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Abstract. We recently proposed a simple declarative language for spec-
ifying a wide range of counting and occurrence constraints. The language
uses just two global primitives: the Range constraint, which computes
the range of values used by a set of variables, and the Roots con-
straint, which computes the variables mapping onto particular values.
In this paper, we demonstrate that this specification language is exe-
cutable by proposing efficient algorithms for propagating these two global
constraints. We show that decomposing global counting and occurrence
constraints using Range and Roots is effective and efficient in practice.

1 Introduction

Constraints that put restrictions on the occurrence of particular values (occur-
rence constraints) or constraints that put restrictions on the number of values
or variables meeting some conditions (counting constraints) are very useful in
many real world problems, especially those involving resources. For instance, we
may want to limit the number of distinct values assigned to a set of variables.
Many of the global constraints proposed in the past are counting and occurrence
constraints (see, for example, [1–5]). In [6], we show that many occurrence and
counting constraints can be expressed by means of two new global constraints,
Range and Roots, together with some classical elementary constraints. This
language also provides us with a method to propagate counting and occurrence
constraints. We just need to provide efficient propagation algorithms for the
Range and Roots constraints. This paper does exactly this. We first give an
efficient algorithm for propagating the Range constraint based on a flow algo-
rithm. We then prove that it is intractable to propagate the Roots constraint
completely. We therefore propose a linear time algorithm for propagating it par-
tially that is complete under conditions met frequently in practice. In addition,
a simple relaxation of the algorithm achieves bound consistency in general.

2 Formal background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of



values for subsets of variables. We use capitals for variables (e.g. X, Y and S),
and lower case for values (e.g. v and w). We write D(X) for the domain of a
variable X. For totally ordered domains, we write min(D(X)) and max(D(X))
for the minimum and maximum values. A solution is an assignment of values to
the variables satisfying the constraints. A variable is ground when it is assigned a
value. We consider both integer and set variables. A set variable S is represented
by its lower bound lb(S) which contains the definite elements and an upper bound
ub(S) which also contains the potential elements.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C, a bound support on C is a tuple that assigns to
each integer variable a value between its minimum and maximum, and to each
set variable a set between its lower and upper bounds which satisfies C. A bound
support in which each integer variable is assigned a value in its domain is called
an hybrid support. If C involves only integer variables, an hybrid support is a
support. A constraint C is bound consistent (BC ) iff for each integer variable Xi,
its minimum and maximum values belong to a bound support, and for each set
variable Sj , the values in ub(Sj) belong to Sj in at least one bound support and
the values in lb(Sj) belong to Sj in all bound supports. A constraint C is hybrid
consistent (HC ) iff for each integer variable Xi, every value in D(Xi) belongs
to an hybrid support, and for each set variable Sj , the values in ub(Sj) belong
to Sj in at least one hybrid support, and the values in lb(Sj) belong to Sj in all
hybrid supports. A constraint C involving only integer variables is generalized
arc consistent (GAC ) iff for each variable Xi, every value in D(Xi) belongs to
a support. If all variables in C are integer variables, hybrid consistency reduces
to generalized arc-consistency, and if all variables in C are set variables, hybrid
consistency reduces to bound consistency. To illustrate these different concepts,
consider the constraint C(X1,X2, S) that holds iff the set variable S is assigned
exactly the values used by the integer variables X1 and X2. Let D(X1) = {1, 3},
D(X2) = {2, 4}, lb(S) = {2} and ub(S) = {1, 2, 3, 4}. BC does not remove any
value since all domains are already bound consistent. On the other hand, HC
removes 4 from D(X2) and from ub(S) as there does not exist any tuple satisfy-
ing C in which X2 does not take value 2. Note that since BC deals with bounds,
value 2 was considered as possible for X1.

A total function F from a set S into a set T is denoted by F : S −→ T
where S is the domain of F and T is the range of F . The set of all elements
in the domain of F that have the same image j ∈ T is F−1(j) = {i : i ∈
S,F(i) = j}. Throughout, we will view a set of variables, X1 to Xn as a function
X : {1, .., n} −→

⋃i=n
i=1 D(Xi). That is, X (i) is the value of Xi.

3 An Executable Language

One of the simplest ways to propagate a new constraint is to decompose it
into existing primitive constraints. We can then use the propagation algorithms
associated with these primitives. Of course, such decomposition may reduce the



number of domain values pruned. In [6], we show that many global counting
and occurrence constraints can be decomposed into two new global constraints,
Range and Roots, together with simple non-global constraints over integer
variables (like X ≤ m) and simple non-global constraints over set variables
(like S1 ⊆ S2 or |S| = k). Adding Range and Roots and their propagation
algorithms to a constraint toolkit thus provides a simple executable language for
specifying a wide range of counting and occurrence constraints.

Given a function X representing a set of variables X1 to Xn, the Range
constraint holds iff a set variable T is the range of this function, restricted to
the indices belonging to a second set variable, S.

Range([X1, ..,Xn], S, T ) iff T =
⋃

i∈S

X (i)

The Roots constraint holds iff S is the set of indices which map to an
element belonging to the set variable T .

Roots([X1, ..,Xn], S, T ) iff S =
⋃

j∈T

X−1(j)

Range and Roots are not exact inverses. A Range constraint can hold,
but the corresponding Roots constraint may not, and vice versa. For instance,
Range([1, 1], {1}, {1}) holds but not Roots([1, 1], {1}, {1}) since X−1(1) =
{1, 2}, and Roots([1, 1, 1], {1, 2, 3}, {1, 2}) holds but not Range([1, 1, 1], {1, 2, 3},
{1, 2}) as no Xi is assigned to 2.

