Encodings of the SEQUENCE constraint

Sebastian Brand', Nina Narodytska?, Claude-Guy Quimper?, Peter Stuckey', and
Toby Walsh?

1 NICTA and University of Melbourne
2 NICTA and University of NSW
3 Omega Optimisation

Abstract. The SEQUENCE constraint is useful in modelling car sequencing, ros-
tering, scheduling and related problems. We introduce half a dozen new encod-
ings of the SEQUENCE constraint, some of which do not hinder propagation. We
prove that down the whole branch of a search tree domain consistency can be
enforced on the SEQUENCE constraint in just O(n? logn) time. This improves
upon the previous bound of O(n®) for each call down the tree. We also con-
sider some generalizations including multiple SEQUENCE constraints, and cyclic
SEQUENCE constraints. Our experiments suggest that, on very large and tight
problems, domain consistency algorithms are best. However, on smaller or looser
problems, much simpler encodings are better, even though these encodings hinder
propagation. When there are multiple SEQUENCE constraints, a more expensive
propagator shows promise.

1 Introduction

Global constraints are an important factor contributing to the success of constraint pro-
gramming. They capture common modelling patterns and provide efficient propagators
for these patterns. Research has started to show that some global constraints can be
efficiently and effectively encoded and propagated using a small number of building
blocks. For instance, a wide range of useful global constraints like AMONG, ATMOST,
LEX, and STRETCH can be efficiently and effectively encoded using Pesant’s REGULAR
constraint [1]. Such REGULAR constraints can themselves be efficiently and effectively
encoded into ternary transition constraints [2].

Encoding global constraints in this way offers several advantages. First, it is easy to
incorporate such encodings into existing solvers. Second, encodings can provide effi-
cient incremental propagators. For example, with the ternary encoding of the REGULAR
constraints, only those ternary constraints involving variables whose domains have
changed need wake up. Third, we can profit from any optimizations to the building
blocks used in the encoding. For example, these ternary transition constraints can them-
selves be encoded using GAC-SCHEMA constraints. Any improvements to propagators
for the GAC-SCHEMA constraint will therefore improve the efficiency of the REGULAR
constraint. Fourth, encodings can make it easier to construct nogoods for learning and
backjumping. Fifth, the encoding gives heuristics an ability to “look inside” the global
constraint when making branching decisions.

In this paper we propose and compare half a dozen different encodings of the
SEQUENCE constraint. The SEQUENCE constraint was introduced by Beldiceanu and

Contejean [3]. It constrains the number of values taken from a given set in any se-
quence of k variables. It is useful in staff rostering to specify, for example, that every
employee has at least 2 days off in any 7 day period. Another application is car sequenc-
ing problems (prob001 in CSPLib). The SEQUENCE constraint can be used to specify,
for example, that at most 1 in 3 cars along the production line can have a sun-roof fit-
ted. Several propagators for the SEQUENCE constraint have previously been proposed
against which we will compare these new encodings.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of values
for subsets of variables. We use capital letters for variables (e.g. X, Y and S), and
lower case for values (e.g. d and d;). A solution is an assignment of values to the vari-
ables satisfying the constraints. Constraint solvers typically explore partial assignments
enforcing a local consistency property using either specialized or general purpose prop-
agation algorithms. A support for a constraint C' is a tuple that assigns a value to each
variable from its domain which satisfies C. A bounds support is a tuple that assigns
a value to each variable which is between the maximum and minimum in its domain
which satisfies C. A constraint is domain consistent (DC) iff for each variable X, every
value in the domain of X; belongs to a support. A constraint is bounds consistent (BC)
iff for each variable X, there is a bounds support for the maximum and minimum value
in its domain. A constraint is singleton domain consistent (SDC) iff for each variable
X, we can assign any value in the domain of X; and make the resulting subproblem
domain consistent. Singleton bounds consistency (SBC) is defined analogously. A CSP
is DC/BC/SDC/SBC iff each constraint is DC/BC/SDC/SBC.

‘We will compare local consistency properties applied to sets of constraints, c¢; and
co which are logically equivalent. As in [4], a local consistency property @ on c; is as
strong as ¥ on c; iff, given any domains, if @ holds on ¢; then ¥ holds on cy; @ on
c; is stronger than ¥ on cq iff @ on ¢; is as strong as ¥ on ¢, but not vice versa; ¢ on
¢ is equivalent to ¥ on ¢, iff @ on ¢, is as strong as ¥ on ¢ and vice versa; they are
incomparable otherwise.

3 The SEQUENCE constraint

The AMONG constraint restricts the number of occurrences of some given values in a
sequence of k variables. More precisely, AMONG({, u, [X1, Xa,..., Xj],v) holds iff
I < |{i|X; € v}| < u. Thatis, between [and u of the variables take values in v.
The AMONG constraint can be encoded by channelling into 0/1 variables using Y; <
X, €evandl < Zle Y; < w. Since the constraint graph of this encoding is Berge-
acyclic, this does not hinder propagation. Consequently, except in Section 5, 6 and 7,
we will simplify notation and consider AMONG (and SEQUENCE) on binary variables
Y withv = {1}. If | = 0, AMONG becomes an ATMOST constraint. If u = k, AMONG
becomes an ATLEAST constraint. ATMOST (and ATLEAST) is monotone since given a
support, we also have support for any larger (smaller) value [5].

The SEQUENCE constraint is a conjunction of overlapping AMONG constraints.
More precisely, SEQUENCE(l, u, k, [X1, Xa,..., X,],v) holdsifffor1 <i < n—k+1,
AMONG(L, u, [X;, Xit1,- .., Xitk—1],v) holds. We shall refer to the decomposition of
the SEQUENCE constraint into a sequence of AMONG constraints as the AD encoding.
Clearly, this decomposition hinders propagation. However, if the AMONG constraint is
monotone then enforcing DC on the decomposition is equivalent to enforcing DC on
the SEQUENCE constraint [5]. A extension proposed in [6] is that each AMONG con-
straint can have different parameters ([, v and k). All the encodings proposed here can
easily be extended to deal with this generalization.

