
1

Symmetry-breaking Answer Set Solving ∗

Christian Drescher a, Oana Tifrea b and
Toby Walsh a

a NICTA and University of New South Wales
Locked Bag 6016
University of New South Wales
Kensington 1466, Australia
E-mail:
{christian.drescher, toby.walsh}@nicta.com.au
b Free University of Bozen-Bolzano
Computer Science Faculty
Piazza Domenicani 3
39100 Bolzano, Italy
E-mail: oana.tifrea@unibz.it

We investigate the role of symmetry detection and
symmetry breaking in answer set programming to
eliminate symmetric parts of the search space and,
thereby, simplify the solution process. We reduce sym-
metry detection to a graph automorphism problem
which allows us to extract symmetries of a logic pro-
gram from the symmetries of the constructed coloured
graph. The correctness of our reduction is proven. We
also propose an encoding of symmetry-breaking con-
straints in terms of permutation cycles and use only
generators in this process to implicitly represent sym-
metries with exponential compression. These ideas are
formulated as preprocessing and implemented in a
completely automated flow that first detects symme-
tries from a given answer set program, adds symmetry-
breaking constraints, and can be applied to any exist-
ing answer set solver. We demonstrate computational
impact on benchmarks versus direct application of the
solver.

Keywords: answer set programming, symmetry break-
ing, graph automorphism problem

*Part of this work was performed when Christian
Drescher was studying at the Vienna University of Tech-

nology, Austria, supported by the Austrian Science Fund

(FWF) under grant number P20841 and the Vienna Science
and Technology Fund (WWTF) under grant ICT 08-020.

Oana Tifrea was supported by the European Master’s Pro-
gram in Computational Logic (EMCL). NICTA is funded
by the Department of Broadband, Communications and the

Digital Economy, and the Australian Research Council.

1. Introduction

Answer set programming (ASP; [6]) is a promis-
ing approach for knowledge representation and
nonmonotonic reasoning in various applications
that include difficult combinatorial search, among
them bioinformatics [7], crypto analysis [1], con-
figuration [51], database integration [38], diagno-
sis [18], hardware design [22], model checking [31],
planning [40], preference reasoning [10], semantic
web [20], and as a highlight among these appli-
cations the high-level control of the space shut-
tle [44]. ASP combines an expressive but simple
modelling language, able to encode all search prob-
lems within the first three levels of the polynomial
hierarchy, with high-performance solving capaci-
ties [16]. In fact, ASP solvers have experienced dra-
matic improvements in their performance [24] and
compete [49] with the best Boolean satisfiability
(SAT; [9]) solvers.

However, many combinatorial search problems
exhibit symmetries which can frustrate a search
algorithm to fruitlessly explore independent sym-
metric subspaces. The relevance of symmetry to
real world applications is very strong since it can
prevent a solver to solve even small problems [48].
Indeed, various instance families, such as the pi-
geon hole problem, require exponential time for
resolution and backtracking algorithms [55], and
state-of-the-art ASP solvers take a very long time
to solve these instances (see Section 7). Once their
symmetries are identified, we can avoid redun-
dant computational effort by pruning parts of the
search space through symmetry breaking. Sym-
metry breaking also helps post-processing: Where
symmetries induce equivalence classes in the solu-
tion space, symmetric solutions can be discarded.
Problems like the all-interval series taken from the
CSPLib [28] have plenty of symmetric solutions.
However, all solutions to the original problem can
be reconstructed from the answer sets under sym-
metry breaking.

This work breaks the problem of symmetry
breaking down into two parts: (1) identifying sym-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

2 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

metries and (2) breaking the identified symme-
tries. We adopt existing theoretical foundations
from symmetry detection for constraint satisfac-
tion problems [12] and present a reduction of sym-
metry detection to the graph automorphism prob-
lem (GAP; [43]). For SAT, this has been pro-
posed by Crawford et al. in [13] and further refined
by Aloul et al. in [2,3]. Detected symmetries can
then be eliminated with symmetry-breaking con-
straints (SBCs). These constraints ensure that a
search engine never visits two points in the search
space that are equivalent under the symmetry they
represent. Unfortunately, generating all SBCs is in-
tractable since there might be an exponential num-
ber of symmetries, but partial symmetry breaking
can be done in polynomial time (assuming that the
associated GAP is tractable). While Crawford et
al. construct a partial symmetry tree, Aloul et al.
restrict to a set of irredundant generators of the
symmetric group.

The key contribution of our work is a reduc-
tion of symmetry detection for the class of dis-
junctive and extended logic programs to the au-
tomorphisms of a coloured digraph which allows
us to extract symmetries of a logic program from
the symmetries of the constructed graph, and also
propose a linear-sized ASP representation of SBC.
In particular, we completely automate a flow that
starts with a logic program and finds all of its sym-
metries within a very general class, including all
syntactic symmetries, i.e., permutations that do
not change the logic program. In our flow, all sym-
metries are captured implicitly, in terms of irre-
dundant group generators, which guarantees ex-
ponential compression. The logic program is then
preprocessed by adding symmetry-breaking con-
straints that do not affect the existence of answer
sets. Any ASP solver can be applied to the prepro-
cessed logic program without changing its code,
which allows for programmers to select the solvers
that best fit their needs.

The remaining material is organised as follows.
First, we provide all necessary preliminaries to an-
swer set programming, give group theoretic back-
ground and define what we mean by a symmetry
in Section 2. In Section 3, we present our symme-
try detection techniques for logic programs, and
for their extensions. Sections 4 and 5 give our to
symmetry-breaking methods. We implemented our
techniques in a system (Section 6) which we eval-
uate in Section 7. Section 8 concludes our work.

2. Background

2.1. Answer Set Programming

As a form of declarative programming ori-
ented towards combinatorial search problems, ASP
comes with a simple modelling language.

Definition 2.1. A (disjunctive) logic program over
a set of primitive propositions A is a finite set of
rules r of the form

a1; . . . ; a` ← b1, . . . , bm,∼c1, . . . ,∼cn (1)

where ai, bj , ck ∈ A are atoms for 1 ≤ i ≤ `, 1 ≤
j ≤ m, and 1 ≤ k ≤ n.

