
J Heuristics (2006) 12: 263–285

DOI 10.1007/s10732-006-7071-x

Hard and soft constraints for reasoning about qualitative
conditional preferences

C. Domshlak · S. Prestwich · F. Rossi · K.B. Venable ·
T. Walsh

C© Springer Science + Business Media, LLC 2006

Abstract Many real life optimization problems are defined in terms of both hard and soft con-

straints, and qualitative conditional preferences. However, there is as yet no single framework

for combined reasoning about these three kinds of information. In this paper we study how

to exploit classical and soft constraint solvers for handling qualitative preference statements

such as those captured by the CP-nets model. In particular, we show how hard constraints are

sufficient to model the optimal outcomes of a possibly cyclic CP-net, and how soft constraints

can faithfully approximate the semantics of acyclic conditional preference statements whilst

improving the computational efficiency of reasoning about these statements.
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1. Introduction and motivation

Representing and reasoning about preferences is an area of increasing interest in theoretical

and applied AI. In many real-life optimization problems we have both hard and soft con-

straints, as well as qualitative conditional preferences. For example, in a product configuration

problem (Sabin and Weigel, 1998), the producer may pose some hard constraints on the prob-

lem (e.g., component compatibility) and soft constraints (e.g., supply time), while the user

may provide the system with her subjective preferences over alternative products expressed

in some natural language of preference statements. While soft constraint solvers (Bistarelli

et al., 1997; Schiex et al., 1995) and various models for reasoning about qualitative pref-

erences (Doyle and Thomason, 1999) have been proposed in AI research, there is as yet

no single framework for efficient and effective combined reasoning about these different

kinds of information. Although this is the long-term goal of our research, in this paper we

focus on the connections between constraints and qualitative preferences representable by

the CP-nets model (Boutilier et al., 2004), and exploit these connections to provide a purely

constraint-based framework for combined reasoning about these two formalisms.

Soft constraints (Bistarelli et al., 1997; Schiex et al., 1995) are one of the main methods

for dealing with preferences in constraint optimization. Each assignment to the variables of

a constraint is annotated with the level of its desirability, and the desirability of a complete

assignment is computed by a combination operator applied to the “local” preference values.

Whilst soft constraints are very expressive and have a powerful computational machinery for

reasoning about them, the fact that they are based on quantitative measures of preference and

a global preference combination operator make the preference elicitation process somewhat

difficult for a naive user.

To make preference elicitation process accessible to the masses, one must support rea-

soning about qualitative statements of preference that all of us express in our everyday

activities (Doyle and Thomason, 1999; Hansson, 2001). Several models for representation

and reasoning about such statements have been proposed in AI (Lang, 2002), of which the

most studied to date is the CP-nets model (Boutilier et al., 2004), where CP stands for

Conditional Preference. CP-nets are devoted to reasoning about qualitative (and possibly

conditional) statements of preference where each statement expresses preference over the

values of a single property of the outcomes, such as “I prefer a red dress to a yellow dress”, or

“If the car is convertible, I prefer a soft top to a hard top”. The core notions exploited by the

CP-nets model are the ceteris paribus (all else being equal) interpretation of the statements,

and conditional preferential independence. However, while elicitation of CP-nets from lay

users is very intuitive, the Achilles’ heel of CP-nets and other sophisticated representation

models of qualitative preferences is the complexity of reasoning with them (Domshlak and

Brafman, 2002; Boutilier et al., 2004; Lang, 2002; Goldsmith et al., 2005).

In this paper we make a step towards bridging the gap between the attractiveness of

preference elicitation with CP-nets, and the expressiveness and efficiency of reasoning with

soft constraints. First, we consider the complexity of reasoning about qualitative preference

statements, and in particular of verifying consistency of preference specification. We show

how a set of hard constraints can model the set of optimal outcomes of a possibly cyclic CP-

net, making off-the-shelf hard constraint solvers sufficient for finding optimal assignments

with respect to such preference models. To tackle the complexity of reasoning about the whole

preference orderings induced by CP-nets, we consider compiling CP-nets into soft constraint

satisfaction problems. First, we show that the expressiveness of these two formalisms is

incomparable, and hence the desired compilation must approximate the information captured

by CP-nets. We then focus on acyclic CP-nets, and introduce two sound approximation
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schemes for such orderings that are based on the soft constraints formalism. Finally, we

compare our two approximations in terms of both expressivity and complexity, and show how

they can be combined into another approximation that is closer to the original information.

Returning to the configuration example described above, the preferences of the agents can

be modelled via a CP-net, which can then be approximated by soft constraints. Such soft

constraints can then be added to the hard constraints of the problem and solved using soft

constraint satisfaction machinery.

To the best of our knowledge, this work provides the first formally sound framework for

using hard and soft constraint solvers for reasoning about qualitative preference statements. In

addition, our framework provides a platform for a combined (exact or approximate) reasoning

about hard constraints, quantitative soft constraints, and certain sets of qualitative statements

of preference.

The paper is organized as follows. In Section 2 we give the main notions about soft

constraints and CP-nets. Then in Section 3 we show how hard constraints are sufficient

to find optimal outcomes of a possibly cyclic set of statements. In Section 4 we compare

the expressive power of soft constraints and CP-nets, while in Section 5 we show how

to approximate an acyclic CP-net via two classes of soft constraints. Finally, Section 6

discusses related work, and Section 7 summarizes the main results and points at possible

future directions for further work.

This paper is partially based on results contained in Domshlak et al. (2003). In addition,

it includes the study of eligibility via optimality constraints and the comparison between the

expressive power of soft constraints and CP-nets.

2. Formalisms for describing preferences

In this section we provide an essential background hard and soft constraints, as well as

CP-nets.

2.1. Soft constraints

While several formalisms for describing soft constraints have been proposed in the literature,

here we adopt the c-semi-ring formalism (Bistarelli et al., 1997), which is equivalent to the

valued-CSP with total orders (Bistarelli et al., 1996), and generalizes numerous soft constraint

settings (Schiex, 1992; Dubois et al., 1993; Freuder and Wallace, 1992). In brief, each soft

constraint is defined over a certain set of variables, and it associates each instantiation of its

variables with a value from a partially ordered set. In addition, we are given a pair of operations

devoted for combining (×) and comparing (+) values provided by soft constraints. A semi-

ring is a tuple 〈A, +, ×, 0, 1〉 such that: A is a set and 0, 1 ∈ A; + is commutative, associative

and 0 is its unit element; × is associative, distributes over +, 1 is its unit element and 0 is its

absorbing element. A c-semi-ring is a semi-ring 〈A, +, ×, 0, 1〉 in which + is idempotent, 1
is its absorbing element and × is commutative.