Several filtering algorithms exist for SEQUENCE constraints. Regin and Puget pro-
pose a filtering algorithm for the Global Sequencing constraint (GSC) that combines
a SEQUENCE and a global cardinality constraint (GCC) [7]. They encode the GSC
constraint into a set of GCC constraints. This encoding hinders propagation as do-
main consistency on the encoding may not achieve domain consistency on the original
SEQUENCE constraint. Beldiceanu and Carlsson propose a greedy filtering algorithm
for the CARDPATH constraint that can be used to propagate the SEQUENCE constraint,
but this again may not achieve domain consistency [8]. Regin proposes decomposing
GSC into a set of variable disjoint AMONG and GCC constraints [9]. Again, this de-
composition hinders propagation. Bessiere et al. [5] encode SEQUENCE using a SLIDE
constraint, and give a domain consistency propagator that runs in O(nd*~1!) time. Fi-
nally, van Hoeve et al. [6] propose two filtering algorithms that establish domain con-
sistency. The first algorithm is based on an encoding into a REGULAR constraint and
runs in O(n2¥) time (we will refer to this encoding as RE), whilst the second is based
on computing cumulative sums and runs in O(n?) time (we call this H PRS after the
initials of the authors). One of our contributions here is to improve on this bound.

3.1 Domain consistency filtering algorithms based on REGULAR (LO)

As mentioned above, van Hoeve ef al. give an encoding using the REGULAR constraint
[6]. The states of the automata used in this encoding record which of the last k& values
encountered are from the set v. We can improve upon this encoding very slightly by
having states record just the last £ — 1 values encountered. A transition is then permitted
iff the last k — 1 values encountered plus the current variable have the correct frequency
of values from the given set.

We now give an alternative encoding using the REGULAR constraint which exploits
two features of many car sequencing and staff rostering problems. First, such problems
typically only place upper bounds on occurrences (e.g. at most 1 in 3 cars can have the
sun-roof). We will consider therefore just sequences of ATMOST constraints. Any se-
quence of ATLEAST constraints can be turned into a sequence of ATMOST constraints
by inverting the values counted (e.g. at least 2 in any 7 days must be rest days is equiv-
alent to at most 5 in 7 days are work days). Second, in many problems the upper bound
u is typically small (e.g. in all data files in Prob0O1 in CSPLib, © < 2 and k£ < 5).

Suppose we wish to ensure at most 1 in k variables take values from some given
set. Consider an automaton whose states record the minimum of £ and the distance
back to the last occurrence of a value in v. If none of the values in the given set has
yet occurred, the distance is taken to be k. The transition function from the state ¢ on

seeing Y; is t(¢q, Y;) = min(k,q +1)if Y; = 0and t(¢q,Y;) = 1ifg=kand ¥; = 1.
The initial state of the automaton is k£ and any state is accepting. A similar automaton
can be constructed for u > 1, but we need states to record the distances back to the last
u occurrences of values in v.

Thus, to encode a SEQUENCE constraint, we convert it into a sequence of ATLEAST
and ATMOST constraints. We then convert the sequence of ATLEAST constraints into
a sequence of ATMOST constraints by inverting the value being counted. Finally, we
construct the product of the automata for the two sequences of ATMOST constraints.
The complexity of enforcing domain consistency on SEQUENCE using this encoding is
O (nkMM(ELE=D+MIN(uk=u)) We will refer to this encoding as LO as the automaton
records the last occurrence(s).

3.2 Domain consistency filtering algorithm based on cumulative sums (C'S)

Our next encoding is based on computing cumulative sums. We introduce a sequence
of cumulative sum integer variables, S; where S; = >"7_, Y; each with domain [0, n].
We encode this linearly as S; = 0 and S; = Y; + S;—1 for 1 < ¢ < n. We then post
S; < Sjip—1—land Sjyp—1 < Sj+uforl <j<n-—k+ 1 Wecall this the C'S
encoding. Not surprisingly, this encoding hinders propagation. However, if we enforce a
slightly stronger level of local consistency on the encoding, propagation is unhindered.

Theorem 1. Enforcing singleton bounds consistency on C'S achieves domain consis-
tency on SEQUENCE and takes O(n®) time to enforce down the whole branch of a
search tree.

Proof. 1t is easy to show that if C'S' is BC then setting each S; variable to its upper
bound u;, and setting each Y; = u; — u;—1 gives a solution of C'S and the SEQUENCE
constraint. Hence SBC on C'S clearly enforces DC of SEQUENCE.

For the complexity argument, first note that propagation for C'S is O(n?) having
O(n) constraints which can wake at most O(n) times each. A priori it would appear that
enforcing SBC at each node down the search tree is O(n?) since we must check O(n)
assignments. But we can show for each assignment, either incremental propagation is
O(n) or it is O(n?) and the assignment causes failure. Since each failure fixes an Y;
variable in any forward computation this can occur at most O(n) times. Hence the total
complexity down the tree is O(n?)

Incremental BC of C'S after fixing a single Y; variable, proceeds to modify upper
and lower bounds of S variables. Either every bound is modified at most once, in which
case the propagation is O(n), or some bound is modified twice. We can use the sequence
of propagations that cause the bound to be modified twice to modify it again. Applying
this sequence repeatedly we eventually wipe out a domain and detect failure. o

We can see the SBC applied to C'S as a reworking of the original H PR.S algorithm
in different terms, with a tighter complexity argument.

3.3 Domain consistency filtering algorithm based on separation theory (ST

The key constraints in the C'S encoding are separation theory constraints of the form
S < S' + d, a well studied class because of their connection with shortest path algo-
rithms. We can modify the encoding to use only reified separation theory constraints,

and then use efficient methods for handling these constraints. We replace each constraint
Si =Y+ 851 by the equivalent S <S8 1+1,8 1<8,Y,<8,1<85;,—1.
We denote this the ST" encoding.

We can convert a conjunction of separation theory constraints C' into a weighted
directed graph G = (Ng, E¢) defined as N = vars(C) and Ec = {S 5 8| S <
S+ ¢ € C}, where S = S’ is a directed edge from S to S’ with weight c. The
connection with shortest path algorithms is folklore

Proposition 1. C is satisfiable iff G¢ contains no negative length cycles. Assuming C
is satisfiable then C implies S < S’ + c¢ iff the shortest path from S to S" in G¢ is
length ¢’ < c. m|

We construct a DC propagator by using the current Y assignment to construct a
conjunction of separation theory constraints C'. After checking the satisfiability of C,
we then check whether C' implies S; 1 < S; — 1 in which case we set Y; = 1, or if it
implies .S; < S;_; (the negation of S;_; < S; — 1) in which case we set Y; = 0.