A default literal â is an atom a or its default
negation ∼a. Let H(r) = {a1, . . . , a`} be the head
of r and B(r) = {b1, . . . , bm,∼ c1, . . . ,∼ cn} the
body of r. For a set S of default literals, define
S+ = {a | a ∈ S} and S− = {a |∼a ∈ S}. The set
of atoms occurring in a logic program P is denoted
by atom(P), and the set of bodies in P is B(P) =
{B(r) | r ∈ P}. For regrouping bodies sharing the
same head atom a, define B(a) = {B(r) | r ∈ P ,
a ∈ H(r)}. If |H(r)| = 1 for all r ∈ P , i.e., all
rules in the P have a single head atom, we call P
a normal logic program.

The semantics of a logic program is given by its
answer sets. A set M ⊆ A is an answer set of
a logic program P over A, if M is a ⊆-minimal
model of the reduct [26]

PM = {H(r)← B(r)+ |
r ∈ P, B(r)− ∩M = ∅}.

A rule of form (1) can be seen as a constraint
on the answer sets of a program, stating that
if b1, . . . , bm are in the answer set and none of
c1, . . . , cn are included, then one of a1, . . . , a` must
be in the set. Important extensions to logic pro-
grams are integrity constraints, choice rules, and
cardinality constraints [50].

Definition 2.2. Given an alphabet A. An integrity
constraint has the form

← b1, . . . , bm,∼c1, . . . ,∼cn (2)

where bj , ck ∈ A, for 1 ≤ j ≤ m and 1 ≤ k ≤ n.

We understand an integrity constraint as a short
hand for a rule with an unsatisfiable head, and
thus forbids its body to be satisfied in any answer
set.

Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving 3

Example 2.1. Consider the logic programs P1 and
P2, both have two answer sets {a} and {b}, given
by

P1 =
{
a ← ∼b
b ← ∼a

}
, P2 =

{
a; b ←
← a, b

}
.

To verify, for instance, answer set {a}, we con-
sider the reduct P {a}1 , P {a}2 respectively:

P
{a}
1 =

{
a ←

}
, P

{a}
2 =

{
a; b ←

}
.

The ⊆-minimal model of P {a}1 is {a}. P {a}2 has
three classical models, {a}, {b}, and {a, b} where
{a} and {b} are ⊆-minimal. Therefore, {a} is an
answer set of both P1 and P2. Observe that P1

and P2 remain invariant under a swap of atoms a
and b, which is what we call a symmetry. In this
work we will only deal with symmetries that can be
thought of as permutations of atoms.

Definition 2.3. Given an alphabet A. A choice rule
has the form

{a1, . . . , a`} ← b1, . . . , bm,∼c1, . . . ,∼cn (3)

where ai, bj , ck ∈ A, for 1 ≤ i ≤ `, 1 ≤ j ≤ m, and
1 ≤ k ≤ n.

A choice rule allows for the nondeterministic
choice over atoms in {a1, . . . , an}.

Definition 2.4. Given an alphabet A. A cardinality
constraint has the form

← k{â1, . . . , ân} (4)

where ai ∈ A, for 1 ≤ i ≤ n and k ≥ 0 is an
integer.

A cardinality constraint is interpreted as no an-
swer set satisfies k or more default literals of the
set {â1, . . . , ân}.

More formally, the semantics of integrity con-
straints, choice rules, and cardinality constraints
can be given through program transformations
that introduce additional propositions [50].

ASP engineers usually use a generate-and-test
technique [6] to model a problem, by producing
the space of solution candidates in the generate
component and defining rules that filter invalid so-
lutions in the test component. For instance, the
first line of our all-interval series problem encod-
ing from Examples 2.2 generates an assignment to
the problem variables. The remaining rules com-
prise the test component as they eliminate assign-
ments that do not solve the problem.

Example 2.2. The all-interval series problem is to
find a permutation of the n integers from 0 to n−1
such that the difference of adjacent numbers are
also all-different. We encode the all-interval series
problem introducing propositional variables vi,k for
the integer variables (indexed 1 ≤ i ≤ n) taking
values 0 ≤ k < n, and di,m for the auxiliary vari-
ables (indexed 1 ≤ i < n) taking values 1 ≤ m < n
to represent the differences between adjacent num-
bers. Furthermore, we require both sets of variables
to have pairwise different values.

vi,0; . . . ; vi,n−1 ←
← vi,k, vj,k i < j

di,|k−`| ← vi,k, vi+1,`

← di,m, dj,m i < j

Note that above encoding remains invariant under
complex permutation of atoms. We refer to Exam-
ple 2.6 for a detailed analysis.

2.2. Translating Answer Set Programs into
Propositional Logic

As shown by Lee in [36], the answer sets of a
logic program P correspond to the classical mod-
els of P that satisfy all loop formulas, where the
classical models of P are represented by the set of
formulas

RFP =


 ∧
b∈B(r)+

b ∧
∧

c∈B(r)−

¬c

→ ∨
a∈H(r)

a | r ∈ P

 .

A nonempty set L ⊆ A is called a loop of P , if for
all nonempty K ⊂ L, there is some r ∈ P such
that H(r) ∩ K 6= ∅ and B(r) ∩ (L \ K) 6= ∅ [25].
Note that every atom contained in A, forms a loop
of P , i.e. a singleton, and if all loops are singletons,
then P is called tight [21]. For a loop L, let

supP (L) = {r∈P | H(r)∩L 6=∅, B(r)∩L=∅}

be the set of rules from P that can externally sup-
port L. The (disjunctive) loop formula [36] of L,
denoted LFP (L), is:

∨
a∈L

a→
∨

r∈supP (L)

 ∧
b∈B(r)+

b ∧
∧

c∈B(r)−

¬c ∧
∧

d∈H(r)\L

¬d

 .