Let us consider the relation ≤ over A such that a ≤ b iff a + b = b. Then ≤ is a partial order,

+ and × are monotone on ≤, 0 is its minimum and 1 its maximum, 〈A, ≤〉 is a complete lattice

and, for all a, b ∈ A, a + b = lub(a, b). Moreover, if × is idempotent: + distributes over ×;

〈A, ≤〉 is a complete distributive lattice and × its glb. Informally, the relation ≤ compares

semi-ring values and constraints. When a ≤ b, we say that b is better than (or preferred to)

a. Given a semi-ring S = 〈A, +, ×, 0, 1〉, a finite set D (variable domains) and an ordered

set of variables V , a constraint is a pair 〈def , con〉 where con ⊆ V and def : D|con| → A. A
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constraint specifies a set of variables, and assigns to each tuple of values of these variables

an element of the semi-ring.

A (SCSP) is given by a set of soft constraints. For example, a classical CSP is an SCSP

with the c-semi-ring SCSP = 〈{ f alse, true}, ∨, ∧, f alse, true〉, a fuzzy CSP (Schiex, 1992)

is an SCSP with the c-semi-ring SFCSP = 〈[0, 1], max, min, 0, 1〉, and probabilistic and

weighted CSPs are SCSPs with the c-semi-rings Sprob = 〈[0, 1], max, ×, 0, 1〉 and Sweight =
〈R, min, +, 0, +∞〉, respectively. A solution to an SCSP is a complete assignment to its

variables. The preference value associated with a solution is obtained by multiplying the

preference values of the projections of the solution to each constraint. A solution is considered

to be better than some another solution if the preference value of the former is higher in the

order than this of the latter.

Finding an optimal solution for an SCSP is an NP-hard problem, since SCSPs include

classical CSPs which are NP-hard. On the other hand, given two solutions, checking whether

one is preferable to another is easy: simply compute the semi-ring values of the two solutions

and compare the resulting values. This takes time linear in the number of constraints if the

number of variables involved in each constraint is bounded.

2.2. CP-nets

Soft constraints are the main tool for representing and reasoning about preferences in con-

straint satisfaction problems. However, they require specifying a numeric semi-ring value

for each variable assignment in each constraint. In many applications, it is more natural for

users to express preferences via generic qualitative (usually partial) preference relations over

variable assignments. For example, it is often more intuitive for the user to state “I prefer red

wine to white wine”, rather than “Red wine has preference 0.7 and white wine has prefer-

ence 0.4” (with the assumption that a higher preference value expresses higher desirability).

Although the former statement provides us with less information, it does not require careful
selection of preference values for (possibly partial) variable assignments as required in soft

constraints.

CP-nets (Boutilier et al., 1999, 2004) (that is, Conditional Preference nets) are a graphical

model for representation and reasoning about certain sets of qualitative preference statements,

interpreted under the ceteris paribus (cp) assumption. For instance, under the ceteris paribus

interpretation, the statement “I prefer red wine to white wine if meat is served” asserts that,

given two meals that differ only in the kind of wine served and both containing meat, the meal

with a red wine is preferred to the meal with a white wine. Observe that this interpretation

corresponds to a “least committing” interpretation of the information provided by the user,

and many philosophers (see (Hansson, 2001) for an overview) and AI researchers (Doyle and

Wellman, 1994) have argued on behalf of adopting this interpretation scheme. To emphasize

the ceteris paribus interpretation, such statements are usually called cp-statements.

Informally, each CP-net compactly captures the preference relation induced by a set

of such (possibly conditional) cp-statements. Structurally, CP-nets bear some similarity

to Bayesian networks, as both utilize directed graphs where each node stands for a do-

main variable, and assume a set of features F = {X1, . . . , Xn} with finite, discrete domains

D(X1), . . . ,D(Xn) (these play the same role as variables in soft constraints). Yet another

similarity between CP-nets and Bayesian networks is that graphical structure in both models

relies on a certain notion of independence between the variables: Bayesian networks utilize

the notion of probabilistic independence, while CP-nets utilize the notion of preferential

independence.
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a > a

A

B

C

Pa(C)       C
a /\ b      c  > c
a /\ b      c  > c
a /\ b      c  > c
a /\ b      c  > c

D

Pa(D)       D

c        d > d

c        d > d

b > b

Fig. 1 A CP-net

During preference elicitation, for each feature Xi the user is asked to specify a set of

parent features Pa(Xi ), the values of which affect her preferences over the values of Xi . This

information is used to create the directed dependency graph of the CP-net in which each node

Xi has Pa(Xi ) as its immediate predecessors. Given this structural information, the user is

asked to explicitly specify her preference over the values of Xi for each complete assignment
on Pa(Xi ), and this preference is assumed to take the form of a total (Boutilier et al., 1999)

or partial (Boutilier et al., 2004) order over D(X ). These conditional preferences over the

values of Xi are captured by a conditional preference table CPT(Xi ) which is annotated with

the node Xi in the CP-net. To illustrate the CP-nets model, consider a CP-net in Figure 1.

Here, statement a 
 a represents the unconditional preference of the user for A = a over

A = a, while statement c : d 
 d represents that the user prefers D = d to D = d, given

that C = c.

The semantics of CP-nets depends on the notion of a worsening flip. A worsening flip is

a change in the value of a single feature to a value which is less preferred according to a

cp-statement for that feature. For example, in the CP-net in Figure 1, “moving” from abcd
to abcd is a legitimate worsening flip since, according to CPT(C), c is preferred to c given

a and b. We say that an outcome, that is, a complete assignment of the features in their

domains, α is better than (or preferred to) an outcome β, written α 
 β, if and only if there

is a chain of worsening flips from α to β. This definition induces a strict preorder over the

outcomes, which defines the so-called induced graph, where nodes represent outcomes and

directed arcs represent worsening flips.1 An outcome is optimal if it is undominated in this

preorder.

From the point of view of reasoning about preferences, several types of query can

be asked about CP-nets. First, given a CP-net N one might be interested in finding an

optimal assignment to the features of N . For acyclic CP-nets, such a query is answer-

able in linear time (Boutilier et al., 1999), while the complexity of this query for cyclic

CP-nets has been left as an open problem. Second, given a CP-net N and a pair of

complete assignments α and β, one might be interested in determining whether N im-

plies α 
 β, i.e. α is preferred to β. Though some tractable special cases of this query

do exist (Boutilier et al., 2004), the general problem is known to be NP-hard even for

acyclic CP-nets (Domshlak and Brafman, 2002), and PSPACE-complete for cyclic CP-nets

(Goldsmith et al., 2005).

1 For the formally precise semantics of CP-nets we refer the reader to (Boutilier et al., 2004).
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3. Eligibility of cp-statements

Given a set of preference cp-statements � extracted from a user, we might be interested

in testing the consistency of the preference relation induced by these statements. In this

section we provide some complexity results for this reasoning task, and show how it can be

accomplished by solving a set of hard constraints.

In general, there is no single notion of preferential consistency (Hansson, 2001).

In (Boutilier et al., 2004), a CP-net N is considered to be consistent if and only if the

preorder 
 induced by N is asymmetric, that is, there exists at least one total ordering of the

outcomes consistent with 
. In many situations, however, one can ignore cycles in the pref-

erence relation, as long as these do not prevent the user making a rational choice, that is, there

exist an outcome that is not dominated by any other outcome with respect to 
 (Hansson,

2001). Here we consider the second approach and say that a CP-net is eligible if it induces

at least one undominated outcome. Likewise, in what follows we will use the same notions

of asymmetry and eligibility for sets of cp-statements that are not representable by CP-nets.