In an associated report, we present a catalog containing over 70 global con-
straints from [7] specified with this simple language. We present here just two
examples. The NValue constraint is useful in a wide range of problems involv-
ing resources since it counts the number of distinct values used by a sequence of
variables [8]. NValue([X1, ..,Xn], N) holds iff N = |{Xi | 1 ≤ i ≤ n}|. This can
be decomposed into a Range constraint:

NValue([X1, ..,Xn], N) iff Range([X1, ..,Xn], {1, .., n}, T ) ∧ |T | = N

Enforcing HC on the decomposition is weaker than GAC on the original NValue
constraint. However, it is NP-hard to enforce GAC on a NValue constraint [9].

The Among constraint was introduced in CHIP to model resource allocation
problems like car sequencing [2]. It counts the number of variables using values
from a given set. Among([X1, ..,Xn], [d1, .., dm], N) holds iff N = |{i | Xi ∈
{d1, .., dm}}|. It can be decomposed using a Roots constraint:

Among([X1, ..,Xn], [d1, .., dm], N) iff Roots([X1, ..,Xn], S, {d1, .., dm}) ∧ |S| = N

GAC on Among is equivalent to HC on this decomposition [6].

4 Range Constraint

Enforcing hybrid consistency on the Range constraint is polynomial. In this
section, we propose an efficient way to enforce HC on Range using a maximum



network flow problem. To simplify the presentation, the use of the flow is limited
to a constraint that performs only part of the work needed for enforcing HC on
Range. This constraint, that we name Occurs(Y1, . . . , Yn, T ), ensures that all
the values in the set variable T are used by the integer variables Y1 to Yn:

Occurs([Y1, . . . , Yn], T ) iff T ⊆
⋃

i∈1..n

Y(i)

We first present an algorithm for achieving HC on Occurs (Section 4.1),
and then use this to propagate the Range constraint (Section 4.2).

4.1 Occurs Constraint

We achieve hybrid consistency on Occurs([X1, . . . , Xn], T ) using a network flow.
We use an unit capacity network [10] in which capacities between two nodes can
only be 0 or 1. This is represented by a directed graph where an arc from node
x to node y means that a maximum flow of 1 is allowed between x and y while
the absence of arc means that the maximum flow allowed is 0. The unit capacity
network GC = (N,E) of the constraint C = Occurs(X1, . . . , Xn, T ) is built in
the following way. N = {s}∪N1 ∪N2 ∪ {t}, where s is a source node, t is a sink
node, N1 = {yv | v ∈

⋃
D(Xi)} and N2 = {zv | v ∈

⋃
D(Xi)}∪ {xi | i ∈ [1..n]}.

The set of arcs E is as follows:

E = ({s}× N1) ∪ {(yv, zv),∀v /∈ lb(T )} ∪ {(yv, xi) | v ∈ D(Xi)} ∪ (N2 × {t})

GC is quadripartite, i.e., E ⊆ ({s}×N1)∪ (N1 ×N2)∪ (N2 ×{t}). The intuition
behind this graph is that when a flow uses an arc from a node yv to a node xi

this means that Xi = v, and when a flow uses the arc (yv, zv) this means that v
is not necessarily used by the Xi’s.

In the particular case of unit capacity networks, a flow is any set E′ ⊆ E: any
arc in E′ is assigned 1 and the arcs in E \E′ are assigned 0. A feasible flow from
s to t in GC is a subset Ef of E such that ∀n ∈ N \ {s, t}, |{(n′, n) ∈ Ef}| =
|{(n, n′′) ∈ Ef}|. The value of the flow Ef from s to t, denoted val(Ef , s, t), is
val(Ef , s, t) = |{(s, n) ∈ Ef}|. A maximum flow from s to t in GC is a feasible
flow EM such that there does not exist a feasible flow Ef , with val(Ef , s, t) >
val(EM , s, t). By construction a feasible flow cannot have a value greater than
|N1|. In addition, a feasible flow cannot contain two arcs entering a node xi

from N2. Hence, we can define a function ϕ linking feasible flows and partial
instantiations on the Xi’s. Given any feasible flow Ef from s to t in GC , ϕ(Ef ) =
{(Xi, v) | (yv, xi) ∈ Ef}. The way GC is built induces the following:

Theorem 1. Let GC = (N,E) be the capacity network of a constraint C =
Occurs(X1, . . . , Xn, T ).

1. A value v in the domain D(Xi) for some i ∈ [1..n] is GAC iff there exists a
flow Ef from s to t in GC with val(Ef , s, t) = |N1| and (yv, xi) ∈ EM

2. If the Xi’s are GAC, T is BC iff ub(T ) ⊆
⋃

i D(Xi)



Proof. (1.⇒) Let I be a solution for C with (Xi, v) ∈ I. Build the following
flow H: Put (yv, xi) in H; ∀w ∈ I[T ], w += v, take a variable Xj such that
(Xj , w) ∈ I (we know there is at least one since I is solution), and put (yw, xj)
in H; ∀w′ /∈ I[T ], w′ += v, add (yw′ , zw′) to H. Add to H the edges from s to N1

and from N2 to t so that we obtain a feasible flow. By construction, all yw ∈ N1

belong to an edge of H. So, val(H, s, t) = |N1| and H is a maximum flow with
(yv, xi) ∈ H.