Finally, let loop(P) denote the set of all loops in P
and LFP = {LFP (L) | loop(P)}. Then, according

4 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

to Lee, a set M ⊆ A is an answer set of a logic
program P , if M is a model of RFP ∪ LFP .

The influential Clark’s completion [11] allows us
a slightly different characterisation. The comple-
tion Comp(P) of a logic program P over alphabet
A is defined as Comp(P) = RFP ∪

⋃
a∈A LF({a}),

i.e. the set of rules in P , and the loop formu-
las for singletons. Hence, a set M ⊆ A is an an-
swer set of a logic program P , if M is a model of
Comp(P) ∪ LFP [8,37].

2.3. Group Theoretic Background

Intuitively, a symmetry of a discrete object is
a transformation of its components that leaves
the object unchanged. Symmetries are studied in
terms of groups. A group is an abstract algebraic
structure (G, ∗), where G is a set closed under a
binary associative operation ∗ such that there is a
identity element and every element has a unique
inverse. A subgroup is a subset of a group that is
closed under the group operation, and is therefore
a group itself. Often, we abuse notation and refer
to the group G, rather than to the structure (G, ∗).
We denote the size of a group G as |G|.

In our context, the most important group is the
group of permutations. A permutation of a set S
is a bijection π : S → S. Indeed, the set of per-
mutations form a group under composition, de-
noted as Π(S). It is easy to see that the composi-
tion of two permutations is a permutation, that the
composition of permutations is associative, that
the composition with the identity never changes
a permutation, and that every permutation has
a unique inverse. The image of a ∈ S under a
permutation π is denoted as aπ. For a set X =
{a1, a2, . . . , ak) ⊆ S define Xπ = {aπ | a ∈ X}.
Analogously, for vectors s = (a1, a2, . . . , ak) ∈ Sk
define sπ = (aπ1 , a

π
2 , . . . , a

π
k). We will make use of

the cycle notation where a permutation is a prod-
uct of disjoint cycles. A cycle (a1 a2 a3 . . . an)
means that the permutation maps a1 to a2, a2

to a3, and so on, finally an back to a1. An ele-
ment that does not appear in any cycle is under-
stood as being mapped to itself. Furthermore, we
define the support of a permutation [43] as those
elements that are not mapped to themselves. The
orbit of a ∈ S under a permutation π ∈ Π(S) are
the set of elements of S to which a can be mapped
by (repeatedly) applying π. Note that orbits define
an equivalence relation on elements in S.

A compact representation of a group is given
through generators.

Definition 2.5. A set of group elements such that
any other group element can be expressed in terms
of their product is called a generating set or set of
generators, and its elements are called generators.
A generator is redundant if it can be expressed in
terms of other generators. An irredundant gener-
ating set, by definition, has no strict subset that is
also a set of generators.

Example 2.3. Consider the following set G of per-
mutation of the elements in {a, b, c, d}: the iden-
ity mapping id, π1 = (a b), π2 = (c d), and
π3 = (a b) (c d). The identity fixes each element,
π1 interchanges a and b, and fixes the c and d,
π2 interchanges c and d, and fixes the others. The
permutation π3 is the composition of the previ-
ous two, i.e., exchanges a with b and c with d
simultaneously. G forms a group under permuta-
tion multiplication, since π1π1 = id, π2π2 = id,
π1π2 = π3, and π3π3 = id. A generating set is
given through {π1, π2, π3}. However, one of either
π1, π2 or π3 is redundant, i.e., can be represented
as a composition of the other two permutations.
Hence, {π1, π2}, {π1, π3}, {π2, π3}, each is an ir-
redundant generating set.

An irredundant set of generators provides an ex-
tremely compact representation of a group. In fact,
representing a group by a generating set ensures
exponential compression.

Theorem 2.1 (Lagrange, from Elementary Group
Theory; [30]). The size of any subgroup of any fi-
nite group G must divide |G|.
Corollary 2.2 (Aloul et al. [3]). Any irredundant
set of generators for a finite, nonempty group G
contains at most log2 |G| elements.

To relate different groups, we recall some more
notions from algebra. A mapping f : G → H be-
tween to groups (G, ∗) and (H, ◦) is a homomor-
phism iff for and a, b ∈ G we have f(a ∗ b) =
f(a)◦f(b). A homomorphism for which an inverse
exists that is also a homomorphism, is called an
isomorphism. If an isomorphism exists, the two
groups G and H are called isomorphic. An isomor-
phism of a group with itself is called an automor-
phism. Since we can describe groups in terms of
generators, it is important to know that isomor-
phisms preserve generators.

Theorem 2.3 (Aloul et al. [3]). Any group isomor-
phism maps sets of generators to sets of genera-
tors, and maps irredundant sets of generators to
irredundant sets of generators.

Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving 5

2.4. Graph Automorphism Problems

In graph theory, the symmetries are studied in
terms of graph automorphisms. We consider di-
rected graphs G = (V,E), where V is a set of ver-
tices and E ⊆ V × V is a set of directed edges.
Intuitively, an automorphism of G is a permuta-
tion of its vertices that maps edges to edges, and
non-edges to non-edges, preserving edge orienta-
tion. More formally, we define as follows.

Definition 2.6. An automorphism or a symmetry
of a graph G = (V,E) is a permutation π ∈ Π(V)
such that (u, v) ∈ E iff (u, v)π ∈ E.

A further extension considers vertex colourings,
where symmetries must map each vertex into a
vertex with the same colour.

Definition 2.7. Given a partition of the ver-
tices ρ(V) = {V1, V2, . . . , Vk}. An automorphism
or a symmetry of a coloured graph G is a symme-
try π of G such that ρ(V)π = ρ(V).

We will think of the partition ρ as a colouring
of the vertices.

Example 2.4. Consider the graph G = ({u, v, w},
{(u, v), (u,w), (v, u), (v, w)}) and the partition ρ
given through {{u, v}, {w}}. G’s only nontrivial
symmetry is π = (u v).

u

v w

v

u w

Original coloured graph π = (u v)

The (coloured) graph automorphism problem is to
find all symmetries of a given graph, for instance,
in terms of generators. It is not known to have
any polynomial time solution, and is conjectured
to be strictly between the complexity classes P
and NP [5], thus potentially easier than comput-
ing answer sets. Practical algorithms for comput-
ing graph automorphism groups have been imple-
mented in the systems nauty [43], saucy [15],
and bliss [33].