Theorem 2. The separation theory propagator on the ST encoding enforces domain
consistency of SEQUENCE in O(n?logn) time down the whole branch of a search tree.

Proof. Suppose that Y; = 1 has no support given the current domains. Since each
solution of the SEQUENCE constraint can be extended to a solution of ST, there can
be no solution to ST" with Y; = 1. Hence the separation theory constraints will imply
S; < .5;_1 and the algorithm will set Y; = 0. The reasoning is analogous for Y; = 0.

Cotton and Maler [10] define incremental algorithms for (a) detecting negative cy-
cles in a weighted directed graph after addition of a new edge in O(|E| + |N|log |N|),
and (b) checking whether the shortest path has changed after addition of a new edge
for a set P of pairs of nodes in O(|E| + |N|log|N| + |P]). For the ST encoding
P={(S:Si-1),(Si-1,5:) | 1 <i <n}and |N¢|, |Ec|, and |P| are all O(n), hence
the complexity of incremental propagation after adding a single edge (e.g. when Y; is
fixed) is O(nlogn). Since we only add O(n) edges overall the total complexity over a
branch of the search tree is O(n? logn). O

Our current implementation of S7T' uses incremental all-pairs shortest path algo-
rithms, rather than the single-source shortest path algorithms of [10]. Let s;; be the
shortest path from S; to S; for 1 < 4,5 < n. Adding a single new arc Sy, 5 S, then
there exists a negative cycle iff s;; + ¢ < 0. If no negative cycle exists then we can
update all shortest paths variables s;; by s;; = min{sij, Sik + ¢ + sk} The cost for
adding a single arc is then O(n?) and hence O(n?) down the whole branch of the search
tree.

3.4 Domain consistency filtering algorithm based on partial sums (PS)

The penultimate encoding is arguably the simplest encoding which gives domain con-
sistency. The P.S encoding simply decomposes the constraint into a set of equations
based on partial sums: P; ; = > 7_. Y; each with domain [0, u]. The P.S encoding of the
SEQUENCE constraintis P; ;41 <wuand P; ;11 > lforl < <n—k+1aswellas
P;; =Y, for 1 <1 < n and most importantly, all possible ways of adding two of these

variables to create another: P; ; = P ,,,+ P11 jforl <i<m < j<n,j <i+k—1.
Note there are O(nk?) constraints of the last form.

Lemma 1. Bounds consistency on the PS encoding enforces domain consistency of
the SEQUENCE constraint in O(nk?u) down the whole branch of a search tree.

Proof. Define domain D to bounds capture C' if foreach Y; + --- +Y; < ¢ € C,
max D(P; ;) < cand foreachY; +---+Y; > ¢ € C, min D(P; ;) > c. Clearly the
domain resulting from BC applied to P.S bounds captures the AD encoding.

We show that if D is BC with PS and bounds captures C' then it also bounds
captures C” which results from eliminating the least (or greatest) indexed variable Y;.

We consider the least variable Y;, the greatest is similar. Consider Fourier elimi-
nation of Y;. For each pair of constraints in C of the form Y¥; + --- + Y}, < ¢; and
Y; + -+ + Y}, > co, Fourier elimination creates the constraint (a) if j; > j2 then
Yip1+--+Y; <ci—co, (b)ifj1 <gathenYj y1 +---+ Y}, > ca—cy,o0r(c)if
J1 = j2 then 0 < ¢; —co. Now since D bounds captures C' we have max D(P; j,) < ¢
and min D(P; j,) > co. For case (a) by BC on the constraint P; j;, = P; j, + Pj, 41,5,
we have maXD(Pj2+1,j1) < ¢1 — ¢, for (b) BC on f),"j2 = i + Pj1+1’j2 gives
min D(Pj,41,5,) > ¢z — ¢1, and for (c) the new constraint is true since otherwise
D(P; ;,) = (). Hence the new constraint is bounds captured by D.

To prove DC of SEQUENCE, let C' be the AD encoding plus inequalities fixing Y
variables in the current domain D (which we assume is BC with P.S). Clearly D bounds
captures C'. Consider any variable Y;, and eliminate from C'in order Y7,...,Y; 1, Y,,
Y, 1,...,Y;1 to obtain C’. Now C’ only involves the variable Y;. By the correctness
of Fourier elimination* there are solutions of C' extending any solution of C’. Since
D bounds captures C’ by repeated use of the above argument we have that there are
solutions to C for each d € D(Y;).

For the complexity argument, we note that the domains of the variables in each
constraint P; ; = P; ,, + Py, 1,; can change at most 3u times in a forward computation.
Each propagation is O(1) hence the overall complexity down a branch is O(nk?u). 0O

3.5 A log based encoding of SEQUENCE (LG)

Our final encoding (called LG) is based on a simple dynamic program that builds up
partial sums on counts. We introduce L[i, j] with domain [0, u] for the partial sums

Ziﬁz_l Y where 0 < i < [logk] and 1 < j < n — 2" + 1. Note that L[i, j] =

P;j ji i 1. This requires the constraints: L[0, j] = Y;,1 < j < nand L[i, j] = L[i —
Ljl+L[i—1,j+271,1<j<n,i>0.Suppose k = > " 2% where a; < ... <
a,y, (in other words, a; is the ith bit set in the binary representation of k). We also need

the vector, Z1 to Z,, .1 each with domain [, u] and the constraint:

m

i—1
Zj =3 Llaij+) 2"
k=1

i=1

* While Fourier is for real variable elimination for the constraints C' it coincides with integer
elimination.

We have O(nlog k) variables L that are subject to O(nlogk) ternary constraints and
O(n) variables Z that are subject to O(n) linear constraints of length O(log k), there-
fore we can enforce bounds consistency on this encoding in O(nlog ku) time down
the whole branch of a search tree. But this may not achieve domain consistency on the
SEQUENCE constraint.

There are a number of redundant constraints which we can add to improve propa-
gation. For example, we can post:

m m
Zj=Y Llai,j+ Y 2"
=1

i k=i+1

2

In fact, we can add any permutation of partial sums that add up to k (we call this
modification the LG i encoding). That is, suppose by to by, is some permutation of aq
to a,,. Then we add the constraint:

m i—1
Zj=Y Llbij+ > 2%]
i=1 k=1
It is not hard to show that such additional redundant constraints can help propagation

4 Theoretical comparison

We compare theoretically those encodings on which we may not achieve domain con-
sistency on the SEQUENCE constraint. We will show that we get more propagation with
LG than AD, but that AD, C'S and LG are otherwise incomparable. It should be noted
that during propagation all auxiliary variables in C'S, LG, AD and PSS encodings will
always have ranges as their domains, consequently, bounds consistency is equivalent to
domain consistency for them.