(1.⇐) Let EM be a flow from s to t in GC with (yv, xi) ∈ EM and val(EM , s, t) =
|N1|. By construction of GC , we are guaranteed that all nodes in N1 belong to
an arc in EM ∩ (N1 × N2), and that for every value w ∈ lb(T ), {n | (yw, n) ∈
E} ⊆ {xi | i ∈ [1..n]}. Thus, for each w ∈ lb(T ),∃Xj | (Xj , w) ∈ ϕ(EM ). Hence,
any extension of ϕ(EM ) where each unassigned Xj takes any value in D(Xj)
and T = lb(T ) is a solution of C with Xi = v.

(2.⇒) If T is BC, all values in ub(T ) appear in at least one solution tuple.
Since C ensures that T ⊆

⋃
i{Xi}, ub(T ) cannot contain a value appearing in

none of the D(Xi).
(2.⇐) Let ub(T ) ⊆

⋃
i D(Xi). Since all Xi’s are GAC, we know that each

value v in
⋃

i D(Xi) is taken by some Xi in at least one solution tuple I. Build
the tuple I ′ so that I ′[Xi] = I[Xi] for each i ∈ [1..n] and I ′[T ] = I[T ] ∪ {v}. I ′

is still solution of C. So, ub(T ) is as tight as it can be wrt BC. In addition, since
all Xi’s are GAC, this means that in every solution tuple I, for each v ∈ lb(T )
there exists i such that I[Xi] = v. So, lb(T ) is BC. /0

We also need the notion of residual graphs. Given a unit capacity network
GC and a maximal flow EM from s to t in GC , the residual graph obtained from
GC and EM is the directed graph RGC (EM ) = (N,ER) where ER = {(x, y) ∈
E \ ER} ∪ {(y, x) | (x, y) ∈ E ∩ ER}. Given a maximum flow EM from s to t in
GC , given (x, y) ∈ N1 × N2 ∩ E \ EM , there exists a maximum flow containing
(x, y) iff (x, y) belongs to a cycle in RGC (EM ) [11]. Furthermore, finding all the
arcs (x, y) that do not belong to a cycle in a graph can be performed by building
the strongly connected components (SCCs) of the graph.

We thus have all the tools for achieving HC on any Occurs constraint. We
first build GC . We then compute a maximum flow EM from s to t in GC ; if
val(EM , s, t) < |N1|, we fail. Otherwise we compute RGC (EM ), build the SCCs
in RGC (EM ), and remove from D(Xi) any value v such that (yv, xi) belongs to
neither EM nor to a SCC in RGC (EM ). Finally, we set ub(T ) to ub(T )∩

⋃
i D(Xi).

Following Theorem 1 and properties of residual graphs, this algorithm enforces
HC on Occurs([X1, ..,Xn], T ). Building GC (step 1.) is in O(nd). We need then
to find a maximum flow EM in GC (step 2.). This can be done in two sub-steps.
First, we use the arc (yv, zv) for each v /∈ lb(T ) (in O(|

⋃
i D(Xi)|)). Afterwards,

we compute a maximum flow on the subgraph composed of all paths traversing
nodes yw with w ∈ lb(T ) (because there is no arc (yw, zw) in GC for such w). The
complexity of finding a maximum flow in a unit capacity network is in O(

√
k · e)

if k is the number of nodes and e the number of edges. This gives a complexity in
O(

√
|lb(T )|·n·|lb(T )|) for this second sub-step. Building the residual graph (step

3.) and computing the SCCs (step 4.) is in O(nd). Extracting the GAC domains



Algorithm 1: Hybrid consistency on Range
procedure Propag-Range([X1, . . . , Xn], S, T );
1 Introduce the set of integer variables Y = {Yi | i ∈ ub(S)}, with D(Yi) = D(Xi)∪{dummy};
2 Achieve hybrid consistency on the constraint Occurs(Y, T );
3 Achieve hybrid consistency on the constraints i ∈ S ↔ Yi ∈ T , for all Yi ∈ Y ;
4 Achieve GAC on the constraints (Yi = dummy) ∨ (Yi = Xi), for all Yi ∈ Y ;

for the Xi’s is direct (step 5.). There remains to compute BC on T (step 6.),
which takes O(nd). Therefore, the total complexity is in O(nd + n · |lb(T )|3/2).

4.2 Hybrid Consistency on Range

The algorithm Propag-Range, enforcing HC on the Range constraint, is pre-
sented in Algorithm 1. In line 1, a special encoding is built, where an Yi is
introduced for each Xi with index in ub(S). The domain of an Yi is the same
as that of Xi plus a dummy value. In line 2, HC on Occurs removes a value
from an Yi each time it contains other values that are necessary to cover lb(T )
in every solution tuple. HC also removes values from ub(T ) that cannot be cov-
ered by any Yi in a solution. Line 3 updates the bounds of S and the domain of
Yi’s. Finally, in line 4, the channelling constraints between Yi and Xi propagate
removals on Xi for each i used in all solutions.

Theorem 2. The algorithm Propag-Range is a correct algorithm for enforcing
HC on Range, that runs in O(nd + n · |lb(T )|3/2) time, where d is the maximal
size of Xi domains.