2.5. Symmetry in Answer Set Programming

We will follow Krishnamurthy, who was one of
the first to exploit symmetry [35] for SAT. He de-
fined symmetry as a permutation of the variables
leaving the set of clauses unchanged. By a sym-

metry of an answer set program we mean a per-
mutation of its atoms that does not change the
logic program, in particular, maps rules to rules.
In principle, such a permutation can affect arbi-
trarily many atoms at once, for instance, as in the
case of a complete cyclic shift. For a rule r of the
form (1) and a permutation π define rπ as

aπ1 ; . . . ; aπ` ← bπ1 , . . . , b
π
m,∼cπ1 , . . . ,∼cπn

For a set of rules P , i.e., a logic program, define
Pπ = {rπ | r ∈ P}.

Definition 2.8. A symmetry of a logic program P is
a permutation π ∈ Π(atom(P)) such that Pπ = P .

By definition, a symmetry of a logic program
preserves answer sets.

Example 2.5. Reconsider P1 from Example 2.1,
and π = (a b). Since Pπ1 = P1, π is a symmetry
of P1.

Example 2.6. There are four symmetries in the all-
interval series problem: (1) the identity, (2) revers-
ing the series (variable symmetry), (3) reflecting
the series by subtracting each element from n − 1
(value symmetry), and (4) doing both. It is easy
to see that (2) and (3) form a group of genera-
tors. Indeed, we can find both symmetries in our
encoding (see Example 2.2) given in cycle notation
below.

π2 = (v1,0 vn,0) (v1,1 vn,1) . . . (v1,n−1 vn,n−1)
. . .
(vbn2c,0 vdn2e,0) . . . (vbn2c,n−1 vdn2e,n−1)
(d1,1 dn−1,1) . . . (d1,n−1 dn−1,n−1)
. . .
(db(n−1)

2 c,1
dd(n−1)

2 e,1
)

. . . (db(n−1)
2 c,n−1

dd(n−1)
2 e,n−1

)

π3 = (v1,0 v1,n−1) . . . (v
n,b(n−1)

2 c
v
n,d(n−1)

2 e
)

. . .
(vn,0 vn,n−1) . . . (v

n,b(n−1)
2 c

v
n,d(n−1)

2 e
)

Intuitively, the cycles in the first three lines of π2

simply swap the first and the last variable, the sec-
ond and the last but one variable, etc., value by
value to reverse the series, where the remaining
cycles adjust the auxiliary variables, i.e., swap the
differences value by value, respectively. The cycles
in π3 swap the values 0 and n−1, 1 and n−2, etc.,
for each variable to reflect the series. Obviously,
the permutations π2 and π3 represent (2) and (3),
respectively, and do not change the logic program.

6 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

3. Symmetry Detection

Our approach for detecting symmetries of a
logic program is through reduction to, and solu-
tion of, an associated graph automorphism prob-
lem. Our techniques are based on the body-atom
graph (V,E0 ∪ E1, E2) of a logic program P , that
is, a directed graph with vertices V = B(P) ∪
atom(P), and labelled edges

E0 = {(β, a) | a ∈ atom(P), β ∈ B(a)},
E1 = {(a, β) | β ∈ B(P), a ∈ β+}, and
E2 = {(a, β) | β ∈ B(P), a ∈ β−}.

The body-atom graph has been shown to be a use-
ful representation of a logic program [42]. How-
ever, we modify the body-atom graph by introduc-
ing additional vertices for negated atoms to cir-
cumvent labelled edges, and construct a 3-coloured
graph as follows:

1. In our graph encoding every atom in atom(P)
is represented by two vertices of colour 1 and
2 that correspond to the positive and nega-
tive literals, respectively.

2. Every rule is represented by a body vertex of
colour 3, a set of directed edges that connect
the vertices of the literals that appear in the
rule’s body to its body vertex, and a set of
directed edges that connect the body vertex
to the vertices of the atoms (positive literals)
that appear in the head of the rule.

3. To ensure consistency, that is, a maps to b if
and only if ∼a maps to ∼b for any atoms a
and b, vertices of opposite literals are mated
by a directed edge from the positive literal to
the negative literal.

The choice of three vertex colours insures that
body vertices can only be mapped to body ver-
tices, and positive (negative) literal vertices can
only be mapped to positive (negative) literal
nodes. To conclude, given a logic program P con-
sisting of m bodies and l literals over n atoms, the
graph encoding for detecting symmetries of P is
constructed by m + 2n vertices and l + n edges.
Fig. 1 illustrates the general structure of a rule r of
the form (1) as a body-atom-graph (left), where β
is the body vertex. Straight lines represent edges
in E0 ∪ E1, curly lines represent edges in E2. On
the right is the general structure of a 3-coloured
graph construction of r. Vertices of colour 1, 2,
and 3 are represented by empty circles, filled cir-
cles, and empty squares, respectively. Fig. 2 and 3
provide an examples.

∼a

a

2

1

b

∼b

Original 3-coloured graph of P1

∼b

b

1

2

a

∼a

π1 = (a b) (∼a∼b) (1 2)

Fig. 2. 3-coloured graph constructions and resulting sym-

metries for the example logic programs P1.

∼a a

1

2

b ∼b

⊥
Original 3-coloured graph of P2

∼b b

1

2

a ∼a

⊥
π2 = (a b) (∼a∼b)

Fig. 3. 3-coloured graph construction and resulting symme-

try for the example logic programs P2.

Theorem 3.1. The symmetries of a logic program
correspond one-to-one to the symmetries of its 3-
coloured graph encoding.