Theorem 3. Bounds consistency on LG is strictly stronger than bounds consistency on

AD.

Proof. Suppose LG is bounds consistent. Consider any AMONG constraint in AD. It is
not hard to see how, based on the partial sums in LG, we can construct support for any
value assigned to any variable in this AMONG constraint. To show strictness, consider
SEQUENCE (3,3,4, [Y1,...,Yg],{1}) with Y7,Y> € {0} and Y3,..., Y5 € {0,1}.
Enforcing bounds consistency on LG fixes Y5 = Yg = 1. On the other hand, AD is
bounds consistent. a

Theorem 4. Bounds consistency on C'S is incomparable to bounds consistency on AD.

Proof. Consider SEQUENCE (1,1, 3,[Y1, Y, Y3, Ys], {1}) with Y7 € {0} and Y5, Y3,
Yy € {0,1}. Now AD is bounds consistent. In C'S, we have Sg, S; € {0}, S € {0,1},
S3, 54 € {1}. As S3 and Sy are equal, enforcing bounds consistency on C'S prunes 1
from the domain of Y.

Consider SEQUENCE (1,2,2,[Y7, Y3, Y3, Yy], {1}) with Y3 € {0} and Y1, Y5, Y, €
{0,1}. In CS, we have Sy € {0}, S1 € {0,1}, S2,S55 € {1,2}, S4 € {2,3}. All

constraints in C'S are bounds consistent. Enforcing bounds consistency on AD prunes
0 from the domains of Y5 and Yj. O

From the proof of Theorem 4 it follows that bounds consistency on C'S does not
enforce domain consistency on SEQUENCE when SEQUENCE is monotone.

Theorem 5. Bounds consistency on C'S is incomparable with bounds consistency on
LG.

Proof. Consider SEQUENCE (2, 2,4, [Y1,Ys,Ys, Yy, V5], {1}) with Y7 € {1} and Y5,
Ys, Yy, Y5 € {0,1}. All constraints in LG are bounds consistent. In C'S, we have
So € {0}, S1 € {1}, S2, 55 € {1,2}, Sy € {2}, S5 € {3}. As S, and S5 are ground
and S5 =S4 + 1, Enforcing bounds consistency on C'S fixes Y5 = 1.

Consider SEQUENCE (2, 3,3,[Y1,Y2,Y3,Y4],{1}) withY; = 1 and Y5, Y3, Y, €
{0,1}. Now C'S is bounds consistent. However, enforcing bounds consistency on LG
prunes O from Yy. a

Recall that singleton bounds consistency on C'S is equivalent to domain consis-
tency on SEQUENCE. We therefore also consider the effect of singleton consistency
on the other encodings where propagation is hindered. Unlike C'S, singleton bounds
consistency on AD or LG may not prune all possible values.

Theorem 6. Domain consistency on SEQUENCE is strictly stronger than singleton bounds
consistency on LG.

Proof. Consider SEQUENCE (2,2,4, [Y7,Y2,Ys, Yy, V5], {1}) with Y7 € {1} and Y5,
Ys, Yy, Y5 € {0,1}. Consider Y5 = 0 and the LG decomposition. We have Py ; €
{1}, Po2, Po3, Pos € {0,1}, Po5 € {0}, Pi1,Pip € {1,2}, P13, P14 € {0,1},
P1,P5 € {2}. All constraints in LG are bounds consistent. Consequently, we do not
detect that Y5 = 0 does not have support. o

Theorem 7. Domain consistency on SEQUENCE is strictly stronger than singleton bounds
consistency on AD.

Proof. By transitivity from Theorems 6 and 3. o

S The Multiple SEQUENCE constraint (M R)

We often have multiple SEQUENCE constraints applied to the same sequence of vari-
ables. For instance, we might insist that at most 1 in 3 cars have the sun roof op-
tion and simultaneously that at most 2 in 5 of those cars have electric windows. We
propose an encoding for enforcing domain consistency on the conjunction of m such
SEQUENCE constraints (we shall refer to this as M R). Suppose that the jth such con-
straint is SEQUENCE((;, uj, kj, [X1, . .., X,], v;). For simplicity, we suppose also that
the values being counted are disjoint. The extension to the non-disjoint case is straight-
forwards but notationally messy. We channel into a new sequence of variables where
Y; = jif X; € v; else j = 0. We now construct an automaton whose states record
the last £’ — 1 values used where k' is the largest k;. Transitions of the automaton en-
sure that all SEQUENCE constraints are satisfied. Domain consistency can therefore be
enforced using the REGULAR constraint in O(nm* 1) time.

6 The Cyclic SEQUENCE constraint

In rostering problems, we may wish to produce a cyclic schedule which can be re-
peated, say, every four weeks. We therefore consider a cyclic version of the SEQUENCE
constraint. More precisely, SEQUENCE, (I, u, k, [X1, ..., X,],v) ensures that between
I and u variables in X t0 Xy (j4k—1mod n) takes values in the set v for 1 <7 < n.

One simple way to post such a constraint is with a ternary encoding. We introduce
state variables Q; for 1 < i < n, each with 0(2""1) states to record which of the last
k — 1 values round the cycle are from the set v. We then post ternary constraints of the
form T'(X;, Qi, @14(i+1 mod ny) Which hold iff Q; = (b1, .. bx—1), Q14 (i1 mod n) =
((X; € v),by,...bg_2), and:l < Zf;ll b; + (X; € v) < w. This is similar to the
ternary encoding of the REGULAR constraint. We can enforce DC on this encoding in
O(n2k=1) time. However, as the constraint graph of the encoding is cyclic, enforcing
domain consistency on the ternary encoding does not achieve domain consistency on
SEQUENCE,, in general.