Proof. Soundness. A value v is removed from D(Xi) in line 4 if it is removed
from Yi together with dummy in lines 2 or 3. If a value is removed from Yi in
line 2, this means that any tuple on variables in Y covering lb(T ) requires that
Yi takes another value from D(Yi). So, we cannot find a solution of Range in
which Xi = v since lb(T ) must be covered as well. A value v is removed from
D(Yi) in line 3 if i ∈ lb(S) and v +∈ ub(T ). In this case, Range cannot be satisfied
by a tuple where Xi = v. If a value v is removed from ub(T ) in line 2, none of
the tuples of values for variables in Y covering lb(T ) can cover v as well. Since
variables in Y duplicate variables Xi with index in ub(S), there is no hope to
satisfy Range if v is in T . Note that ub(T ) cannot be modified in line 3 since Y
contains only variables Yi for which i was in ub(S). If a value v is added to lb(T )
in line 3, this is because there exists i in lb(S) such that D(Yi) ∩ ub(T ) = {v}.
Hence, v is necessarily in T in all solutions of Range. An index i can be removed
from ub(S) only in line 3. This happens when the domain of Yi does not intersect
ub(T ). In such a case, this is evident that a tuple where i ∈ S could not satisfy
Range since Xi could not take a value in T . Finally, if an index i is added to
lb(S) in line 3, this is because D(Yi) is included in lb(T ), which means that the
dummy value has been removed from D(Yi) in line 2. This means that Yi takes
a value from lb(T ′) in all solutions of Occurs. Xi also has to take a value from
lb(T ) in all solutions of Range.



Completeness (Sketch). Suppose that a value v is not pruned from D(Xi) after
line 4 of Propag-Range. If Yi ∈ Y , we know that after line 2 there was an
instantiation I on Y and T , solution of Occurs with I[Yi] = v or with Yi =
dummy (thanks to the channelling constraints in line 4). We can build the tuple
I ′ on X1, ..Xn, S, T where Xi takes value v, every Xj with j ∈ ub(S) and I[Yj ] ∈
I[T ] takes I[Yj ], and the remaining Xj ’s take any value in their domain. T is
set to I[T ] plus the values taken by Xj ’s with j ∈ lb(S). These values are in
ub(T ) thanks to line 3. Finally, S is set to lb(S) plus the indices of the Yj ’s with
I[Yj ] ∈ I[T ]. These indices are in ub(S) since the only j’s removed from ub(S)
in line 3 are such that D(Yj) ∩ ub(T ) = ∅, which prevents I[Yj ] from taking a
value in I[T ]. Thus I ′ is a solution of Range with I ′[Xi] = v. We have proved
that the Xi’s are hybrid consistent after Propag-Range.

Suppose a value i ∈ ub(S) after line 4. Thanks to constraint in line 3 we
know there exists v in D(Yi) ∩ ub(T ), and so, v ∈ D(Xi) ∩ ub(T ). Now, Xi is
hybrid consistent after line 4. Thus Xi = v belongs to a solution of Range. If
we modify this solution by putting i in S and v in T (if not already there), we
keep a solution.

Completeness on lb(S), lb(T ) and ub(T ) is proved in a similar way.
Complexity. The important thing to notice in Propag-Range is that constraints
in lines 2–4 are propagated in sequence. Thus, Occurs is propagated only once,
for a complexity in O(nd + n · |lb(T )|3/2). Lines 1, 3, and 4 are in O(nd). Thus,
the complexity of Propag-Range is in O(nd+n·|lb(T )|3/2). This reduces to linear
time complexity when lb(T ) is empty. /0

4.3 Range and Cardinality

Constraint toolkits like [13] additionally represent an interval on the cardinality
of each set variable. This extra information can improve propagation. Unfor-
tunately, enforcing HC on an extended version of the Range constraint which
takes into account such cardinality information would be NP-hard (since we
then subsume the NValue constraint). However, we can partially take into ac-
count such cardinality information. If Range([X1, . . . , Xn], S, T ) & |T | = N &
|S| = M , then we use the following decomposition:

Gcc([Y1, . . . , Yn], [1, . . . ,m + 1], [B1, . . . , Bm+1])
∀i ∈ [1..n] i ∈ S ↔ Yi ∈ T
∀i ∈ [1..n] (Xi = Yi) ∨ (Yi = m + 1)
∀v ∈ [1..m + 1] v ∈ T ↔ Bv += 0
∀v ∈ [1..m + 1] Bv ≤ 1 + M − N∑

v∈[1..m] Bv = M

where m = |
⋃

i∈[1..n](D(Xi))| and Gcc is the global cardinality constraint [3].
We have ∀i ∈ [1..n], D(Yi) = D(Xi)∪{m+1} and ∀v ∈ [1..m+1], D(Bv) =

[0..n]. We enforce GAC on the X’s and Y ’s and BC on S, T and the B’s. This
algorithm has O(n2d) complexity, which is typically worse than Propag-Range
which ignores such cardinality information. It remains an open problem if we



can extend Propag-Range to include some cardinality information, and if we can
do so without changing its complexity.

5 Roots Constraint

The Roots constraint is more complex to handle.

Theorem 3. Enforcing HC on the Roots constraint is NP-hard.

Proof. We transform 3Sat into the problem of the existence of a solution for
Roots. Let ϕ = {c1, . . . , cm} be a 3CNF on the Boolean variables x1, . . . , xn.
We build the constraint Roots([X1, . . . , Xn+m], S, T ) as follows. Each Boolean
variable xi is represented by the variable Xi with domain D(Xi) = {i,−i}. Each
clause cp = xi ∨ ¬xj ∨ xk is represented by the variable Xn+p with domain
D(Xn+p) = {i,−j, k}. We build S and T in such a way that it is impossible
that the index i of a Boolean variable xi and its negative counterpart −i both
belong to T . So, we set lb(T ) = ∅ and ub(T ) =

⋃n
i=1{i,−i}, and lb(S) = ub(S) =

{n + 1, . . . , n + m}. An interpretation M on the Boolean variables x1, . . . , xn is
a model of ϕ iff the tuple τ in which τ [Xi] = i iff M [xi] = 0 can be extended to
a solution of Roots. (This extension puts in T value i iff M [xi] = 1 and assigns
Xn+p with the value corresponding to the literal satisfying cp in M .) /0

We thus have to look for a lesser level of consistency for Roots or for par-
ticular cases on which HC is polynomial.