Proof. (⇒) We begin by showing that any symme-
try of a logic program corresponds to a symmetry
of the constructed 3-coloured graph. Such a graph
symmetry will map vertices of the same colour and
edges to edges. In particular, if a maps to b, then
∼a maps to ∼ b, and the edge (a,∼a) maps to
the edge (b,∼b). Since a and b, and ∼a and ∼b,
have the same colour, the symmetry is preserved.
The same can be said about the other edges be-
tween vertices of different colours: In a logic pro-
gram, a and b might also be connected with one
or more body vertices. These connections would
also be swapped at the respective vertices. Again,
only vertices of the same colour are mapped one

Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving 7

β

a1

al

b1

bm

∼c1

∼cn

β

a1

al

∼a1

∼al

b1 ∼b1

bm ∼bm

∼c1

∼cn

c1

cn

Fig. 1. General structure of a rule as a body-atom-graph and its 3-coloured graph encoding.

to another. Thus, a consistent mapping of atoms
in the program, when carried over to the graph,
must preserve the colours of the vertices.

(⇐) We now show that every symmetry in the
graph corresponds to a symmetry of the logic pro-
gram. It is not hard to see because we use one
colour for positive literals, one for negative liter-
als, and one for bodies. Hence, a graph symme-
try must map (1) positive literal vertices to other
such, and negative literal vertices to negative lit-
eral vertices, and body vertices to body vertices,
and (2) the body edges of a vertex to body edges of
its mate. This is consistent with symmetries of the
logic program mapping atoms to atoms, and bod-
ies to bodies, i.e., rules to rules. To prove Boolean
consistency, i.e., if a maps to b then ∼a maps to ∼b,
we recall that every edge from a vertex of colour
2 to a vertex of colour 1 is a Boolean consistency
edge of the form (a,∼a). Since every such edge can
only map to another such edge, a mapping a to b
leaves no choice for (a,∼a) but to map to (b,∼b)
because (b,∼b) is the only edge that connects b to
another vertex of the same colour as ∼a.

Theorem 3.2. The symmetry groups of the logic
program and its 3-coloured graph encoding are iso-
morphic.

Proof Sketch. The proof consists of the straight-
forward verification that the one-to-one mapping
constructed in the proof of Theorem 3.1 is a ho-
momorphism.

Corollary 3.3. Sets of symmetry generators of the
3-coloured graph encoding correspond one-to-one
to sets of symmetry generators of the logic pro-
gram.

Proof. By Theorem 2.3 and Theorem 3.2.

Since GAP algorithms are sensitive to the num-
ber of vertices of an input graph, our construction
can be optimised to reduce the number of graph
vertices while preserving its symmetries. A first
simplification is achieved by modelling rules with
an empty body and a single head atom, so-called
facts, by a (forth) colour for the vertex correspond-
ing to the head atom instead of using (empty)
body vertices. Furthermore, rules with a single
head atom and a 1-literal body are modelled using
a directed edge from the vertex corresponding to
the literal of the body to the vertex correspond-
ing to the head atom. Observe that this optimi-
sation may connect a literal vertex to a positive
literal vertex. Still, unintended mappings between
1-literal body edges and consistency edges remain
impossible, since consistency edges connect pos-
itive literal vertices to their negative mates. For
the special case of a 1-literal body and an empty
head, we connect the literal vertex to the special
node ’⊥’.

We extend our graph encoding to integrity con-
straints, choice rules and cardinality constraints.
No changes are necessary to cover integrity con-
straints. Also, the structure of a choice rule is en-
coded like a rule, i.e, is represented by a body
vertex, a set of directed edges that connect the
vertices of the literals that appear in the choice
rule’s body to its body vertex, and a set of directed
edges that connect the body vertex to the ver-
tices of the literals that appear in the head of the
rule. To distinguish choice rules from rules a new
colour 5 is introduced for their body vertices. An
extension to cardinality constraints of the form (4)
has to consider the bound k. Hence, we colour its
body vertex by k + 5 to ensure that the literals
of two cardinality constraints can be mated only
if their bound is equal. Furthermore, each cardi-
nality constraints is represented by a set of di-
rected edges that connect the vertices of the lit-

8 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

β

a1

al

∼a1

∼al

b1 ∼b1

bm ∼bm

∼c1

∼cn

c1

cn

Fig. 4. The general structure of the coloured graph con-

struction of a choice rule.

β

b1 ∼b1

bm ∼bm

∼c1

∼cn

c1

cn

Fig. 5. The general structure of the coloured graph con-

struction of a cardinality constraint.

erals b1, . . . , bm,∼c1, . . . ,∼cn, that appear in its
body, to its body vertex. Fig. 4 illustrates the gen-
eral structure of a coloured graph construction of
a choice rule of the form (3). Vertices of colour 1,
2, and 5 are represented by empty circles, filled cir-
cles, and filled squares, respectively. Fig. 5 shows
the general structure of a coloured graph construc-
tion of a cardinality constraint of the form (4).
Vertices of colour 1, 2, and k+5 are represented by
empty circles, filled circles, and empty diamonds,
respectively.

4. Symmetry Breaking

Recall that a symmetry π of a logic program P
defines equivalence classes on the atoms in P (or-
bits). This naturally extends to truth assignments.
Hence, symmetries induces equivalence classes in
the solution space of a problem: Given an answer
set of P , all sets to which it can be mapped by sym-
metries, must be answer sets of P . Similarly, sym-
metries always map non-answer sets to non-answer
sets. Therefore, it is sufficient to reason about one
representative from every equivalence class.

Symmetry breaking amounts to selecting some
representatives from every equivalence class and

constructing rules, composed into a symmetry-
breaking constraint, that is only satisfied on those
representatives. A full SBC selects exactly one rep-
resentative from each orbit, otherwise we call an
SBC partial. The most common approach is to
order all elements from the solution space lexi-
cographically, and to select the lexicographically
smallest element, the lex-leader, from each orbit
as its representative (c.f. [13,3,2]). A lex-leader
symmetry-breaking constraint (LL-SBC) is an SBC
that is satisfied only on the lex-leaders of orbits.