For instance, such a situation occurs when there exists a feature X , such that the assignments

to its parents in the preference statements over the values of X are not mutually exclusive.

When a set of cp-statements � defines an acyclic CP-net, the preorder induced by � is

guaranteed to be asymmetric (Boutilier et al., 2004). For cyclic CP-nets, however, asymmetry

is no longer guaranteed. In the more general case, we are given a set � of conditional prefer-

ence statements without any guarantee that they define a CP-net. Formally, we will consider

cp-statements of the form X1 = v1 ∧ . . . ∧ Xk = vk : Y = w1 
 . . . 
 Y = vl , which will

sometimes be written without the names of the variables if they are not significant.

Let the dependency graph of such a set � of cp-statements be defined similarly to the

graph of a CP-net: the nodes stand for problem features, and a directed arc goes from Xi to

X j iff � contains a statement expressing preference on the values of X j conditioned on the

value of Xi .

For example, the set � = {a : b 
 b, a ∧ c : b 
 b} does not induce a CP-net (the two

conditionals are not mutually exclusive), and the preference relation induced by � is not

asymmetric, despite the fact that the dependency graph of � is acyclic. Another example

of a set of cp-statements which does not represent a CP-net, but is eligible, can be seen in

Figure 2. As can be seen in the figure, the induced ordering is not asymmetric since there is

a cycle in the induced preference graph. Nevertheless, this order contains an undominated

outcome abc.

Given such a set of cp-statements, and assuming that the true preferences of the user

are asymmetric, one can try to continue questioning the user, attempting to eliminate the

detected cyclic preferences. However, even ignoring the fact that detecting asymmetry can

be hard in general, long interactions with the user (for example in online configuration tasks)

should be avoided as far as possible. In fact, given such an eligible set of statements, it is

often sufficient to prompt the user with one of the undominated assignments without further

refining the available preference information. Hence, testing preferences for eligibility and

identifying undominated outcomes is a practically important reasoning task.

3.1. Testing eligibility is NP-complete

We begin with showing in Theorem 1 that determining eligibility of a set of cp-statements is in

general NP-complete. In contrast, note that determining asymmetry of the preference relation

even for CP-nets has been recently shown to be PSPACE-complete (Goldsmith et al., 2005).
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(a) Dependence
         Graph          Graph

(b) Induced

Fig. 2 The dependency graph of a set of cp statements and the induced graph

Theorem 1. ELIGIBILITY of a set of conditional preference statements � is NP-complete.

Proof: Membership in NP is straightforward, as an assignment is a polynomial-size witness

that can be checked for non-dominance in time linear in the size of �. To show hardness,

we reduce 3-SAT to our problem: given a 3-cnf formula F , for each clause (x ∨ y ∨ z) ∈ F
we construct the conditional preference statement: x ∧ y : z 
 z. This set of conditional

preferences is eligible iff the original original formula F is satisfiable. In fact, in any satisfying

assignment of the original 3-cnf formula, at least one of x , y, and z is true. If x or y are

true, then the condition of the conditional preference statement is not satisfied and thus the

statement is true. If x and y are both false, then z is true, which satisfies the conditional

preference statement as this is the most preferred value. Hence, any model of the original

3-cnf formula is an optimal assignment of the set of statements. The argument reverses: any

optimal assignment is also a model. �

3.2. Hard constraints to test for eligibility

Next we show that the problem of testing a set of cp-statements for eligibility can be translated

into a hard constraint satisfaction problem. In fact, the latter formulation of the problem using

hard constraints also allows us to find the actual undominated outcomes.

Definition 1 (Optimality constraints). Given a set of cp-statements �, the optimality con-

straint corresponding to the statement

〈ϕ : (X = x1) 
 (X = x2) 
 . . . 
 (X = xi )〉 ∈ �

is

ϕ → (X = x1).
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In general, suppose thatϕ induces a strict partial preference ordering overD(X ) withDϕ(X ) ⊆
D(X ) being the set of all most preferred (i.e., undominated) values of X given ϕ. Then the

optimality constraint corresponding to this statement is:

ϕ →
∨

x j ∈Dϕ (X )

(X = x j )

The optimality constraints opt (�) corresponding to the entire set � is the union of the

optimality constraints corresponding to all the cp-statements in �.

For example, the cp-statements a 
 a and (a ∧ b) : c 
 c are translated to the optimality

constraints a and (a ∧ b) → c, respectively. Since in this example the features are Boolean,

for each cp-statement there is just one corresponding optimality constraint.

Theorem 2. An outcome is optimal in the ordering induced by a set of cp-statements � iff
it is a satisfying assignment for opt(�).

Proof: Assume first that there is at least one optimal outcome α with respect to �, and

suppose that this outcome does not satisfy opt(�). If so, then there exists at least one optimality

constraint

ϕ →
∨

x j ∈Dϕ (X )

X = x j

that is not satisfied by α. An implication is unsatisfied only when the hypothesis is true and

the conclusion is false. That is, ϕ holds, yet for all x j∈Dϕ (X ), X = x j does not hold. Hence X
must be assigned by α to a value from D(X ) \ Dϕ(X ), that is, to one of the dominated values

of X given ϕ. Flipping the value of X in α to any x j ∈ Dϕ(X ) will then be an improving

flip for this conditional preference, contradicting the fact that α is optimal. Hence all the

optimality constraints in opt(�) must be satisfied by all the outcomes being optimal with

respect to �. The proof in the other direction is similar as it is based on exactly the same

arguments. �

Corollary 1. A CP-net N is eligible iff opt(�) is consistent.

Proof: Follows directly from Theorem 2. �

In particular, Theorem 2 provides us with the first general method and complexity bound

for finding optimal outcomes with respect to cyclic CP-nets. We note that a similar technique

restricted to Boolean features has been independently proposed in (Brafman and Dimopoulos,

2004), and it can be seen as a special case of our proposal for general, multi-valued CP-nets.

Notice that the optimality constraints cannot simply be added to other hard constraints,

since this would preserve only feasible solutions that are undominated in the CP-net. However,

if there are no solutions with these features, then then there could still be solutions which are

feasible and undominated by other feasible solutions in CP-net, which would not be found.

Thus the optimality constraints can also be used in unconstrained CP-nets. On the contrary,

the approximation technique we will describe in Section 5 can handle also such situations.

Exact techniques to deal with both CP-nets and hard constraints can be found in (Prestwich

et al., 2005; Boutilier et al., 2004).
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3.3. Tractable cases

While testing eligibility is hard in general, Theorem 3 presents a wide class of statement sets

that can be tested for eligibility in polynomial time.

Theorem 3. A set of conditional preference statements � can be tested for eligibility in
polynomial time if the dependency graph of � is acyclic and its node in-degree bounded by
a constant.