When we have a monotone SEQUENCE,, constraint, decomposition into AMONG
(similar to AD) does not hinder propagation. In the non-monotone case, we can enforce
domain consistency on SEQUENCE,, using a linear REGULAR constraint with many
more states. The states of the automata at index ¢ record which of the last min(i —
1,k — 1) values encountered are from the set v, as well as which of the first min(i —
1, k—1) variables from the sequence take values from v. We thus need O (2 ~12F=1) =
O(4%1) states. By storing the values used at the start of the sequence, we can test at the
end of the sequence if values from v occur with the correct frequency when we wrap
around. However, this comes at a considerable cost as enforcing domain consistency
takes O(n4*~1) time and is unlikely to be useful in practice unless k is very small.

7 Generalizations of SEQUENCE

We consider generalizing the SEQUENCE constraint to replace its parameters [, u, k
by integer variables and v by a set variable. A set variable is one which takes a set
of values. It is equivalent to a vector of 0/1 variables, representing the characteristic
function. Unfortunately enforcing domain consistency on such a SEQUENCE constraint
is NP-hard.

Theorem 8. Enforcing domain consistency on SEQUENCE(L, u, k, [X1, ..., X,],V) is
NP-hard when 'V is a set variable, and X;, l, u and k are ground.

Proof. We reduce 1-in-3 SAT on positive clauses to deciding if a SEQUENCE constraint
has a solution. As the X in this constraint are ground (but the set variable V' is not), en-
forcing domain consistency on the SEQUENCE constraint is NP-hard. Consider a 1-in-3
SAT problem in N variables (labelled 1 to N) and M positive clauses. We set {0} C
V C {0,1,...,n}. V will contain 0 and the set of variables which are true in a satis-
fying assignment. We setn = 15M,1 = 1, u = 3 and k = 6. If the ¢th clause isxVy V 2z
then we set (Xq5(;,—1)41.-- -, X154) to (2,9, 2,2, 9, 2,—1,-1,-1,0,0,0, -1, =1, —1).

O

Generalizing [and u by integer variables L and U is tractable if k remains ground
and bounded. This would be useful, say, if we wished to minimize the number of night
shifts worked in any seven day period. Similarly, generalizing k with an integer variable
K is tractable if [and u are fixed. This would be useful, say, if we wished to maximize
the minimum period containing more than two night shifts. In both cases, we can encode
the resulting constraint using REGULAR. However, it is an open question in both cases
if enforcing domain consistency is tractable if we let k = O(n).

8 Experimental Results

Table 1. Randomly generated instances with a single SEQUENCE constraintand A = 1.
Number of instances solved in 100 sec / average time to solve.

n k PS HPRS ST AD Gsc LG LGR Cs

50 7 20 /0.003 20 /0.002(20 /0.005[20 /0.133 |20 /0.538[20 /0.044 |20 /0.001|20 /0.002

) 15 20 /0.023 |20 /000120 /0.005(20 /0.004 |20 /0.018)20 /0.003|20 /0.004|20 / 0.001
25 20 /0.094 |20 /0.003|20 /0.005| 19 /0.066 |19 /0.396| 19 /0.034 | 19 /0.008 | 20 / 0.001
7 20 /0.016 |20 /0.030(20 /0.242(15 /2.517 |14 /5.423[17 / 0.003|20 /0.005|20 /0.020

200 15 20 /0.120 |20 /0.030[20 /0235 7 /1850 |6 /0.106| 9 /0.083|17 /0.021|20 / 0.016
25 20 /0.661 |20 /0.027[20 /0235 3 /0.005|3 /0039 3 /0.004| 9 /0.012|20 /0.016
50 20 /5423|120 /0.028[20 /0232 4 /18.255|3 /1361 6 /5926 |10 /0.113]|20 / 0.014
7 20 /0.043 20 /0336[20 /4086 9 /6756 |8 /1.046[13 /7 0.009|20 /0.017|20 /0.150

500 15 20 /0320|120 /033420 /4130 4 /13.442|3 /0.121| 6 /0.012| 14 /0.059|20 /0.100
25 20 /1816|120 /027920 /4017 1 0 /0 3 /700135 /002020 /0.085
50 20 /16.762) 20 /029020 /4.032| 0 /0 0 /0 2 /11.847] 4 /0.031]20 /0.086

TOTALS
solved in 100 sec/total 220 /220 {220 /220 |220 /220 102 /220 (97 /220 |[118 /220 (158 /220 (220 /220
avg time for solved in 100 sec 2.298 0.124 1.566 2.376 1.115 0.524 0.021 0.045
avg bt for solved in 100 sec 0 0 0 42830 4319 3239 25 33

Table 2. Randomly generated instances with a single SEQUENCE constraint and A = 3.
Number of instances solved in 100 sec / average time to solve.

n k PS HPRS ST AD Gsc LG LGpRp CS
50 7 20 /0.004 [20 7 0.001] 20 /0.006(20 / 0.001| 20 /0.003[20 / 0.001{20 /0.001 |20 /0.002
- 15 20 /0.022 {20 70.001|20 /0.006|20 /0.002|20 /0.004[20 /0 |20 /0.005|20 /0.001
25 20 /0.097 {20 /0.002{20 /0.005|20 / 0.001]20 /0.007|20 /0.001|20 /0.003|20 /0.002
7 20 /0.017 [20 70.028{20 /0.251(20 / 0.003|20 /0.01620 /0.004 |20 /0.007 |20 /0.028
200 15 20 /0.127 (20 /0.036|20 /0.242| 19 / 0.004]| 19 /0.025(19 /0.005|20 /0.027 |20 /0.026
25 20 /0.652 (20 /0.031|20 /0.240| 18 /0252| 18 /3.160(19 /0.126|20 / 0.012| 20 /0.019
50 20 /544120 /0.036|20 /0237|113 /0.063 |13 /0.571| 16 /4.556| 19 /4.178|20 / 0.016
7 20 /0.047 |20 /041420 /4226(20 / 0.010{ 20 /0.082{ 20 /0.012|20 /0.022|20 /0278
500 15 20 /0351|120 /037720 /4.159(17 /0.013| 17 /0.113| 18 /0.016]|20 /0.090|20 /0216
25 20 /1.812|20 /0445(20 /4116 8 /0015 8 /0.139| 11 /0.019|20 /0.040|20 /0.141
50 20 /16.711|20 /038320 /4.056 6 /0.022| 6 /0201 7 /0.019| 12 /0.123|20 /0.099

TOTALS

solved in 100 sec/total 220 /220 {220 /220 |220 /220 |181 /220 (181 /220 [190 /220 (211 /220 {220 /220

avg time for solved in 100 sec 2.298 0.160 1.595 0.035 0.394 0.402 0.403 0.075

avg bt for solved in 100 sec 0 0 0 352 352 1964 970 30

To compare performance with the different encodings, we carried out a series of
experiments. The first series used randomly generated instances so we could control the
parameters precisely. The second series used some nurse rostering benchmarks to test
more realistic situations.

