: Turan-pruning

Data : X̄, N

AtMostNval-pruning(X̄ , N);
n← |dvar|;
m← 0;
foreach X ∈ dvar do

degree[X]← |{Y | X 6= Y ∈ dvar ∧ D(X) ∩D(Y) 6= ∅}|;
m← m + degree[X];

min(N)← max(min(N), |gval|+
n
2

m+n
);

if min(N) ≥ max(N)− 1 then

foreach v ∈
S

X∈dvar
D(X) do

dv ← {X | X ∈ dvar ∧ v ∈ D(X)};
n′ ← n− |dv|;
m′ ← m−

P

X∈dv
degree[X];

if |gval|+ 1 + n
′2

m′+n′ > max(N) then

foreach X ∈ X̄ do D(X)← D(X) \ {v};

Fig. 11. Algorithm based on the Turán inequality for propagating the AtMost-

NValue constraint.

18

to dvar. Notice that in algorithm 5, m stands for twice the number of edges (2m
in the formula). Then, for every value in

⋃

X∈dvar
D(X), the same computation

can be made on the subgraph whose nodes correspond to variables that do not
contain v. This value can be added to |gval|+1 to get a lower bound on card↓(X̄)
in the case where the value v was to be used. The value v is therefore pruned if

the inequality |gval| + 1 + n2

2m+n
> max(N) holds.

Algorithm 6: MD-pruning

Data : X̄, N

AtMostNval-pruning(X̄ , N);
A← ∅;
while |dvar| > 0 do

n← |dvar|;
min = +∞;
foreach X ∈ dvar do

degree[X]← |{Y | X 6= Y ∈ dvar ∧ D(X) ∩D(Y) 6= ∅}|;
if min > degree[X] then

min← degree[X];
Y ← X;

A← A ∪ {Y };
dvar ← dvar \ {Y };
foreach X ∈ dvar do

if D(X) ∩D(Y) 6= ∅ then dvar ← dvar \ {X};

min(N)← max(min(N), |A|+ |gval|);
foreach X ∈ X̄ do D(X)← D(X) ∩ (gval ∪

S

X∈A
D(X));

Fig. 12. Algorithm based on the minimum degree heuristic for propagating the At-

MostNValue constraint.

In Algorithm 6, we use the minimum degree heuristic to compute a lower
bound on card↓(dvar). The variables in X̄ are pruned as described in section 7.2.
We use the independent set constructed in the greedy elimination scheme for this
purpose. If we find an independent set B, we concatenate it with gvar, that is,
we compute the set A = (gvar ∪ B) and we propagate the following constraint:

∀Xi ∈ X̄, ∃Xj ∈ A s.t. Xi = Xj

which in consequence reduces the domains of variables in X̄ to their intersection
with the set gval ∪

⋃

X∈A D(X).

8.3 Linear relaxation

The linear programming approach was implemented with CPLEX. In this case,
the linear program was incrementally modified during search as it is too costly

19

to create a new linear program each time we call the propagator. The linear
program is simply updated to reflect the pruning that occurred since the last
call. If a modification occurred, the linear program is solved to obtain a lower on
card↓(X̄). When this lower bound is greater or equal than max(N) − 1, we use
the following filtering procedure: For each variable yv = 0 (representing a value)
in the optimal solution, we solve LP ∪{yv = 1}, then we remove the value v from
all domains if and only if the solution to this linear program has an objective
value greater than max(N).

9 Experimental results

In this section, we compare empirically the different approaches introduced in
this paper with Beldiceanu’s bounds consistency algorithm. The purpose of this
experimental setting is twofold. We first aim at assessing the significance of
the theoretical comparison developed in this paper, then we want to evaluate
the tradeoff between filtering power and asymptotic cost. We used two types
of benchmarks. First, in order to isolate the testing of these propagators from
other modelling issues, we used randomly generated instances that we augmented
with an AtMostNValue constraint. Second we compared the algorithms on a
structured problem, namely, finding the dominating set of the Queen’s graph.