5.1 Propagation Algorithm for Roots

The polynomial algorithm we propose to propagate the Roots constraint par-
tially is based on the following six properties, directly entailed by HC:

P1 if D(Xi) does not intersect ub(T ) then i is outside ub(S)
P2 if D(Xi) is included in lb(T ) then i is in lb(S)
P3 if i is in lb(S) then D(Xi) is included in ub(T )
P4 if i is outside ub(S) then D(Xi) does not intersect lb(T )
P5 if v is the only possible value for Xi and i ∈ lb(S) then v is in lb(T )
P6 if v is the only possible value for Xi and i /∈ ub(S) then v is outside ub(T )

In order to enforce these properties, we simply activate the head of a condition
each time the body is true. A brute-force algorithm would loop on these six
conditions until no more changes occur. However, this is not optimal in time.
Algorithm 2 provides a linear way to enforce the six properties. It uses several
data structures that avoid useless work. Last ubT[i] and Last lbT[i] are pointers
as in AC2001 that prevent us from traversing the same domain several times.
Last ubT[i] is the smallest value in D(Xi)∩ub(T ) and Last lbT[i] is the smallest
value in D(Xi) \ lb(T ). We store in Cin lbT and Cout ubT (“C” for current) the
set of values that are added to lb(T ) and removed from ub(T ) during one pass
on the six conditions. Pin lbT and Pout ubT (“P” for previous) contain those



Algorithm 2: Algorithm for propagating Roots
procedure Propag-Roots([X1, . . . , Xn], S, T );

1 Cout ubT ←
⋃

i∈ub(S)
D(Xi) \ ub(T ); Cin lbT ← lb(T );

2 foreach i ∈ 1..n do
3 Last ubT[i] ← min(D(Xi)); Last lbT[i] ← min(D(Xi));
4 repeat
5 Pout ubT ← Cout ubT; Cout ubT ← ∅; Pin lbT ← Cin lbT; Cin lbT ← ∅;
6 foreach i ∈ 1..n do
7 if i ∈ ub(S) then
8 if Last ubT[i] ∈ Pout ubT and i )∈ lb(S) then
9 Last ubT[i] ← smallest v > Last ubT[i] in D(Xi) ∩ ub(T );

10 if Last ubT[i] = nil then ub(S) ← ub(S) \ {i};
11 else
12 D(Xi) ← D(Xi) \ Pin lbT;
13 if |D(Xi)| = 1 and D(Xi) ⊆ ub(T ) then
14 ub(T ) ← ub(T ) \ D(Xi); Cout ubT ← Cout ubT ∪ D(Xi);

15 if i ∈ lb(S) then
16 D(Xi) ← D(Xi) \ Pout ubT;
17 if |D(Xi)| = 1 and D(Xi) )⊆ lb(T ) then
18 lb(T ) ← lb(T ) ∪ D(Xi); Cin lbT ← Cin lbT ∪ D(Xi);

19 else
20 if Last lbT[i] ∈ Pin lbT and i ∈ ub(S) then
21 Last lbT[i] ← smallest v > Last lbT[i] in D(Xi) \ lb(T );
22 if Last lbT[i] = nil then lb(S) ← lb(S) ∪ {i};
23 until (Cout ubT ∪ Cin lbT) = ∅

changes of the previous pass, for which the consequences have to be propagated.
This avoids multiple traversals of lb(T ) and ub(T ).

Line 1 initially sets Cin lbT and Cout ubT with the values already in lb(T )
and ub(T ) before propagation. Lines 2–3 initialize the pointers Last lbT[i] and
Last ubT[i] to the smallest value in each domain D(Xi). Then, the main loop
is executed to enforce P1 to P6. Line 5 assigns Pin lbT and Pout ubT with
the values of Cin lbT and Cout ubT, which are themselves reset empty before
starting a new pass. For indices i not in lb(S), lines 7–9 maintain Last ubT[i] as
a witness of non emptiness of D(Xi)∩ub(T ). If empty, line 10 enforces property
P1. (For indices in lb(S), P1 is subsumed by P3.) Line 12 enforces P4. Lines
13–14 enforce P6. Symmetrically, lines 15–22 enforce properties P2, P3, and P5.

For brevity, we omitted the tests for failure. They appear after each modifi-
cation of a domain and return ’failure’ if the domain becomes empty.

Theorem 4. Propag-Roots enforces properties P1–P6 in O(nd) time, where d =
max(maxi(|D(Xi)|), |ub(T )|).

Proof. It is sufficient to show that when the test in line 23 is satisfied, all six
properties hold (either the body is false or the head is true). By construction, all
6 properties are achieved at least once on S, T , and Xi’s. They can become false
because of some changes due to enforcing a property on other variables. First, we
see that the changes on S (lines 10 and 22) cannot make false a property already
satisfied. The changes on some Xi (lines 12 and 16) can invalidate properties P5
and P6 but they are re-enforced immediately after (lines 13–14 and 17–18). The
only changes that require a new loop are those on T (lines 14 and 18). Now,



these changes are stored in Cout ubT and Cin lbT. So, the test of line 23 cannot
be satisfied before the changes on T are propagated on S and on all Xi.