10

Table 3. Randomly generated instances with a single SEQUENCE constraintand A = 5.
Number of instances solved in 100 sec / average time to solve.

n k PS HPRS ST AD Gsc LG LG R Cs
7 70.004 120 /0.001[20 /0.005{20 / 0.001|20 /0.003{20 /0.002|20 /0.001 70.002
15 70.025 |20 /0.001|20 /0.006|20 /0.001|20 /0.005|20 / 0.001|20 /0.005 70,002
25 /0.100 | 20 / 0.001| 20 /0.006| 20 / 0.001| 20 /0.008| 20 /0.002] 20 /0.003 /0.002

7 70.016 | 20 /0.020 |20 /0.262| 20 / 0.003| 20 /0.017| 20 /0.005|20 /0.007 70.024
200 15 70.133 120 /0.031|20 /0.251|20 / 0.005| 20 /0.026| 20 /0.005|20 /0.034 10.028
25 70.665 |20 /0.030 |20 /0.242| 20 /0.007 |20 /0.038| 20 / 0.006| 20 /0.014 10.020
50 /553820 /0.039|20 /0.242{20 /0.012|20 /0.073| 20 / 0.010| 20 /0.018 /0.019

7 70.047 120 /0.195[20 /4.362{20 / 0.012] 20 /0.085|20 /0.012|20 /0.023 70.154

500 15 /0358 | 20 /0.383 |20 /4.183| 20 / 0.015| 20 /0.119{ 20 /0.017 |20 /0.101 10.235

25 /1786 | 20 /0.411 (20 /4.127| 20 / 0.019| 20 /0.146| 20 /0.021 | 20 /0.045 10.201

50 /17.016] 20 /0.342 |20 /4.077| 11 /0.034| 11 /0.298| 12 / 0.033| 17 /4.869 /0.120

TOTALS

solved in 100 sec/total 220 /220 {220 /220 (220 /220 |211 /220 (211 /220 (212 /220 (217 /220 (220 /220

avg time for solved in 100 sec 2.335 0.132 1.615 0.009 0.065 0.009 0.405 0.073
avg bt for solved in 100 sec 0 0 0 2 2 1 1268 19

50

2888I8E8yE|88y
2888I8E8yE|88y

8.1 Random instance

For each possible combination of n € {50, 200, 500}, k € {7,15,25,50}, A=u—1 €
{1,3,5}, we generated twenty instances with random lower bounds in the interval
[0, k— A). We used a random value and variable ordering and a time-out of 100 sec. Re-
sults for different values of A are presented in Tables 1- 3. Instances can be partitioned
into 2 groups. In the first group, n > 50 and A < 3. On these instances, assignment of
one variable has a strong impact on other variables. In the extreme case when A = 0
instantiation of one variable assigns on average another n/k variables. So, we expect
DC propagators to significantly shrink variables domains and reduce the search tree.
As can be seen from Tables 1, DC' propagators outperform non-DC' propagators. Sur-
prisingly, C'S has the best time of all combinations and solved all instances. Whilst it
takes more backtracks compared to the DC' propagators which solve problems without
search, it is much faster. The ST algorithm is an order of magnitude slower compared
to the HP RS propagator but in the current implementation we use a naive O(n?) al-
gorithm to update the adjacency matrix. The PS algorithm is much slower compared
to other DC' algorithms and it relative performance decays for larger k’s.

In the second group, n < 50 or A > 3. On these instances, assignment of one
variable does not have big influence on other variables. The overhead of using DC
propagators to achieve better pruning outweighs the reduction in the search space. The
clear winner in this case are those propagators which do not achieve DC. When k < 25
AD is best. When k gets larger, LG and LG R solve more instances and work faster due
to their better propagation.

8.2 Nurse Rostering Problems

All instances are taken from http://www.projectmanagement .ugent .be/
nsp.php. The basic model includes the following three constraints: each shift has
a minimum required number of nurses, each nurse should have at least 12 hours of
break between 2 shifts, each nurse should have at least two consecutive days on any
shift. In addition, each model has additional SEQUENCE constraints. For each day in
the scheduling period, a nurse is assigned to a day (D), evening (E), or night (N) shift

11

or takes a day-off (O). We introduce one variable X [i, j] for each nurse, 7 = 1...p
and each day, j = 1...n, where p is the number of nurses, n is the number of days in
the scheduling period. Each model was run on 50 instances. The number of nurses in
each instance was set to the maximal number of nurses required for any day over the
period of 14 days. The time limit for all instances was 100 sec. For variable ordering,
we branched on the smallest domain.

Table 4 gives results for those instances that were solved by each propagator. In
these experiments . < 50. As expected from the random experiments , the AD decom-
position outperforms all other decompositions. The only exception are instances with
A = 0 and non-DC propagators lose to DC' algorithms and the C'S decomposition.

Table 4. Models of the nurse rostering problem using the SEQUENCE constraint. Num-
ber of instances solved in 100 sec / average time to solve.

SEQUENCE RE PS LO HPRS ST AD Gsc LG LG R cSs
(1,3,3,{0}) 43 /07143 /047(43 /0.64| 43 /05443 /06343 /045(43 /0.60 (43 /0.45(43 /047|39 /249
(3,5,5,{0}) 44 /23244 /243(44 /211|144 /2.28(/44 /261 |44 /1.84|44 /284 |44 /187 |44 /1.92{40 /353
(2,2,5,{0}) 39 /448|139 /541|139 /476140 /7.41|38 /497|36 /7.50|35 /7.73 |36 /8.56|40 /543|36 /536
(2,2,7,{0}) 23 /7.35|23 /9.09|23 /7.92{23 /5.64|23 /75022 /11.16]22 /182122 /11.66|23 /8.10| 23 / 4.53
(2,3,5,{01) 26 14.44| 26 /4.65| 26 /4.92| 27 16.77] 26] 3.91| 27 /5.47 |26 7427 |27 7581 |27 /16.19]| 26 /5.77
(2,5,7,{0}) 22 /277|22 /3.45|23 /690(22 /222(22 /243|23 /606|222 /328 (22 /21022 /245[22 /228
(1,3,4,{0}) 26 /4.82|27 /7.02|26 /525[27 /675|126 /435[27 /580[26 /4.69|27 /6.05|27 /6.05|25 /6.18