Proof: The proof is constructive, and the algorithm is as follows: First, for each feature

X ∈ F, we construct a table TX with an entry for each assignment π ∈ D(Pa(X )), where each

entry TX [π ] contains all the values of X that are not dominated given � and π . Subsequently,

we remove all the empty entries. For example, let A, B and C be a set of Boolean problem

features, and let � = {c 
 c, a : b 
 b, a ∧ c : b 
 b}. The corresponding table will be as

follows:

Feature π Values

TA ∅ {a, a}
TC ∅ {c}
TB a ∧ c {b}

a ∧ c {b, b}
a ∧ c {b, b}

Observe that the entry TB[a ∧ c] has been removed, since, given a ∧ c, b and b are

dominated according to the statements a ∧ c : b > b and a : b > b, respectively. Since the

in-degree of each node X in the dependency graph of � is bounded by a constant k (i.e.

|Pa(X )| ≤ k), these tables take space and can be constructed in time O(n2k). Given such

tables for all the features in F, we traverse the dependency graph of � in a topological order

of its nodes, and for each node X being processed we remove all the entries in TX that are

not “supported” by (already processed) Pa(X ): an entry TX [π ] is not supported by Pa(X )

if there exists a feature Y ∈ Pa(X ) such that the value provided by π to Y appears in no

entry of TY . For instance, in our example, the rows corresponding to a ∧ c and a ∧ c will be

removed, since c does not appear in the (already processed) table of C . Now, if the processing

of a feature X results in TX = ∅, then � is not satisfiable. Otherwise, any assignment to F
consistent with the processed tables will be undominated with respect to �. �

Note that, for sets of preference statements with cyclic dependency graphs, ELIGIBILITY

remains hard even if the in-degree of each node is bounded by k ≥ 6, since 3-SAT remains

hard even if each variable participates in at most three clauses of the formula in the proof of

Theorem 1 (Garey and Johnson, 1978). However, when at most one condition is allowed in

each preference statement, and the features are Boolean, then ELIGIBILITY can be reduced to

2-SAT, and thus tested in polynomial time.

4. Comparing soft constraints and CP-nets

The last section showed that hard constraints are sufficient if we are interested only in the

undominated outcomes of a set of cp statements. We will now consider the case where we

are also interested in the induced ordering. We will show that in this respect CP-nets and
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constraints (hard or soft) are incomparable formalisms. More precisely, we will compare

the expressive power of soft constraints and CP-nets with respect to the induced ordering.

Consider the following definition of equivalence.

Definition 2 (equivalence). Consider a CP-net N and soft constraint problem P defined on

the same set of variables V . P and N are equivalent if and only if they induce they same

ordering on the set of assignments of the variables in V .

For consistent CP-nets, it is always possible to find an equivalent SCSP, since consistent

CP-nets induce a partial order and SCSPs can model any partial order over the solutions.

Theorem 4. Consider a consistent CP-net. Then there exists an equivalent SCSP.

Proof: If the CP-net is consistent, it induces a partial order O over the outcomes. Then we

consider a lattice containing a partial order O ′ of preferences which is isomorphic to O . We

then build an SCSP with one variable and as many values in its domain as the number of

outcomes of the CP-net, and we add a unary constraint over this variable, which associates

to each value in the domain the corresponding preference in the partial order O ′. �

However, the converse is not true, since CP-nets cannot induce an arbitrary partial order.

We will now show that there are CP-nets from which it is not possible to build an equivalent

SCSP, and vice-versa. In other words, the two formalisms are incomparable with respect to

the above notion of equivalence.

Theorem 5. There are CP-nets for which it is not possible to build an equivalent SCSP.
Conversely, there are SCSPs for which it is not possible to build an equivalent CP-net.

Proof: To see that there are CP-nets for which it is not possible to build an equivalent SCSP, it

is enough to consider any CP-net whose induced ordering is a preorder but not a partial order.

The CP-net of Figure 3, whose induced ordering can be seen in Figure 4, is one example.

To see that there are SCSPs for which it is not possible to build an equivalent CP-net, it is

sufficient to consider a fuzzy SCSP with three binary-valued variables A, B and C , and the

following soft constraints:

B C

Pa(A)         A
c              a > a

Pa(C)         C
b              c > c

A

b              c > c

c              a > a

Pa(B)         B
a  /\  c      b > b

a  /\  c      b > b

a  /\  c      b > b

a  /\  c      b > b

Fig. 3 A CP-net
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a b c

a b c

a b c a b c

a b c
a b c

a b c

a b c

Fig. 4 The induced ordering of
the CP-net in Figure 3

– a constraint connecting all three variables, and stating that abc has preference 0.9, abc has

preference 0.8, abc has preference 0.7, and all other assignments have preference 1;

– a constraint over variables A and B such that ab has preference 0.9 and all other assignments

have preference 1.

The induced ordering is total and has abc with preference 0.8, abc with preference 0.7, and

all other assignments are above in the ordering (they have preference 0.9 or 1). Let us now

assume that there is an equivalent CP-net, that is a CP-net with this ordering as induced

ordering. Then there must be a worsening path from abc to abc. However, since the two

assignments differ for more than one flip, this is possible only if there is at least another

assignment which is strictly worse than abc and strictly better than abc. This is not true

given the ordering, so there cannot be such a CP-net. �

One could say that preorders and partial orders do not really encode different information,

because any preorder can be directly mapped onto a partial order simply by transforming

each cycle into tied elements of the partial order. Thus we could consider a more tolerant

notion of equivalence, where a CP-net inducing a preorder O and an SCSP inducing a partial

order O’ are considered equivalent if O ′ can be obtained from O as stated above. Let us call

this notion pre-equivalence.

It may appear that if we allow this notion of equivalence then the SCSP framework is

more expressive than CP-nets. In fact, SCSPs can induce any partial order, while (as noted

in the proof of the above theorem) CP-nets do not. But this is true only if we allow for

exponential-time mappings from CP-nets to SCSPs. If we restrict ourselves to polynomial

time mappings then the following theorem holds (Meseguer et al., 2004).

Theorem 6. Assuming P �= N P, there are CP-nets for which it is not possible to build in
polynomial time a pre-equivalent SCSP, and there are SCSPs for which it is not possible to
build an pre-equivalent CP-net.

Proof: Assume that, for all CP-nets, it is possible to build in polynomial time a pre-equivalent

SCSP. Then, dominance testing in the given CP-net would become a polynomial problem

since it would be sufficient to map in polynomial time the CP-net into the SCSP and then

to perform the dominance test in the SCSP, which can be done in polynomial time. Since
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dominance testing in CP-nets is known to be NP-hard (Boutilier et al., 2004), this would

contradict the hypothesis that P �= NP. The other direction of the theorem follows directly

from Theorem 5. In fact, in this direction we never start from a preorder but always from a

partial or total order. �

We have just proved that CP-nets and soft constraints are incomparable with respect to

the induced ordering. This means that, if we want the soft constraint machinery to reason

about CP-net preferences efficiently, in general we must approximate the ordering of the

given CP-net. In the next section we will propose two such approximations.