The algorithm Propag-Roots is composed of a main loop (line 4) that is
performed as many times as lb(T ) or ub(T ) are modified during a pass. Thus, the
total number of times the loop is processed is bounded above by |ub(T )|. Since
this main loop is itself composed of another loop (line 6) which is performed
n times per call, we know that each line from lines 7 to 22 is performed at
most n · |ub(T )| times. The lines which are not constant time are lines 9, 12, 16,
and 21. But the data structures permit an amortized complexity on these lines
which must thus be analysed globally for the total amount of work. In line 9,
Last ubT[i] is a pointer that memorizes the last value found in D(Xi) ∩ ub(T ).
This ensures that D(Xi) will be traversed at most once, for a cost in O(|D(Xi)|)
for a given index i. In lines 12 and 16, the total amount of work performed
on D(Xi) cannot exceed the number of values added to lb(T ) or removed from
ub(T ), namely O(|ub(T )|). Finally, in line 21, thanks to Last lbT[i] —a pointer
that stores the last value found in D(Xi)\ lb(T ), D(Xi) will be traversed at most
once, for a cost in O(|D(Xi)|) for a given index i. Therefore, Propag-Roots is in
O(nd). /0

This algorithm partially propagates the Roots constraint. In the next sec-
tion, we identify exactly when it achieves HC.

5.2 Polynomial Cases for HC on Roots

Many decompositions of counting and occurrence constraints don’t use the Roots
constraint in its more general form, but have some restrictions on the variables
S, T or Xi’s. We select four important special cases and show that enforcing HC
on Roots is then tractable.

C1 ∀i ∈ lb(S),D(Xi) ⊆ lb(T ),
C2 ∀i /∈ ub(S),D(Xi) ∩ ub(T ) = ∅,
C3 X1 . . . Xn are ground,
C4 T is ground.

In fact, we will show that Propag-Roots achieves HC in these cases. We first
characterize two additional properties ensured by Propag-Roots.

Lemma 1. Let Roots([X1, . . . , Xn], S, T ) and i ∈ [1..n]:

P7 if Propag-Roots removes i from ub(S) then D(Xi) does not intersect ub(T )
P8 if Propag-Roots puts i in lb(S) then D(Xi) is included in lb(T )

Proof. (P7) A value i can be removed from ub(S) only in line 10 of Propag-
Roots. This means that Last ubT[i] is nil. So, according to line 9 this means
that D(Xi) ∩ ub(T ) is empty.

(P8) A value i can be added to lb(S) only in line 22 of Propag-Roots. This
means that Last lbT[i] is nil. So, according to line 21 this means that D(Xi)\
lb(T ) is empty. /0

We introduce a lemma that will simplify the proof of the main theorem.



Lemma 2. If one of the conditions C1—C4 holds, then Propag-Roots fails iff
the Roots constraint has no solutions.

Proof. Suppose Propag-Roots does not fail. Build the following tuple τ of values
for the Xi, S, and T . Initialize τ [S] and τ [T ] with lb(S) and lb(T ) respectively.
Now, let us consider the four cases separately.

(C1) For each i ∈ τ [S] choose any value in D(Xi) for τ [Xi]. (By construction
it is in τ [T ] (=lb(T )) —from the assumption and from property P8. For each
other i, assign Xi with any value in D(Xi)\ lb(T ). (This set is not empty thanks
to property P2). τ obviously satisfies Roots.

(C2) For each i ∈ τ [S] (=lb(S)) choose any value in D(Xi) for τ [Xi]. (By
construction such a value is in ub(T ) thanks to property P3). If necessary, add
τ [Xi] to τ [T ]. For each other i ∈ ub(S), assign Xi with any value in D(Xi)\τ [T ]
if possible. Otherwise assign Xi with any value in D(Xi) and add i to τ [S]. For
each i /∈ ub(S), assign Xi any value from its domain. By assumption and by
property P7 we know that D(Xi) ∩ ub(T ) = ∅. Thus, τ satisfies Roots.

(C3) τ [Xi] is already assigned for all Xi. For each i ∈ τ [S], τ [Xi] is in τ [T ]
—property P5, and for each i /∈ lb(S), τ [Xi] is outside lb(T ) —property P2. τ
satisfies Roots.

(C4) For each i ∈ τ [S] choose any value in D(Xi) for τ [Xi]. (By construction
it is in τ [T ] (= ub(T )) —by assumption and property P3). For each i outside
ub(S), assign Xi with any value in D(Xi). (This value is outside τ [T ] (= lb(T ))
—property P4). For each other i, assign Xi with any value in D(Xi) and update
τ [S] if necessary. τ satisfies Roots.

Suppose now that Propag-Roots failed. This was necessarily in line 10, 12,
14, 16, 18 or 22. It is direct to see that Roots had no solution. /0

Theorem 5. If one of the conditions C1—C4 holds, then Propag-Roots is a
correct algorithm for enforcing HC on Roots.

Proof. Soundness. Soundness follows immediately from the algorithm.
Completeness. We have to prove that all the values in a D(Xi) belong to a
solution of Roots, and that the bounds on S and T are as tight as possible.
Suppose the tuple τ is a solution of the Roots constraint. (We know such a
tuple exists thanks to Lemma 2.)

Let v +∈ lb(T ) and v ∈ τ [T ]. We show that there exists a solution with
v +∈ τ [T ]. (Remark that this case is irrelevant to condition C4.) We remove v
from τ [T ]. For each i +∈ lb(S) such that τ [Xi] = v we remove i from τ [S]. With
C1 we are sure that none of the i in lb(S) have τ [Xi] = v (thanks to property P8
and the fact that v +∈ lb(T )). With C3 we are sure that none of the i in lb(S) have
τ [Xi] = v (thanks to property P5 and the fact that v +∈ lb(T )). There remains to
check C2. For each i ∈ lb(S), we know that ∃v′ += v, v′ ∈ D(Xi)∩ ub(T ) (thanks
to properties P3 and P5). We set Xi to v′ in τ , we add v′ to τ [T ] and add all
k with τ [Xk] = v′ to τ [S] (we are sure that k ∈ ub(S) since we are in condition
C2 and v′ ∈ ub(T ) —property P7).