We will assume a total ordering on the atoms
a1, a2, . . . , an of a logic program’s alphabet A and
consider the induced lexicographic ordering on the
truth assignments, i.e., their interpretation as un-
signed integers. The construction of a lex-leader
SBC is accomplished by encoding a permutation
constraint (PC) for every permutation π, denoted
PC(π), given through:

∧
1≤i≤n

 ∧
1≤j≤i−1

(aj = aj
π)

→ (ai ≤ aiπ).

The lex-leader symmetry-breaking constraint that
breaks every symmetry in a logic program can now
be constructed by conjoining all of its permutation
constraints.

LL-SBC(Π) =
∧
π∈Π

PC(π)

Through chaining, which typically introduces ad-
ditional atoms, we achieve a PC representation
that is linear in the number of atoms [2], as follows,
where 1 < i ≤ n:

PC(π) = (a1 ≤ aπ1) ∧ ¬cπ,2
¬cπ,i ↔ ((ai−1≥aπi−1)→(ai≤aπi) ∧ ¬cπ,i+1)
¬cπ,n+1↔⊥

Theorem 4.1 (Crawford et al. [13]). For a group of
symmetries Π, the truth assignments that satisfy
LL-SBC(Π) are the lexicographically smallest rep-
resentatives from each class of truth assignments
that can be mapped to each others by elements
from Π.

Finally, we encode above permutation constraint
in a set of rules, denoted P (π), that are satisfied for
the lex-leader of the orbit induced by π as follows,
where 1 < i ≤ n:

Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving 9

← a1,∼a1
π

← cπ,2
cπ,i ← ai−1, ai,∼aiπ
cπ,i ← ∼ai−1

π, ai,∼aiπ
cπ,i ← ai−1, cπ,i+1

cπ,i ← ∼ai−1
π, cπ,i+1

cπ,n+1 ←

Note that new atoms are introduced, thus extend-
ing the alphabet of P . Correctness is provided by
the following theorem.

Theorem 4.2. Let π be a symmetry of a logic pro-
gram P . An answer sets of P satisfies PC(π) iff it
satisfies the conditions expressed in P (π).

Proof. We prove in in two steps. First, we show
that adding P (π) to P does not impose conditions
to an answer set other than Comp(P). Second, we
show via induction on the structure of P (π) that
Comp(P (π)) equals the formula > ↔ PC(π).

To start with, since P (π) is tight and cπ,i 6∈
atom(P) for all 1 ≤ i ≤ n, adding P (π) to P does
not introduce new loops that are not singletons.
Hence, the conditions to an answer set imposed
by P (π) are fully captured by Comp(P). From
rules 1–2, i.e., rules in P (π) with empty head, we
get

⊥← a1 ∧ ¬a1
π

⊥← cπ,2

are in RFP (π), and

⊥→ a1 ∧ ¬a1
π ∨ cπ,2

is the only formula in LFP (π)({⊥}). The conjunc-
tion of all three formulas is equivalent to

>↔ (¬a1 ∨ a1
π) ∧ ¬cπ,2.

From rules 3–6, i.e., rules in P (π) with head cπ,i
for 2 ≤ i ≤ n, we get

cπ,i← ai−1 ∧ ai ∧ ¬aiπ
cπ,i← ¬ai−1

π ∧ ai ∧ ¬aiπ
cπ,i← ai−1 ∧ cπ,i+1

cπ,i← ¬ai−1
π ∧ cπ,i+1

are in RFP (π), and

cπ,i → ai−1 ∧ ai ∧ ¬aiπ ∨ ¬ai−1
π ∧ ai ∧ ¬aiπ

∨ai−1 ∧ cπ,i+1 ∨ ¬ai−1
π ∧ cπ,i+1

is the formulas in LFP (π)({cπ,i}). The conjunction
of above formulas is equivalent to

¬cπ,i↔ ((¬ai−1 ∨ aπi−1)→
(¬ai ∨ aπi) ∧ ¬cπ,i+1).

Finally, for the last rule, that is, the single rule in
P (π) with head cπ,n+1, we get

cπ,n+1← >

is in RFP (π), and

cπ,n+1→ >

is the only formula in LFP (π)({cπ,n+1}). The con-
junction of above formulas is equivalent to

¬cπ,n+1↔ ⊥.

There are no further rules in P (π). Substitution
of the clauses of the form ¬a ∨ b by a ≤ b and
conjoining all formulas results in > ↔ PC(π).

A careful analysis reveals some possibilities to
reduce the size of permutation constraints. The
first corresponds to atoms that are mapped to
themselves by the permutation, i.e., aπ = a. This
makes the consequent of the implication uncondi-
tionally true. For sparse symmetries, one can sig-
nificantly reduce the size of the permutation con-
straint with a restriction of the PC construction to
only those atoms that are in the support of π. Sec-
ond, also for atoms a and b such that both appear
in P as facts, and aπ = b, the consequent a ≤ aπ

is satisfied.
A third possibility corresponds to the lexico-

graphically largest atom in each cycle of π. Assume
a cycle (as . . . ae) on the atoms of some index set
{a, . . . , e}. Using equality propagation on the por-
tion of the permutation constraint where i = e, we
get (as = ae) → (ae ≤ as) which is tautologous.
Hence, we can further restrict the index set in the
PC by excluding the last atom in each cycle.

Example 4.1. We illustrate our PC encoding on the
symmetries detected for the previous examples P1

and P2. Since both permutations π1 and π2 (Fig. 2
and 3) map a to b and vice versa, they share the
same LL-SBC which is as simple as follows, as-
suming a is lexicographically smaller than b:

← a,∼b
Observe that the ordering on the atoms of a logic
program P induces a preference relation on the an-
swer sets of P under symmetry breaking. Here, the
ordering selects {b} as the representative of the set
of all answer sets symmetric to {b}, hence, elimi-
nating the answer set {a}.