5. Approximating acyclic CP-nets with soft constraints

In addition to testing consistency and determining preferentially optimal outcomes, we may

be interested in the preferential comparison of two outcomes. Comparison is essential in

preference-based optimization when faced with hard constraints on the variables, and for

sorting a predefined set of outcomes (e.g., the content of a database relation). Unfortunately,

determining dominance between a pair of outcomes with respect to a set of qualitative prefer-

ential statements under the ceteris paribus assumption is PSPACE-complete in general (Lang,

2002), and is NP-hard even for acyclic CP-nets (Boutilier et al., 2004).

However, given a set � of preference statements, instead of using a preference relation 

induced by � one can use an approximation � of 
, achieving tractability of comparison

while sacrificing precision to some degree. Clearly, different approximations � of 
 are

not equally good, as they can be characterized by their precision with respect to 
, the time

complexity of generating �, and the time complexity of comparing outcomes with respect

to �. In addition, it is vital that � faithfully extends 
 (i.e. α 
 β should entail α � β).

We call this property order preserving.

Definition 3 (order preserving). Consider any set S, and an ordering 
 defined on the ele-

ments of S. An approximation of 
, �, is order preserving if and only if ∀α, β ∈ S α 
 β

⇒ α � β.

Another desirable property of approximations is that of preserving the ceteris paribus
property.

Definition 4 (cp-condition). Consider a set of ceteris paribus statements defined on a set of

attributes {X1, . . . , Xn} and let � be the corresponding space of outcomes, with induced

ordering 
. An approximation of 
, �, is ceteris paribus preserving if for each variable

Xi ∈ N , each assignment u to Pa(X ), and each pair of values x1, x2 ∈ D(X ), if the CP-

net specifies that u : x1 
 x2, then we have x1uy � x2uy, for all assignments y of Y =
V − {{X} ∪ Pa(X )}.

Here we study approximating CP-nets via soft constraints (SCSPs). This allows us to use

the rich machinery underlying SCSPs to answer comparison queries in linear time. Moreover,

it provides us with a uniform framework for combining user preferences with both hard

and soft constraints. Given an acyclic CP-net, we construct a corresponding SCSP in two

steps. First we build a constraint graph, which we call the SC-net. Second, we compute the

preferences and weights for the constraints in the SC-net. This computation depends on the

actual semi-ring framework being used. Here we present and discuss two alternative semi-ring
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Fig. 5 Algorithm CPnetToSCSP given a CP-net as input produces a generic SCSP as output

frameworks, based on min+ and SLO (Soft constraint Lexicographic Ordering) semi-rings.

In both cases, our computation of preferences and weights ensures order preserving and

satisfies the cp-condition.

Figure 5 shows the pseudocode of algorithm CPnetToSCSP. Given a CP-net N (line 1), the

corresponding SC-net Nc has two types of node. First, each feature X ∈ N is represented in

Nc by a node VX that stands for a SCSP variable with D(VX ) = D(X ) (lines 3-4). Second, for

each feature X ∈ N , such that |Pa(X )| ≥ 2, we have a node VPa(X ) ∈ Nc, with D(VPa(X )) =
�Y∈Pa(X )D(Y ) (lines 5-6) (notice that � stands for Cartesian product). Edges in Nc correspond

to hard and soft constraints, where the latter are annotated with weights. Notice that in

the SCSP framework weights on constraints are not allowed. The weights we impose here

are merely a working tool for ensuring that the preferences on soft constraints will satisfy

order preserving and the cp-condition (see Theorem 7). Once the semiring is chosen, the

weights will be combined (not necessarily using the semiring multiplicative operator) with

initial preferences, allowing us to obtain the final preferences in the SCSP (see the following

paragraph). Each node VX corresponding to an “independent feature” X ∈ N has an incoming

(source-less) soft constraint edge (line 8). For each node VX corresponding to a “single-

parent” feature X ∈ N with Pa(X ) = {Y }, we have a soft constraint edge between X and Y
(line 9). Finally, for each node VX such that |Pa(X )| ≥ 2, we have (i) hard constraint edges

between VPa(X ) and each Y ∈ Pa(X ) to ensure consistency, and (ii) a soft constraint edge

between VPa(X ) and VX (lines 10-12). The output is a generic (i.e. not instantiated to any

semiring) SCSP Nc.

To assign preferences to variable assignments in each soft constraint, each soft constraint

c (between VPa(X ) and VX ) is associated with two items: wc, a real number which can be

interpreted as a weight (defined in the next section), and Pc = {p1, . . . , p|D(VX )|}, a set of

reals which can be interpreted as “quantitative levels of preference”. We will see in the next

section how to generate the preference for each assignment to the variables of c, depending

on the chosen semiring. In any case, each preference will be obtained by combining (via

multiplication over reals) the weight of the constraint wc and one of the elements of Pc. If

Pc = {p1, . . . , pn}, then such preferences will be denoted by p′
1, . . . , p′

n .

As an example let us consider the SC-net Nc shown in Figure 6, obtained by applying

CPnetToSCSP to the CP-net in Figure 1. As may be seen, there is a variable for every feature of

N : VA, VB , VC , and VD . Since the features in N are binary-valued, so are the corresponding
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Fig. 6 The SCSP corresponding to the SC-net of Figure 1

variables in Nc. In addition there is variable VA,B for the parents of C , which is the only

feature in N with more than one parent, and its domain is D(A) × D(B). Features A and

B in N are independent (i.e. Pa(A) = Pa(B) = ∅. This means that the preference on their

values do not depend on any assignment to other variables. Thus, a unary soft constraint is

defined over their corresponding variables in Nc, assigning to each value of their domain

a preference. If instead we consider feature C , the preferences on its domain depend on

the assignments of its parents A and B. Thus in Nc there is a soft constraint between the

variable representing the parents, VA,B , and VC , that assigns to each possible triple of values

vAvBvC its preference. However, additional hard constraints are needed between variables

VA and VB and VA,B . Their role is to ensure that if VA is assigned a value, e.g. a, and VB is

assigned another value, e.g. b̄, then VA,B can only be assigned pair (a, b̄). Finally there is a

soft constraint between variable VD and its only parent VC assigning preferences to tuples

vCvD . Each soft constraint has an additional weight attached to it, the meaning of which will

become clear below.

5.1. Weighted soft constraints

The first approximation we propose applies in scenarios where soft constraints are used

to model cost (or penalty) minimization. We will generate a weighted SCSP, based on the

min+ semi-ring SWC S P = 〈R+, min, +, +∞, 0〉. We assign preferences using real positive

numbers (or penalties) and prefer assignments with smaller total penalty (i.e. the sum of

all local penalties). In a soft constraint c on VPa(X ) and VX there are |D(VX )| penalties.

Without loss of generality we assume that they range between 0 and |D(VX )| − 1, that is

p1 = 0, . . . , pD(VX )| = |D(VX )| − 1. In our example, since all variables are binary there are

only two penalties, i.e. p1 = 0 and p2 = 1, in all the constraints.