TOTALS
solved in 100 sec/total [223 /350 |224 /350 |224 /350 |226 /350|222 /350 {222 /350 |218 /350 |221 /350 |226 /350 |211 /350
avg time for solved in 100 sec 3.49 4.17 4.07 4.26 3.47 4.78 517 4.68 395 422
avg bt for solved in 100 sec 8527 11045 9905 13804 8017 20063 12939 18715 14205 17747

8.3 Multiple SEQUENCE constraints

Table 5. Randomly generated instances with 2 SEQUENCE constraints and A = 1.
Number of instances solved in 100 sec / average time to solve.

n k MR RE PS LO |[HPRS| ST AD Gsc LG LGRp CS
50 5 20 /0 |18 /0.22[18 /0.18{18 /0.27[18 /0.34 |18 /1.44[18 /0.65{18 /2.30(18 /0.19 [18 /0.24| 5 /36.45
7 20 / 0.05|14 /3.01|14 /3.97|14 /3.58|14 /3.06|13 /0.36|13 /0.85|13 /2.62|13 /0.24 |14 /3.42| 8 /11.02

100 5 20 /0.01|15 70.01{15 /0 {15 70.01{15 /70.01 |15 7/0.09[15 /1.38{15 /62115 /0 [15/0.18{0 /0

7 20 /0.10 |11 70.02{11 70.02]{11 /0.02{11 /0.01 |11 /0.08{ 7 /889|6 /0519 /10.16[10 /0 |1 /0

TOTALS

solved in 100 sec/total (80 /80 [58 /80 [58 /80 |58 /80 |58 /80 |57 /80 |53 /80 [52 /80 [55 /80 |57 /80 |14 /80

avg time for solved in 100 sec| 0.04 0.80 1.02 0.96 0.85 0.57 1.99 3.30 1.78 0.96 19.31

avg bt for solved in 100 sec 0 4771 4771 4771 4771 710 43390 22915 28894 8887 553515

We also evaluated performance of the different propagators on problems with mul-
tiple SEQUENCE constraints. We again used randomly generated instances and nurse
rostering problems. For each possible combination of n € {50,100}, ¥ € {5,7},
A = 1and m € {2,3,4} (where m is the number of SEQUENCE constraints), we
generated twenty random instances. All variables had domains of size 5. An instance
was obtained by selecting random lower bounds in the interval [0, k — A]. We excluded

12

Table 6. Randomly generated instances with 3 SEQUENCE constraints and A = 1.
Number of instances solved in 100 sec / average time to solve.

n k MR RE PS LO (HPRS| ST AD Gsc LG LG R S

50 5 20 /0.02(10 70.63[10 /0.50[10 70.72[10 /0.67 |10 /4.01|11 /9.45{10 /1.32|11 /6.59 |11 /7.92[1 /0O
7 20 /0.35(8 /0368 /0.33|8 /045[8 /025(8 /1.79|9 /7.67|8 /433|9 /1247]9 /6.02|3 /33.39

100 5 20 /004f1 /0 (1 /O |1 /0 |1 /O |1 /0 |1 /0|1 /0 |1 /O (1 /O (0O /O
7 20 /042(3 /0333 /0473 /0383 /046[3 /7851 /0 |1 /0 |1 /0 |2 /122(2 /191

TOTALS

solved in 100 sec/total (80 /80 |22 /80 |22 /80 |22 /80 |22 /80 |22 /80 |22 /80 |20 /80 [22 /80 |23 /80 |6 /80

avg time for solved in 100 sec| 0.21 0.46 0.41 0.54 0.46 3.54 7.86 2.40 8.40 6.25 1733
avg bt for solved in 100 sec 0 3512 3512 3512 3512 3512 140670 | 11815 131464 90217 | 369357

Table 7. Randomly generated instances with 4 SEQUENCE constraints and A = 1.
Number of instances solved in 100 sec / average time to solve.

n k MR RE PS LO HPRS| ST AD Gsc LG LGp CS
50 5 20 /0.05| 6 /1493|6 /12586 /17.03|5 /081 (5 /4766 /13.75|5 /10.59|7 /15056 /6.86|0 /0
7 20 /086|7 /2576|6 /20.85(6 /16897 /23.99(4 /0.15| 6 /14.02(5 /1590|8 /26.81| 6 /27.34|2 /5.80
100 5 20 /011{0 /0 [0 /0 (O /0 [0 /0 [0 /0 [O /O [0 /0 |O /O [O /O |0 /0
7 20 /183|2 /654 |2 /898 |2 /752|2 /10481 /0 [1 /0 [1 /0 |1 /0 [2 /001]|0 /0
TOTALS

solved in 100 sec/total (80 /80 15 /80 |14 /80 |14 /80 |14 /80 |10 /80 |13 /80 |11 /80 [16 /80 |14 /80 (2 /80

avg time for solved in 100 sec| 0.71 18.86 15.61 15.61 13.78 244 12.81 12.04 19.99 14.66 5.80
avg bt for solved in 100 sec 0 91795 72078 72078 64579 2214 185747 51413 257831 120511 | 106008

instances where 221 l; > k to avoid unsatisfiable instances. We used a random vari-
able and value ordering, and a time-out of 100 sec. All SEQUENCE constraints were
enforced on disjoint sets of cardinality one.

Experimental results for instances with A = 1 and different number of SEQUENCE
constraints are presented in Tables 5— 7. They show that the multiple SEQUENCE prop-
agator significantly outperforms other propagators in both metrics, namely time to find
a valid sequence and the number of solved instances. For bigger values of n, the mul-
tiple SEQUENCE is the only filtering algorithm that successfully solved all instances.
However, it should be noted that, due to its space complexity, to use this propagator
successfully, k£ and m should be relatively small and n should be less than 100.