9.1 Random Problem

We randomly generated instances of binary CSPs then we added an AtMost-

NValue constraint and solved the resulting problems using the four methods
discussed in this paper (OI, Turan, MD and LP). In solving such problems, the
AtMostNValue constraint is exposed to a wide range of different variable do-
mains. The problem instances are generated according to model B [15], and can
be described with four parameters: the number of variables n, the domain size d,
the number of constraint m and the number of forbidden tuples t per constraint.
We add a fifth parameter k corresponding to the maximum number of values
allowed by the AtMostNValue constraint. All instances are solved using the
classical domain/degree variable ordering heuristic, and lexicographical value or-
dering. We generated 500 instances of the following 5 classes of random binary
CSP:

class A : 〈n = 100, d = 10, m = 250, t = 52, k = 8〉

class B : 〈n = 50, d = 15, m = 120, t = 116, k = 6〉

class C : 〈n = 40, d = 20, m = 80, t = 240, k = 6〉

class D : 〈n = 200, d = 15, m = 600, t = 85, k = 8〉

class E : 〈n = 60, d = 30, m = 150, t = 350, k = 6〉

Classes A,B and C are at the phase transition, i.e., nearly half of the instances
have a solution with the required number of values. Classes D and E are un-
derconstrained. We report the mean cputime and number of backtracks to solve

20

these instances or prove unfeasibility in table 1 for classes A,B,C and table 2 for
classes D,E. We also report the number of calls to the filtering method for the
AtMostNValue constraint and the total cputime spent specifically on filtering
this constraint.

OI Turan MD LP

class A 〈n = 100, d = 10, m = 250, t = 52, k = 8〉
cputime (total) 3,358 ms 3,262 ms 2,858 ms 9,342 ms
#backtracks 20,530 21,650 16,955 16,735

#calls 26,112 27,332 22,102 21,827

time (filtering) 430 ms 173 ms 162 ms 4,074 ms
time (per call) 0.06561 µs 0.02530 µs 0.02926 µs 0.74379 µs

class B 〈n = 50, d = 15, m = 120, t = 116, k = 6〉
cputime (total) 6,950 ms 7,211 ms 2,596 ms 15,812 ms
#backtracks 72,773 90,786 18,885 17,866

#calls 130,227 161,444 36,333 34,491

time (filtering) 1,421 ms 762 ms 287 ms 10,038 ms
time (per call) 0.04349 µs 0.01881 µs 0.03149 µs 1.15960 µs

class C 〈n = 40, d = 20, m = 80, t = 240, k = 6〉
cputime (total) 5,769 ms 5,872 ms 1,672 ms 11,998 ms
#backtracks 62,992 77,072 12,564 11,467

#calls 115,720 140,901 25,017 22,994

time (filtering) 1,142 ms 564 ms 183 ms 7,839 ms
time (per call) 0.03935 µs 0.01595 µs 0.02918 µs 1.35824 µs

Table 1. Instances at the phase transition.

OI Turan MD LP

class D 〈n = 200, d = 15, m = 600, t = 85, k = 8〉
cputime (total) 12,721 ms 21,494 ms 44 ms 307 ms
#backtracks 77,848 410,514 233 212

#calls 140,531 745,457 626 590

time (filtering) 8,742 ms 7,022 ms 11 ms 227 ms
time (per call) 0.12417 µs 0.01880 µs 0.03736 µs 0.76833 µs

class E 〈n = 60, d = 30, m = 150, t = 350, k = 6〉
cputime (total) 124 ms 141 ms 4 ms 56 ms
#backtracks 1,469 3,800 33 29

#calls 2,999 7,477 142 134

time (filtering) 60 ms 33 ms 1 ms 45 ms
time (per call) 0.04059 µs 0.00888 µs 0.01735 µs 0.67299 µs

Table 2. Under-constrained instances.

21

For both problems at the phase transition, and under-constrained problems,
we observe the fastest solution times by propagating the AtMostNValue con-
straint using the MD method. Whilst this achieves less pruning than the LP

method, the difference in nodes explored is typically slight. The additional over-
head of the LP method does not justify the small amount of additional pruning
it achieves. On the other hand, the OI and Turan methods achieve much less
pruning for similar computational cost.