10 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

5. Partial Symmetry Breaking

Breaking all symmetries may not speed up
search because there are often exponentially many
of them. A better trade-off may be provided by
breaking enough symmetries [13]. We explore par-
tial SBCs, i.e., we do not require that SBCs are sat-
isfied by lex-leading assignments only (but we still
require that all lex-leaders satisfy SBCs). Irredun-
dant generators are good candidates because they
cannot be expressed in terms of each other, and
implicitly represent all symmetries. Hence, break-
ing all symmetries in a generating set can elimi-
nate all problem symmetries. However, this does
not hold in general, e.g., different generating sets
of the group of a logic program’s symmetries may
lead to different pruning [34].

Example 5.1. Consider a logic program P with in-
terchangeable atoms a1, a2, a3, a4, for instance

{a1, a2, a3, a4} ←
← a1, a2, a3, a4

An irredundant generating set for Π(P) is the pair
swap (a1 a2) and the rotation (a1 a2 a3 a4). To
break the symmetry (a1 a2) we post the permuta-
tion constraint

← a1,∼a2

To break the symmetry (a1 a2 a3 a4) we post

← a1,∼a2

← c0
c0← a1, a2,∼a3 c1← a2, a3,∼a4

c0← a1, c1 c1← a2, c2
c0←∼a2, c1 c1←∼a3, c2
c2←

However, these two permutation constraints do not
eliminate all symmetries. For instance, they per-
mit both answer sets {a2, a4} and its symmetry
{a3, a4}. There is an alternative irredundant gen-
erating set which breaks all symmetries, that is
{(a1 a2), (a2 a3), (a3 a4)}. We can break these
three symmetries with

← a1,∼a2

← a2,∼a3

← a3,∼a4

eliminating all symmetries of P .

We can further relax symmetry breaking to
k supports from each permutation [2]. For k ≤ n
and ai is a support of permutation π, we define
the partial permutation constraint:

← a1,∼a1
π

← cπ,2
cπ,i ← ai−1, ai,∼aiπ
cπ,i ← ∼ai−1

π, ai,∼aiπ
cπ,i ← ai−1, cπ,i+1

cπ,i ← ∼ai−1
π, cπ,i+1

cπ,k+1 ←

By restricting the construction of permutation
constraints this way, we further reduce the size of
partial SBC.

Example 5.2. Consider the all-interval series prob-
lem encoded from Example 2.2 and the genera-
tors π2 and π3 from Example 2.6. The symmetry-
breaking constraint, where both permutation con-
straints are restricted to the second support, is
given through the following, where c0, . . . , c3 are
new atoms.

← v1,0,∼v1,n−1

← c0
c0 ← v1,0, v1,1,∼v1,n−2

c0 ← v1,1,∼v1,n−1,∼v1,n−2

c0 ← v1,0, c1
c0 ← c1,∼v1,n−1

c1 ←

← v1,0,∼vn,0
← c2

c2 ← v1,0, v1,1,∼vn,1
c2 ← v1,1,∼vn,0,∼vn,1
c2 ← v1,0, c3
c2 ← c3,∼vn,0
c3 ←

6. The sbass System

Our approach to symmetry-breaking answer set
solving has been implemented within the prepro-
cessor sbass, available at [46]. The global archi-
tecture of sbass is shown in Fig. 6. It accepts
a logic program P in smodels format [52] pro-
duced by a grounder, e.g. lparse, available at [54],
and gringo, available at [47]. A first component,
the Program Reader, takes care of creating an in-
ternal representation and encodes symmetry de-

Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving 11

Logic
Program

Program
Reader

Graph
Encoding

saucy

Automor-
phism

Symmetry
Breaking

Logic
Program

+
SBC

Symmetry Detectionsbass

Fig. 6. Global architecture of sbass.

tection as a graph automorphism problem. No-
tably, the Program Reader also checks for dupli-
cate edges in the graph encoding of P which, other-
wise, defect further processing. The actual search
for an irredundant generating set of the group of
symmetries of P , taking P ’s graph encoding as
input, is performed by the graph automorphism
program saucy (2.1), available at [53], which is
incorporated into sbass. saucy sequentially re-
turns graph symmetry generators as soon as they
are detected. Each such symmetry is used to con-
struct a PC, all of which result in an SBC. In turn,
sbass prints P together with symmetry-breaking
constraints, again in smodels format, which can
be applied to any suitable answer set solver, e.g.
smodels, available at [54], and clasp, available
at [47]. Note that sbass provides several options,
for instance, to print detected generators in cycle
notation or statistics.

7. Experiments

To evaluate our approach, we conducted experi-
ments on ASP encodings of several difficult combi-
natorial search problems. We use gringo (2.0.5)
to generate our proposed encodings. Since our en-
codings are disjunctive, but tight, we make use
of shifting [27] to provide an adequate encoding
for the ASP solver clasp, that are normal logic
programs and its extensions. Experiments consider
the answer set solver clasp (1.3.2) on instances
with symmetry breaking in terms of generators,
i.e., instances preprocessed by sbass, and with-
out symmetry breaking. To explore the impact of
partial PC, we restrict the construction of permu-

tation constraints to k supports per permutation,
denoted as claspπk , using sbass’ option -size=k.

All tests were run on a 2.00 GHz PC under
Linux, where each run was limited to 600 s time
and 1 GB RAM, preprocessing excluded. However,
we also report the runtime for sbass and give the
number of generators. The latter allows careful
conclusions to be drawn with respect to the size of
the search space implicitly pruned through sym-
metry breaking. In the following experiments we
generally compare the runtime for testing the ex-
istence of an answer set to a given problem.

7.1. Pigeon Hole Problems

The pigeon hole problem is to show that it is
impossible to put n pigeons into n − 1 holes if
each pigeon must be put into a distinct hole. This
problem is exponentially hard for resolution based
method [55], but is tractable using symmetries (all
the pigeons are interchangeable and all the holes
are interchangeable).

We chose a disjunctive encoding for the pigeon
hole problem, where pij is taken to mean that a
pigeon (indexed 1 ≤ i ≤ n) is assigned a hole
(indexed 1 ≤ k < n):

pi,1; pi,2; . . . ; pi,n−1 ←
← pi,k, pj,k i < j

The runtimes for various sizes of n are shown in
Table 1. Although symmetry breaking has a posi-
tive impact, the runtime even with full PC is still
exponentially grows with the number of pigeons.
Here, symmetry breaking on the generating set re-
turned by saucy does not break all problem sym-
metries. At this point, we should note that a given
problem can be encoded in many equivalent logic

12 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

Table 1

Runtime results in seconds for pigeon hole problems using
the disjunctive encoding.