Completeness on Xi’s, lb(S), lb(T ) and ub(T ) are shown with similar proofs.
/0



Algorithm 3: Bound consistency on Roots
procedure Bound-Propag-Roots([X1, . . . , Xn], S, T );

...
9 Last ubT[i] ← smallest v > Last ubT[i] in [min(D(Xi), max(D(Xi))] ∩ ub(T );

...
12 min(D(Xi)) ← min(D(Xi) \ lb(T )); max(D(Xi)) ← max(D(Xi) \ lb(T ));

...
16 min(D(Xi)) ← min(D(Xi) ∩ ub(T )); max(D(Xi)) ← max(D(Xi) ∩ ub(T ));

...
21 Last lbT[i] ← smallest v > Last lbT[i] in [min(D(Xi), max(D(Xi))] \ lb(T );

...

5.3 Bound Consistency on Roots

In addition to being able to enforce HC on Roots in some special cases, Propag-
Roots always enforces a level of consistency at least as strong as BC. In fact,
we can relax some of the operations performed by Propag-Roots and still obtain
a BC algorithm. In Algorithm 3 we present the lines that are modified wrt
Propag-Roots in Algorithm 2.

Theorem 6. The algorithm Bound-Propag-Roots is a correct algorithm for BC
on the Roots constraint that runs in O(nd) time.

Proof. Soundness. Soundness follows immediately from the algorithm.
Completeness. The proof follows the same structure as that in Theorem 5. We
relax the properties P1–P4 into properties P1’–P4’.

P1’ if [min(D(Xi)),max(D(Xi))] does not intersect ub(T ) then i +∈ ub(S)
P2’ if [min(D(Xi)),max(D(Xi))] is included in lb(T ) then i is in lb(S)
P3’ if i is in lb(S) then the bounds of Xi are included in ub(T )
P4’ if i is outside ub(S) then the bounds of Xi are outside lb(T )

The properties P1’–P4’, P5,P6 hold after Bound-Propag-Roots for the same rea-
son as P1–P6 after Propag-Roots.

Let o be the total ordering on D =
⋃

i D(Xi) ∪ ub(T ). Build the tuples σ
and τ as follows: For each v ∈ lb(T ): put v in σ[T ] and τ [T ]. For each v ∈
ub(T ) \ lb(T ), following o, do: put v in σ[T ] or τ [T ] alternately. For each i ∈
lb(S), P3’ guarantees that both min(D(Xi)) and max(D(Xi)) are in ub(T ). By
construction of σ[T ] (and τ [T ]) with alternation of values, if min(D(Xi)) +=
max(D(Xi)), we are sure that there exists a value in σ[T ] (in τ [T ]) between
min(D(Xi)) and max(D(Xi)). In the case |D(Xi)| = 1, P5 guarantees that the
only value is in σ[T ] (in τ [T ]). Thus, we assign Xi in σ (in τ) with such a value in
σ[T ] (in τ [T ]). For each i /∈ ub(S), we assign Xi in σ with a value in [min(D(Xi)),
max(D(Xi))] \σ[T ] (the same for τ). We know that such a value exists with the
same reasoning as for i ∈ lb(S) on alternation of values, and thanks to P4’
and P6. We complete σ and τ by building σ[S] and τ [S] consistently with the
assignments of Xi and T . The resulting tuples satisfy Roots. From this we
deduce that lb(T ) and ub(T ) are BC since all values in ub(T ) \ lb(T ) are either
in σ or in τ , but not both.



We show that the Xi are BC. Take any Xi and its lower bound min(D(Xi)).
If i ∈ lb(S) we know that min(D(Xi)) is in T either in σ or in τ thanks to P3’
and by construction of σ and τ . We assign min(D(Xi)) to Xi in the relevant
tuple. This remains a solution of Roots. If i /∈ ub(S), we know that min(D(Xi))
is outside T either in σ or in τ thanks to P4’ and by construction of σ and τ .
We assign min(D(Xi)) to Xi in the relevant tuple. This remains a solution of
Roots. If i ∈ ub(S)\lb(S), assign Xi to min(D(Xi)) in σ. If min(D(Xi)) /∈ σ[T ],
remove i from σ[S] else add i to σ[S]. The tuple obtained is a solution of Roots
using the lower bound of Xi. By the same reasoning, we show that the upper
bound of Xi is BC also, and therefore, all Xi’s are BC.

We prove that lb(S) and ub(S) are BC with similar proofs.
Complexity. Using a very similar argument to before. /0

6 Experimental Results

The purpose of this section is twofold. First, we demonstrate that decomposing
global counting and occurrence constraints using Range and Roots is effective
and efficient in practice. Second, we show that propagating Range and Roots
using the algorithms introduced in this paper is more effective than propagating
them using their straightforward decompositions:

Range([X1, . . . , Xn], S, T ) ↔
i ∈ S → Xi ∈ T ∧ j ∈ T → ∃i ∈ S.Xi = j

Roots([X1, . . . , Xn], S, T ) ↔
i ∈ S ↔ Xi ∈ T

We used a model for the Mystery Shopper problem [12] due to Helmut Si-
monis that appears in CSPLib. We used the same problem instances as in [6].
We partition the constraints of this problem into three groups:

1. All visits for any week are made by different shoppers. Similarly, a particular
area cannot be visited more than once by the same shopper.