In the second series of experiments we used nurse scheduling problems benchmarks.
We removed the last constraint from the basic model described in the previous section
and added two sets of non-monotone SEQUENCE constraints to give two different mod-
els. In the first model, each nurse has to work one or two night shifts in 7 consecutive
days, one or two evening shifts, one to five day shifts and two to five days-off. In the
second model, each nurse has to work one or two night shifts in 7 consecutive days, and
one or two days-off in 5 days. The number of nurses was equal to maximal number of
nurses required for any day over the period multiplied by 1.5. Table 8 shows the num-
ber of instances solved by each propagator. The multiple SEQUENCE propagator solved
more instances compared to the other propagators.

In a final set of experiments we compared performance of M R, LO and AD prop-
agators on monotone SEQUENCE constraints. We used the same basic model for nurse
rostering but augmented it with 5 monotone constraints. The first model includes the
following SEQUENCE constraints: at least one day-off in 4 consecutive days, at least
one night shift in 7 days, at most two night shifts in 7 days, at least one evening shift
in 7 days, and at least one day shift in 7 days. In the second model, we replaced the at

13

Table 8. Models of the nurse rostering problem using the SEQUENCE constraint. Num-
ber of instances solved in 100 sec / average time to solve.

MR RE PS LO |(HPRS| ST AD Gsc LG LG R S
Model 1 16 /8.52(7 /0.48[7 /0.52|7 /0.44|7 7028|7 /042[7 70247 /0.82[7 /024[7 /033|7 /0.20
Model 2 21 /0.59]9 /0.05]9 /0.04[9 /0.05[9 /0.02]9 /70.02{10 /9.18]9 /0.04{10 /8.72{9 / 0.02[10 /8.71

TOTALS
solved in 100 sec/total 37 /100 [16 /100 (16 /100 |16 /100 |16 /100 |16 /100 [17 /100 [16 /100 [17 /100 [16 /100 |17 /100

avg time for solved in 100 sec| 4.02 024 0.25 0.22 0.13 0.20 5.50 0.38 522 0.16 521
avg bt for solved in 100 sec| 11446 884 884 884 884 884 59688 884 59686 884 59687

least one day shift in 7 consecutive days constraint with at most two days shifts in 5
days which has a similar tightness. The third model is identical to the second model,
but at least one evening shift in 7 consecutive days constraint is replaced by at most
two evening shifts in 5 days. Experimental results for all models are presented in the
Table 9. All models have approximately the same tightness, but as can be seen from
Table 9, the use of the multiple SEQUENCE propagator gives larger performance gains
when the model includes several sequences of at least constraints.

Table 9. Models of the nurse rostering problem using the SEQUENCE constraint. Num-
ber of instances solved in 100 sec / average time to solve.

MR LO AD

Model 1 25 /93311 /555(2 /7 0.01
Model 2 15 /593|114 / 3.29(10 /8.37
Model 3 18 /1.40[18 / 1.01|21 /3.85

TOTALS

solved in 100 sec/total 58 /150 (43 /150 |33 /150
avg time for solved in 100 sec| 5.991 2.916 4.989
avg bt for solved in 100 sec| 7192 4423 47348

8.4 Cyclic SEQUENCE constraint

We end with experiments on the cyclic SEQUENCE constraint. As might be expected,
we could not use the DC propagator because it requires too much memory. We use
instead the first approach described in Section 6 to propagate this constraint. As can
be seen from the Table 10, results are similar to the non-cyclic case. The multiple
SEQUENCE propagator outperforms other propagators when the problem includes sev-
eral at least constraints. It should be noted that in the cyclic case, problem instances are
much harder. We solved only half the instances compared to the non-cyclic case.

Table 10. Models of the nurse rostering problem using the cyclic SEQUENCE con-
straint. Number of instances solved in 100 sec / average time to solve.

MR LO AD
Model 1 12 79.02[7 /0.56[2 / 0.14
Model 2 6 /23116 /1252 /0.3
Model 3 13 /541(13 /82514 / 1.74

TOTALS

solved in 100 sec/total |31 /150 |26 /150 |18 /150

avg time for solved in 100 sec| 6.205 4.562 1.374
avg bt for solved in 100 sec[5178 2705 8201

14

9 Conclusion

The SEQUENCE constraint is useful in modelling a range of rostering, scheduling and
car sequencing problems. We proved that down the whole branch of a search tree do-
main consistency can be enforced on the SEQUENCE constraint in just O(n?logn)
time. This improves upon the previous bound of O(n?) for each call down the branch
[6]. To propagate the SEQUENCE constraint, we introduced half a dozen new encodings,
some of which do not hinder propagation. We also considered some generalizations in-
cluding multiple SEQUENCE constraints, and cyclic SEQUENCE constraints. Our exper-
iments suggest that, on very large and tight problems, the existing domain consistency
algorithm is best. However, on smaller or looser problems, much simpler encodings
are better, even though these encodings hinder propagation. When there are multiple
SEQUENCE constraints, especially when we are forcing values to occur, a more expen-
sive propagator shows promise. This study raises a number of questions. For example,
what other global constraints can be efficiently and effectively propagated using sim-
ple encodings? As a second example, can we design heuristics to choose an effective
encoding automatically?

References

1. Pesant, G.: A regular language membership constraint for finite sequences of variables.
In: Proceedings of 10th Int. Conf. on Principles and Practice of Constraint Programming
(CP’04). (2004)

2. Quimper, C.G., Walsh, T.: Global grammar constraints. In: In Proceedings of the 12th Int.
Conlf. on Principles and Practice of Constraint Programming. (2006)

3. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical and
Computer Modelling 12 (1994)

4. Debruyne, R., Bessiere, C.: Some practicable filtering techniques for the constraint satisfac-
tion problem. In: Proceedings of the 15th IICAL (1997) 412-417

5. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The slide meta-constraint.
Technical report (2007)

6. Hoeve, W.J.v., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the sequence con-
straint. In: Proceedings of the 12th Int. Conf. on Principles and Practice of Constraint Pro-
gramming (CP *06). (2006)

7. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In: Proceed-
ings of the 3th Int. Conf. on Principles and Practice of Constraint Programming (CP °97).
(1997)

8. Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introducing cardinality-
path constraint family. In Codognet, P., ed.: Proceedings of the Int. Conf. on Logic Program-
ming (ICLP 2001), (2001)

9. Régin, J.C.: Combination of among and cardinality constraints. In: Integration of AT and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems, Second
Int. Conf.. (2005)

10. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In:
Proceedings of Theory and Applications of Satisfiability Testing (SAT-2006). (2006)

15