9.2 Structured Problem

We compared the same propagation algorithms on the problem of finding a dom-
inating set of the Queen’s graph with minimum cardinality. The Queen’s graph
of order n, denoted Qn, has one vertex for each square of a n × n chessboard.
There is an edge between two vertices if and only if a queen on one vertex can
attack the other vertex. A dominating set hence corresponds to a set of squares
such that if a queen is put on each of them, all squares either contain a queen
or can be attacked. The dominating set of Q6 is given as example in figure 13.
This problem can be modeled with a single instance of an AtMostNValue

Fig. 13. A dominating set of Q6.

constraint. Given the graph Qn, we introduce n2 variables X1, . . .Xn2 and n2

values v1, . . . vn2 , both standing for squares of the chessboard. The value vj be-
longs to the domain of Xi if and only if the edge (i, j) belongs to Qn. Finally we
post an AtMostNValue constraint on X1, . . . Xn2 . Clearly, if a solution using
at most N values exists, then the queens on the corresponding squares (values)
can attack all other squares (variables). In [13], it is shown that for n ≤ 120, all
minimum dominating sets for the Queen’s graph have cardinality either ⌈n/2⌉ or
⌈n/2 + 1⌉. We therefore solved instances only for these two values of N . We re-
port the cputime, number of backtracks, number of calls to the filtering method
and the total cputime spent specifically on filtering this constraint for solving
these instances or prove unfeasibility in table 3.

22

Instance Statistics OI Turan MD LP

Q6 : 3 cputime (total) 0.02 s 0.02 s 0 s 0.01 s
(SAT) #backtracks 520 370 0 0

#calls 1,162 922 53 37

time (filtering) 0.01 s 0.01 s 0 s 0.01 s

Q7 : 4 cputime (total) 8.6 s 2.2 s 0.01 s 0.36 s
(SAT) #backtracks 104,333 121,051 270 28

#calls 209,954 239,558 676 117

time (filtering) 7.2 s 1.4 s 0.01 s 0.36 s

Q8 : 5 cputime (total) 73 s 13 s 0 s 0.25 s
(SAT) #backtracks 623,029 637,031 101 0

#calls 1,263,692 1,261,241 340 69

time (filtering) 61 s 7.9 s 0 s 0.25 s

Q8 : 4 cputime (total) > 300 s > 300 s 36 s 11 s

(UNSAT) #backtracks - - 880,669 2,243

#calls - - 1,785,601 4,873

time (filtering) - - 30 s 10.8 s

Q9 : 5 cputime (total) > 300 s > 300 s 203 s 16 s

(SAT) #backtracks - - 4,076,033 3,628

#calls - - 8,328,122 8,078

time (filtering) - - 172 s 15.69 s

Table 3. Dominating Set of the Queen’s Graph.

We observe that the algorithms introduced in this paper, in particular the
propagation method using the minimum degree heuristic (MD) and the linear
relaxation (LP) perform dramatically better than the previous method, that
is, the bounds consistency algorithm (OI). We can also observe that the extra
filtering achieved by the linear relaxation outweighs its higher computational
cost on the largest instances.

10 Related work

The maximum independent set is a well known problem in graph theory and a
number of approximation algorithms have been proposed. We used two simple
and intuitive algorithms for the sake of simplicity and because MD is successful in
practice. However, algorithms with better approximation ratio exist, for instance
see [11]. Any such algorithm may replace MD into the propagation algorithm.

We have seen that the linear programming approach is always stronger, even
than a complete method for finding a maximum independent set. It is difficult to
identify where the linear relaxation for the minimum hitting was first introduced,
as it is such a simple model. It is certainly given in [8]. One weakness of the linear
programming approach is that it is difficult to deduce which values to prune when
min(N) = max(N). Indeed, other methods, whilst computing a lower bound,

23

also compute an independent set that can be used for pruning X̄, whereas the
LP does not provide such an independent set.

11 Conclusion

Propagating generalized arc consistency on the NValue constraint is NP-hard.
In order to filter inconsistent values, one has to obtain tight bounds on the
number of distinct values used in assignments. Whilst the upper bound can
be obtained in polynomial time with a maximal matching procedure, the lower
bound alone is NP-hard to compute. Therefore, our focus is on methods which
achieve lesser levels of consistency. A procedure proposed by Beldiceanu consid-
ers domains as intervals, which allows the independence number of the induced
interval graph to be computed in polynomial time. The independence number
of this graph is a valid lower bound on the number of distinct values. We in-
troduce three new methods for approximating this lower bound. The first two
approximate the independence number of the intersection graph. However, these
algorithms have a quadratic worst case time complexity, and do not guarantee a
tighter lower bound. The last approach is to use a linear relaxation of the mini-
mum hitting set problem. The cardinality of the minimum hitting set is a tight
lower bound on the number of distinct values. This always finds a tighter lower
bound than the approaches based on the maximum independent set problem.
Experiments show that the approximation method based on a greedy approxi-
mation to the maximum independent set offers a good tradeoff between pruning
and runtime.