We ensure that the cp-condition is satisfied in a similar way to that proposed in (Boutilier

et al., 2001) in the context of UCP-nets. For now we just say that UCP-nets are also a

quantitative approximation of CP-nets in a max + scenario, that is for maximizing the sum

of utilities. To ensure the cp-condition, we will impose that each variable dominates its

children. We rewrite this property, defined in (Boutilier et al., 2001), in our context.
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Definition 5. Consider a CP-net N and the corresponding SCSP Nc, obtained applying

CPnetToSCSP to N . Consider variable VX and VPa(X )in Nc and let Y be the variables in

V − {X ∪ Pa(X )} in N . Denote the children of X by B = {VB1
, · · · , VBh }. VX dominates

its children if and only if for any two values x1, x2 ∈ D(X ) such that x1u 
 x2u, then for any

assignment y to B,

p′((x1uy
)
|c ) − p′((x2uy

)
|c ) <

∑
ti ∈T

p′((x1uy)|ti
) −

∑
ti ∈T

p′((x2uy)|ti
)

where S is the set of soft constraints of Nc and notation (x1uy)|s stands for the projection on

the outcome on constraint s, constraint c is that on VPa(X ) and VX , and constraints ti ∈ T are

on VPa(Bi ) and VBi such that X ∈ Pa(Bi ).

We will show that, as in (Boutilier et al., 2001), this property is sufficient for the cp-

condition (Theorem 7). First we describe an algorithm which sets the weights on NC in such

a way that every variable will dominate its children. This is achieved by setting the minimum

penalty on a variable to be greater than the sum of the maximum penalties of the children.

In Figure 7 we show the pseudocode for algorithm Min+weights that computes such weights.

In this code, w(VX ) represents the weight of the soft constraint c between VPa(X ) and VX . As

shown by Figure 7 the algorithm considers the features of N in reverse topological order.

Hence a successor of X in Min+weights is a parent of X in N . When it considers a feature X
it sets the weight of the soft constraint (which by construction is single) defined on VX and

VPa(X ) in Nc. The value assigned is found by multiplying the weight of the corresponding

constraints for all the children of X in N (which is known due to the reverse topological

order) by the corresponding size of the domains, and summing the quantities obtained.

Considering the example in Figure 6, let {D, C, B, A} be the reverse topological ordering

obtained in line 2. Then the first soft constraint to be processed is the one between VC and

VD . Since D has no children in N , in line 5 we assign w(VD) to 1. Next, we process the

soft constraint between VA,B and VC : VD is the only child of VC , hence w(VC ) = w(VD) ×
D(VD) = 1 × 2 = 2. Subsequently, since VC is the only child of both VA and VB , we assign

w(VA) = w(VB) = w(VC ) × |D(VC )| = 2 × 2 = 4. Now, consider two outcomes o1 = abcd
and o2 = ab̄cd. The total penalty of o1 is (w(VA) × p1) + (w(VB) × p1) + (w(VC ) × p1) +
(w(VD) × p1) = 0, since p1 = 0, while the total penalty of o2 is (w(VA) × p1) + (w(VB) ×
p2) + (w(VC ) × p2) + (w(VD) × p1) = (4 × 1) + (2 × 1) = 6 since p2 = 1. Therefore, we

can conclude that o1 is better than o2 since min(0, 6) = 0. Figure 8 shows the result of

applying Min+weights and the final SCSP defined of semiring SWC S P .

Fig. 7 Algorithm Min+weights
computes weights on constraints
when the semiring is SWC S P
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Fig. 8 The SC-net obtained by
applying Min+weights to the
CP-net in Figure 1 (part a) and
the corresponding weighted
SCSP (part b)

We now prove that our algorithm for weight computation ensures the cp-condition on the

resulting set of soft constraints, and this also implies preserving the ordering information

with respect to the original CP-net.

Theorem 7. The SC-net based weighted SCSP Nc, generated from an acyclic CP-net N , is
an approximation of N which satisfies the cp-condition and is order preserving, i.e. for each
pair of outcomes α, β we have α 
 β ⇒ α >min+ β.

Proof: Due to the CP-net semantics it is enough to show that, for each variable X ∈ N , each

assignment u on Pa(X ), and each pair of values x1, x2 ∈ D(X ), if CP-net specifies that u :

x1 
 x2, then we have x1uy >min+ x2uy, for all assignments y on Y = V − {{X} ∪ Pa(X )}.
By definition, x1uy >min+ x2uy if and only if∑

s∈S

p′((x1uy)|s
)

<
∑
s∈S

p′((x2uy)|s
)
,

where S is the set of soft constraints of Nc and notation (x1uy)|s stands for the projection on

the outcome on constraint s. The constraints on which x1uy differs from x2uy are: constraint
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c on VPa(X ) and VX , and all the constraints ti ∈ T on VPa(Bi ) and VBi such that X ∈ Pa(Bi ) (in

what follows, we denote the children of X by B = {VB1
, · · · , VBh }). Thus, we can rewrite the

above inequality as

p′((x1uy)|c
) +

∑
ti ∈T

p′((x1uy)|ti
)

< p′((x2uy)|c
) +

∑
ti ∈T

p′((x2uy)|ti
)

By construction of Nc we have

p′(πc(x1uy)|c
) = wc × p(x1u) < p′((x2uy)|c

) = wc × p(x2u)

and thus x1uy >min+ x2uy if and only if

wc p(x2u) − wc p(x1u) >
∑
ti ∈T

p′((x1uy)|ti
) −

∑
ti ∈T

p′((x2uy)|ti
)

In particular, this will hold if

wc(minx,x ′∈D(X )|p(xu) − p(x ′u)|) >
∑
ti ∈T

wti (maxx,x ′,z,b|p(x ′zb) − p(xzb)|)

where z is the assignment to all parents of B other than X . Observe that the maximum value

of the right term is obtained when p(x ′zb) = |D(B)| − 1 and p(xzb) = 0. On the other hand,

minx,x ′∈D(X )|p(x ′u) − p(xu)| = 1. In other words wc >
∑

ti ∈T wti (|D(Bi )| − 1) must hold.

But this is ensured by the algorithm, setting (in line 7) wc = ∑
ti ∈T wti (|D(Bi )|. �

We will now prove that the complexity of the mapping we propose is polynomial in the

size of the CP-nets which is the number of its features.

Theorem 8 (complexity). Given an acyclic CP-net N with the node in-degree bounded
by a constant, the construction of the corresponding SC-net based weighted SCSP Nc is
polynomial in the size of N .

Proof: If the CP-net has n nodes then the number of vertices V of the derived SC-net is

at most 2n. In fact, in the SC-net a node representing a feature appears at most once and

there is at most one node representing its parents. If the number of edges of the CP-net is e,

then the number of edges E in the SC-net (including hard and soft edges) is at most e + n,

since each edge in the CP-net corresponds to at most one constraint, and each feature in the

CP-net generates at most one new soft constraints. A topological sort can be performed in

O(V + E), that is, O(2n + e + n) = O(e + n). Then for each node, that is O(V ) times, at

most V children must be checked to compute the new weight value, leading to a number of

checks which is O(V 2) = O(n2). Each check involves checking a number of assignments

which is exponential in the number of parents of a node. Since we assume that the number of

parents of a node is limited by a constant, this exponential is still a constant. Thus the total

time complexity is O(V 2) (or O(n2) if we consider the size of the CP-net). �

Let us compare in more detail the original preference relation induced by the CP-net

and that induced by its min+ semi-ring based SC-net. The comparison is summarized in the

following table, where ∼ denotes incomparability.