2. Each shopper makes exactly the number of visits he is assigned to.
3. A saleslady must be visited by some shoppers from at least 2 different groups

(the shoppers are partitioned into groups).

Whilst the first group can be modelled by using Alldiff constraints [1], the sec-
ond can be modelled by Gcc [3] and the third by Among constraints [2]. We ex-
perimented with several models using Ilog Solver where these constraints are al-
ternatively implemented as their Ilog Solver primitives (respectively, IloAllDiff,
IloDistribute, and a decomposition using IloSum on Boolean variables) or
Range and Roots. Due to space limitation, we report results for just half of the
23 possible models: Alldiff-Gcc-Sum, Alldiff-Gcc-Roots, Alldiff-Roots-
Roots and finally Range-Roots-Roots.

When branching on the integer variables, the Alldiff-Gcc-Sum model is su-
perior to every other model (see the #solved column in Table 1). However, we



Alldiff-Gcc-Sum Alldiff-Gcc-Roots Alldiff-Roots-Roots Range-Roots-Roots
Size #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved
10 6 0.01 9/10 6 0.01 9/10 7 0.03 9/10 7 0.06 9/10
15 6566 0.76 29/52 6468 1.38 29/52 10749 19.47 28/52 10749 23.35 28/52
20 98497 14.52 21/35 2425 0.83 20/35 2429 7.30 20/35 2429 8.56 20/35
25 317 0.13 13/20 317 0.20 13/20 285 1.37 11/20 285 2.15 11/20
30 93461 26.09 7/10 93461 43.89 7/10 7239 42.00 5/10 7239 51.68 5/10
35 52435 16.33 22/56 23094 14.25 21/56 13 1.10 18/56 13 3.17 18/56

Table 1. Mystery Shopper, branching on the integer variable with minimum domain, Range and
Roots are implemented using our algorithms. In this and the following tables, each instance has a 5
minutes limit, #fails and cpu time are averaged on the instances solved (#solved) by each method.

Alldiff-Gcc-Sum Alldiff-Gcc-Roots Alldiff-Roots-Roots Range-Roots-Roots
Size #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved
10 6 0.01 9/10 4247 0.83 3/10 318 0.38 10/10 318 0.51 10/10
15 6566 0.76 29/52 17210 4.31 16/52 102 0.25 52/52 102 0.49 52/52
20 98497 14.52 21/35 150473 49.95 7/35 930 2.95 32/35 930 4.86 32/35
25 317 0.13 13/20 265219 124.49 2/20 2334 11.17 19/20 2334 18.43 19/20
30 93461 26.09 7/10 37 0.08 1/10 6766 39.63 9/10 4111 25.31 8/10
35 52435 16.33 22/56 1216 0.53 4/56 4798 35.60 49/56 4798 55.15 49/56

Table 2. Mystery Shopper, branching on set variables when possible, Range and Roots are imple-
mented using our algorithms.

obtain the best results by branching on the set variables introduced for mod-
elling with Range and Roots (see Table 2). By encoding the second and the
third groups of constraints using Roots (the Alldiff-Roots-Roots model)
and branching on the set variables, we are able to solve more instances. Replac-
ing Alldiff with Range (the Range-Roots-Roots model) does not increase
the number of fails except on one set of instances, but does increase run-times.
This is not surprising as Range is a very general purpose global constraint. Nev-
ertheless, the model using just Range and Roots constraints performs much
better than the Alldiff-Gcc-Sum model, thanks to new variables we can branch
on during search. The results indicate that encoding global counting and occur-
rence constraints using Range and Roots is effective and efficient in practice.

Finally we report in Table 3 the results obtained by the decompositions of
Range and Roots. For each model we used the strategy that proved to be the
most efficient between Table 1 and Table 2. As the number of Roots constraints
increase and Range constraints are introduced, we observe a substantial gain
using the algorithms introduced in this paper in preference to their decomposi-
tions.

7 Conclusion

We have presented a comprehensive study of Range and Roots, two global con-
straints that can express many other global constraints, such as occurrence and
counting constraints [6]. We proposed an algorithm for propagating the Range
constraint. We proved that the Roots constraint is intractable in general. Never-
theless, we proposed a linear algorithm to propagate it partially. This algorithm



Alldiff-Gcc-Sum Alldiff-Gcc-Roots Alldiff-Roots-Roots Range-Roots-Roots
Size #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved
10 6 0.01 9/10 6 0.01 9/10 137 0.08 10/10 - - 0/10
15 6566 0.76 29/52 6487 0.78 29/52 2263 0.41 52/52 - - 0/52
20 98497 14.52 21/35 2425 0.54 20/35 30455 5.45 35/35 - - 0/35
25 317 0.13 13/20 317 0.14 13/20 769931 129.44 16/20 - - 0/20
30 93461 26.09 7/10 93461 27.11 7/10 - - 0/10 - - 0/10
35 52435 16.33 22/56 52386 16.55 22/56 - - 0/56 - - 0/56

Table 3. Mystery Shopper, branching on the integer variable with minimum domain for Alldiff-
Gcc-Sum and Alldiff-Gcc-Roots, on set variables for Alldiff-Roots-Roots and Range-Roots-Roots.
The constraints Range and Roots are implemented using their decomposition.

achieves hybrid consistency under some simple conditions and can be relaxed to
achieve bound consistency in general. Our experiments show the benefit we can
obtain by incorporating these two constraints in a constraint toolkit.
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