References

1. N. Beldiceanu. Pruning for the Minimum Constraint Family and for the Number
of Distinct Values Constraint Family. In Toby Walsh, editor, Proceedings of the
7th International Conference on Principles and Practice of Constraint Program-
ming (CP-01), volume 2239 of Lecture Notes in Computer Science, pages 211–224,
Paphos, Cyprus, 2001. Springer-Verlag.

2. N. Beldiceanu, M. Carlsson, and S. Thiel. Cost-Filtering Algorithms for the two
Sides of the Sum of Weights of Distinct Values Constraint. Technical report, SICS
report T2002-14, 2002.

3. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. Tractability of Global Con-
straints. In Mark Wallace, editor, Proceedings of the 10th International Confer-
ence on Principles and Practice of Constraint Programming (CP-04), volume 3258
of Lecture Notes in Computer Science, pages 716–720, Toronto, Canada, 2004.
Springer-Verlag. Short paper.

4. R. Debruyne and C. Bessière. Some Practicable filtering Techniques for the Con-
straint Satisfaction Problem. In Martha E. Pollack, editor, Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJCAI-97), pages 412–
417, Nagoya, Japan, 1997. Morgan Kaufmann.

5. M. Dincbas, P. van Hentenryck, H. Simonis, and A. Aggoun. The Constraint Logic
Programming Language CHIP. In Proceedings of the International Conference on
Fifth Generation Computer Systems, pages 693–702, Tokyo, Japan, 1988.

24

6. P. Roy F. Pachet. Automatic Generation of Music Programs. In Joxan Jaffar,
editor, Proceedings of the 5th International Conference on Principles and Practice
of Constraint Programming (CP-99), volume 1713 of Lecture Notes in Computer
Science, pages 331–345, Alexandria, VA, USA, 1999. Springer-Verlag.

7. O. Favaron, M. Mahéo, and J.-F. Saclé. Some Eigenvalue Properties in Graphs
(Conjectures of Graffiti - ii). Discrete Mathematics, 111:197–220, 1993.

8. S. Shahar G. Even, D. Rawitz. Hitting Sets when the VC-dimension is Small. to
appear in Information Processing Letters, 2004.

9. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, 1979.

10. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. In Proceedings of the Twenty-Sixth An-
nual ACM Symposium on Theory of Computing, pages 439–448, Montréal, Québec,
Canada, 1994. ACM Press.

11. V. Th. Paschos M. Demange. Improved Approximations for Maximum Independent
Set via Approximation Chains. Applied Mathematical Letters, 10:105–110, 1997.

12. E. Marzewski. Sur deux Propriétés des Classes d’Ensembles. Fund. Math., 33:303–
307, 1945.

13. P. R. J. Östergard and W. D. Weakley. Values of Domination Numbers of the
Queen’s Graph. Electronic Journal of Combinatorics, 8:1–19, 2001.

14. T. Petit, J.C. Régin, and C. Bessiere. Specific Filtering Algorithms for Over-
Constrained Problems. In Toby Walsh, editor, Proceedings of the 7th International
Conference on Principles and Practice of Constraint Programming (CP-01), vol-
ume 2239 of Lecture Notes in Computer Science, pages 451–463, Paphos, Cyprus,
2001. Springer-Verlag.

15. P. Prosser. Binary Constraint Satisfaction Problems: some are harder than others.
In Anthony G. Cohn, editor, Proceedings of the 11th European Conference on Ar-
tificial Intelligence (ECAI-94), pages 95–99, Amsterdam, The Netherlands, 1994.
John Wiley and Sons, Chichester.

16. J.C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In
Barbara Hayes-Roth and Richard E. Korf, editors, Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI-94), pages 362–367, Seattle, WA, USA,
1994. AAAI Press.

17. P. Turán. On an Extremal Problem in Graph Theory. (in Hungarian), Mat. Fiz.
Lapok, 48:436–452, 1941.