Springer



280 J Heuristics (2006) 12: 263–285

CP-nets ⇒ min+

≺ <


 >

∼ <, >, =
By Theorem 7 we know that the pairs that are ordered in some way by 
 remain ordered

in the same way by >min+. In the following corollary we prove that whatever pair is equally

ranked by min+ cannot be (strictly) ordered in the CP-net semantics.

Corollary 2. Given a CP-net N and its corresponding SCSP Nc with underlying semiring
SWC S P , if two outcomes o1, o2 ∈ O are such that o1 =min+ o2 then either o1 = o2, that is
they are the same outcome, or o1 ∼ o2 in the CP-net.

Proof: Assume, for the sake of contradiction that o1 
 o2. Then by Theorem 7 it must be

that o1 >min+ o2. But this contradicts the hypothesis that o1 =min+ o2. �

Thus, we have proved the first two implications of the above table.

Clearly, what is incomparable in the CP-net semantics is ordered in min+ since the or-

dering induced is total. If we consider our example (Figures 1 and 8) outcome o1 = ab̄cd is

incomparable to outcome o2 = ābcd. However since they both have penalty 6, o1 =min+ o2.

This is an example of a pair of outcomes that are incomparable in the CP-net ordering and

become equally ranked in min+. Instead, outcomes o3 = abc̄d and o4 = ābc̄d̄ are incompa-

rable in the CP-net but are ordered by min+. In fact, o3 >min+ o4 since the cost associated to

o3 is 3 while that associated to o4 is 4. These examples, together with Theorem 7, prove the

last implication of the table.

In summary, by mapping a CP-net into a weighted SCSP we linearize the ordering of the

CP-net, which can be a partial order or even a preorder. In other words, we are deciding an

ordering on pairs of outcomes that the CP-net regarded as incomparable. On the other hand,

the gain in tractability is considerable. In fact, preferential comparison is now achievable in

linear time in the number of constraints, which are the same in number as the original cp

statements of the CP-net: given any two outcomes, it is sufficient to compute their penalties

and then compare them.

5.2. SLO soft constraints

We now consider a different semi-ring to approximate CP-nets via soft constraints. The SLO

c-semi-ring is defined as follows: SSL O = 〈A, maxs, mins,MAX,0〉, where A is the set of

sequences of n integers from 0 to MAX, MAX is the sequence of n elements all equal to

MAX, and 0 is the sequence of n elements all equal to 0. The additive operator, maxs and

the multiplicative operator, mins are defined as follows: given s = s1 · · · sn and t = t1 · · · tn ,

si = ti , i = 1 ≤ k and sk+1 �= tk+1, then maxs(s, t) = s if sk+1 
 tk+1 else maxs(s, t) = t ;
on the contrary, mins(s, t) = s if sk+1 ≺ tk+1 else mins(s, t) = t . In the following theorem

we prove that the algebraic structure defined above is a c-semiring.

Theorem 9. SSL O = 〈A, maxs, mins, MAX,0〉 is a c-semiring.

Proof: The result of applying maxs to two sequences of A is uniquely determined by the

result of applying max on the values contained in the first component on which the two

sequences differ. This allow us to derive the that maxs is commutative, associative and

Springer



J Heuristics (2006) 12: 263–285 281

V
A

B
V

V
A , B VC VD

b(a, a  )

a a(  ,   b)

a ab(  ,     ) 

(a, ab)

a

a ... (1111)

... (0111)

b

b ... (1111)

... (1011) b ba(  ,     ) 

b ba(  ,     ) 

ab(  ,   b)

(  ,   b)b a

ab

ab c

c

a  b(    ,(    ,(    , c

b c

b(    ,  a c 

c

(    , c

(ab, c) ... (1111)

(ab,   ) ... (1101)

 ) ... (1111)

 (    ,

ab(    ,

a(    ,

 ) ... (1101)

 ) ... (1111)

 ) ... (1101)

 ) ... (1111)

 ) ... (1101)

c

dc

d

( d   ,

(   ,

(c,

(c,d) ... (1111)

) ... (1110)

   ) ... (1111)

   ) ... (1110)

Fig. 9 The SLO SCSP for the
SC-net of Figure 6

idempotent since max satisfies all these properties on the set of integers. It is also easy to see

that the 0 is the unit element of maxs , since being defined as the string of n elements all equal

to 0, given any other string s = s1 · · · sn since si ∈ [0,MAX], si ≤ 0 ∀i . The same reasoning

can be applied to mins , since its result is uniquely defined by that of min. Thus, mins is

associative and commutative. Moreover, 0 is the absorbing element of mins since, as said

before, all other strings contain all elements which greater or equal to 0. Since we know that

for any string s = s1 · · · sn , si ∈ [0,MAX], then applying mins to s and MAX will always

returns s as a result, thus MAX is the unit element of mins . For the same reason MAX is

the absorbing element of maxs . Finally, we have that mins distributes over maxs since min
distributes over max . �

The ordering induced by maxs on A is a lexicographic ordering (Fargier et al., 1993).

To model a CP-net as a soft constraint problem based on SSL O , we set MAX equal to the

cardinality of the largest domain - 1, and n equal to the number of soft constraints of the

SC net. All the weights of the edges are set to 1. Considering the binary soft constraint

on Pa(X ) = {U1 . . . Uh} and X , a tuple of assignments (u1, . . . , uh, x) will be assigned, as

preference, the sequence of n integers: (M AX, M AX, . . . , M AX − i + 1, . . . , M AX ). In

this sequence, each element corresponds to a soft constraint. The element corresponding to

the constraint on Pa(X ) and X is M AX − i + 1, where i is the distance from the top of the

total order of the value x (i.e. we have a preference statement of the form u : x1 
 x2 

. . . xi = x 
 x|D(X )|).

In the SC-net shown in Figure 6, all the preferences are lists of four integers (0 and

1), where position i corresponds to constraint with weight wi . For example, in constraint

weighted w3, p1 = (1, 1, 1, 1) and p2 = (1, 1, 0, 1). The resulting SLO SCSP is shown in

Figure 9.

Given the pair of outcomes o1 = abcd and o2 = ab̄cd , the global preference associated

with o1 is (1, 1, 1, 1), since it does not violate any constraint, while the preference associ-

ated with o2 is minS{(1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 1)} = (1, 0, 1, 1). We can

conclude that o1 is better than o2.

In the following theorem we prove that the SLO model both preserves the order information

and ensures the cp-condition.

Theorem 10. The SC-net based SLO SCSP Nc, generated from an acyclic CP-net N , is an
approximation of N which respects the cp-condition and is order preserving.
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Proof: It is enough to prove that >SL O satisfies the cp-condition, that is, for each variable

X ∈ N , each assignment u on Pa(X ), and each pair of values x1, x2 ∈ D(X ), if CP-net

specifies that u : x1 
 x2, then we have x1uy >SL O x2uy, for all assignments y on Y =
V − {{X} ∪ Pa(X )}. In the SLO model the preference associated to x1uy and that associated

to x2uy are strings of positive integers each corresponding to a constraint. The constraints on

which the two outcomes differ on are: constraint c on VPa(X ) and VX , and all the constraints

ti ∈ T on VPa(Bi ) and VBi such that X ∈ Pa(Bi ) (in what follows, we denote the children of

X by B = {VB1
, · · · , VBh }). By construction we have that since u : x1 
 x2, the preference

associated to the projection of x1uy on constraint c is (MAX MAX · · · h · · · MAX MAX)

while for outcome x2uy it is (MAX MAX · · · h − 1 · · · MAX MAX). Since, by definition the

position of constraint c precedes that of any constraint defined on the children of VX , the first

component on which the global preference of the outcomes will differ is that corresponding

to c. Thus, applying maxs will return as a result that x1uy >SL O x2uy since h > h − 1.

Moreover, it cannot be that two different outcomes have the same preference in SLO since

by construction the preference string differ in at least one position. �

As in the previous case, we can easily see that the complexity of the mapping is polynomial

in the size of the CP-net.

Theorem 11 (complexity). Given an acyclic CP-net N with the size of the largest domain
bounded by a constant d, the construction of the corresponding SC-net based SLO SCSP Nc

is polynomial in the size of N .

Proof: As in Theorem 11 we know that the SC-net has at most 2n and E = e + n edges,

if e is the number of edges of CP-net. A topological sort can be performed in O(V + E),

that is O(2n + e + n) = O(e + n). Once each constraint is assigned a component in the

string which is long at most e + n, the complexity of computing the preferences on each

constraint is linear in the size of the domains O(d). Thus, the complexity is O(d(e + n)) =
O(dn2). �

In a similar way to the comparison performed for the min+ semi-ring, the following table

compares the preference relation induced by the SLO semiring and that induced by the

CP-net. Let us consider in detail the results shown in the table (starting from the left side):

CP-nets ⇒ SLO

≺ <


 >

∼ <, >

– From Theorem 10 we know that 
 implies >SL O and the symmetric result. This proves

the first two implications of the table.

– If two outcomes are incomparable in the CP-net then they are ordered in the SLO, since

SLO induces a total order. However, since they differ at least on the value assigned to one

feature, say X , they also must have two different strings as SLO preference which differ

on the component corresponding to the constraint defined on Pa(VX ) and VX . Going back

to our example, outcome o1 = abc̄d is incomparable to outcome o2 = ābc̄d̄ in the CP-net,

but o1 >SL O o2 since it wins on the first constraint defined on VA.

The SLO model, like the weighted model, is very useful for answering dominance queries,

as it inherits the linear complexity of its semi-ring structure. In addition, the sequences of
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integers show directly the “goodness” of an assignment, i.e., where it actually satisfies the

preference and where it violates it.

5.3. Comparing and combining the two approximations

Given an acyclic CP-net N , let N min+
c and N SL O

c stand for the corresponding min+ and SLO

based SC-nets respectively. From the results in the previous section, we can see that pairs

of outcomes ordered by N remain ordered the same way by both N min+
c and N SL O

c . On the

other hand, pairs of outcomes incomparable in N are distributed among the three possibilities

(equal or ordered in one the two ways) in N min+
c , while being strictly ordered by N SL O

c .

Therefore, the (total) preference relation induced by N min+
c is a less drastic linearization of

the partial preference relation induced by N , compared to that induced by N SL O
c . Mapping

incomparability onto equality might seem more reasonable than mapping it onto an arbitrary

strict ordering, since the choice is still left to the user. We might conclude that the min+

model is to be preferred to the SLO model, as far as approximation is concerned. However,

maximizing the minimum reward, as in any fuzzy framework (Schiex, 1992), has proved its

usefulness in problem representation. The user may therefore need to balance the linearization

of the order and the suitability of the representation provided.

It is also possible to combine the two approximations and generate a third one which

combines their advantages. In fact, let us consider the ordering over outcomes induced

by the semiring obtained by performing the Cartesian product of the semirings of the

two approximations. In Bistarelli et al. (1997) it has been shown that the Cartesian prod-

uct of the kind of semirings used for soft constraints is still a semiring of the same

kind. In this case, this amounts to associating to each outcome a pair of elements, one

given by the min+ approach, and the other one by the SLO approach. Then, two out-

comes are ordered if they are ordered in the same way on both elements of the pair,

or if they are ordered in one of the elements and tied on the other. Otherwise, they are

incomparable.

As the min+ and the SLO approximation, also this new approximation is order-preserving

and respects the cp-condition. Moreover, some of the pairs of outcomes which are incom-

parable in the CP-net are left incomparable. Therefore, this approach allows for a better ap-

proximation of the CP-net ordering, since neither min+ nor SLO can model incomparability.

6. Related work

For acyclic CP-nets, two approximations that are order preserving have been introduced in

the literature, both comparing outcomes in time linear in the number of features. The first

is based on the relative position of the features in the CP-net dependency graph (Boutilier

et al., 2004) and it is effectively similar to our SLO approximation. On the one hand, this

approximation scheme in Boutilier et al. (2004) does not require any preprocessing of the

CP-net. On the other hand, the SLO formalization has an advantage in unified treatment of

both hard and soft constraints, and preference statements captured by CP-nets.

The second approximation, based on UCP-nets (Boutilier et al., 2001), can be used as a

quantitative approximation of acyclic CP-nets. UCP-nets resemble weighted CSPs, and thus

they can be used in constraint optimization using the soft constraints machinery. However,
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generating UCP-nets is exponential in the size of CP-net node’s Markov family2, and thus in

the CP-net node out-degree.

An additional related work is described in McGeachie and Doyle (2002), where a numeri-

cal value function is constructed using graph-theoretic techniques by examining the graph of

the preference relation induced by a set of preference statements. Note that this framework

is also computationally hard, except for some special cases.

7. Conclusions and future work

We have proposed a unifying modelling and solving formalism in which both hard and

soft constraints, as well as qualitative conditional preferences, can be handled efficiently.

The framework consists of a soft constraint solver plus an algorithm for approximating the

semantics of conditional preference statements by translating them into soft constraints.

The translation requires some approximation but offers a computational gain. We have also

studied the complexity of consistency checking for general sets of conditional preference

statements.

We plan to develop this work in several ways. We will use our approach in a preference

elicitation system in which we guarantee the consistency of the user preferences, and guide

the user to a consistent scenario. We plan to exploit the use of partially ordered preferences,

as allowed in soft constraints, to better approximate CP-nets. We will study the issue of ab-

stracting one order with another one, which has been considered here in several instances. We

also plan to study experimentally the phase transition in the satisfiability of conditional pref-

erence statements. Finally, we intend to use machine learning techniques to learn conditional

preferences from comparisons of complete assignments.
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