#n #gen. sbass claspπ
1 claspπ

5 claspπ clasp

11 18 0.05 0.38 0.15 0.06 0.62

12 20 0.08 4.09 0.07 0.22 5.99

13 22 0.11 30.57 0.43 0.32 53.39

14 24 0.16 272.72 4.95 1.73 448.98

15 26 0.23 — 62.61 3.02 —

16 28 0.32 — — 23.01 —

17 30 0.44 — — 130.87 —

Table 2

Runtime results in seconds for pigeon hole problems using
the support encoding.

#n #gen. sbass claspπ
1 claspπ

5 claspπ clasp

11 19 0.03 8.70 0.02 0.02 47.28

12 21 0.04 66.57 0.03 0.03 397.01

13 23 0.07 540.26 0.09 0.03 —

14 25 0.08 — 0.77 0.04 —

15 27 0.12 — 5.91 0.05 —

16 29 0.17 — 47.98 0.06 —

17 31 0.22 — 520.39 0.13 —

programs [41,19], and with each different encoding
our techniques may detect a different generating
set. Therefore, we also tried an encoding of the
pigeon hole problem based on the support encod-
ing [17]:

{pi,1, . . . , pi,n−1} ←
← ∼pi,1, . . . ,∼pi,n−1

← 2{pi,1, . . . , pi,n−1}
← pi,k, pj,k i < j

This caused saucy to compute a different, obvi-
ously better set of generators, which consequently
breaks all symmetry resulting in a polynomial run-
time. (Observe the change in the number of gen-
erators.) As can be seen in Table 2, full PCs are
essential to tackle the pigeon hole problem.

7.2. Ramsey’s Theorem

Ramsey’s Theorem states that for any pair of
positive integers (k,m) there exists a least posi-
tive integer n such that, no matter how we colour
the edges of the clique with n vertices, Kn, using

two colours, say blue and red, there is a sub-clique
with k vertices of colour blue or a sub-clique with
m nodes of colour red. Symmetries in Ramsey’s
Theorem are between the colours and the vertices
in the sub-clique. Ramsey’s Theorem is discussed
in many articles (see, for instance, [29]) and can
be found in [4] and [14].

We use the encoding proposed by Leone et
al. in [39], denoted as R(k,m, n), to determine
whether n is not an integer for which the the-
orem holds. The problem R(3, 5, n) is encoded
as follows, introducing propositional variables bi,j
and ri,j representing the colouring (either blue or
red) of the edge between nodes i and j, where
i, j, k, `,m ∈ 1..n and i < j < k < ` < m:

bi,j ; ri,j ←
← ri,j , ri,k, rj,k
← bi,j , bi,k, bj,k,
bi,`, bj,`, bk,`,
bi,m, bj,m, bk,m, b`,m

Intuitively, the disjunctive rule guesses a colour
for each edge. The first integrity constraint elimi-
nates the colourings containing a red clique with 3
vertices, and the second integrity constraint elimi-
nates the colourings containing a blue clique with
5 vertices.

In formerly hard cases, namely R(3, 5, 14) and
R(4, 5, 24), symmetry breaking lead to significant
pruning of the search space and yield solutions in
a considerably short amount of time. The results
presented in Table 3 suggest full PCs for unsatis-
fiable instances, but small, partial PCs for satisfi-
able instances.

7.3. Graceful Graphs

A labelling f of the vertices of a graph (V,E)
is graceful if f assigns a unique label f(v) from
{0, 1, . . . , |E|} to each vertex v ∈ V such that,
when each edge (v, w) ∈ E is assigned the label
|f(v) − f(w)|, the resulting edge labels are dis-
tinct. The problem of determining the existence of
a graceful labelling of a graph has been modelled
as a constraint satisfaction problem in [45], and is
an interesting application for symmetry-breaking
answer set solving because the symmetries are dif-
ferent for each instance and cannot be modelled
a-priori in general.

As in previous experimental studies of sym-
metry breaking [45], our experiments consider

Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving 13

0

1

19

6 14

3

7

17

520

16

0

25

19 18

4

23

1

3

6

14

Fig. 7. A graceful labelling of the double wheel graph DW5 (left) and the graph K5P2 (right).

Table 3

Average time for completed runs in seconds and the num-

ber of timeouts in parenthesis, if any, on Ramsey’s Theo-
rem instances, each shuffled 5 times. The ∗asterisk denotes

instances that have no answer sets.

sbass claspπ
1 claspπ

5 claspπ clasp

R(3, 5, 13) 0.06 0.01 0.01 0.03 0.01

R(3, 5, 14)∗ 0.10 3.58 1.23 0.49 354.25

R(3, 6, 17) 1.18 0.12 0.12 0.14 0.11

R(3, 6, 18)∗ 1.87 —(5) —(5) —(5) —(5)

R(4, 4, 17) 0.26 0.73 0.12 0.50 0.07

R(4, 4, 18)∗ 0.37 —(5) —(5) —(5) —(5)

R(4, 5, 23) 5.43 4.23 2.29 2.05 1.32

R(4, 5, 24) 7.15 77.64 208.66(1) 180.96(3) —(5)

R(4, 5, 25)∗ 9.54 —(5) —(5) —(5) —(5)

graphs DWn and KnPm (Fig. 7). The double wheel
graph DWn is composed of two copies of a cycle
with n vertices, each connected to a central hub.
The two wheels Wn, each have rotation and re-
flection symmetries. The labels of the two cycles
can also be interchanged. The graph KnPm is the
cross-product of the clique Kn and the path Pm.
It consists of m copies of Kn, with corresponding
vertices in the m cliques also forming the vertices
of a path Pm. Symmetries of the graph are simul-
taneous rotations of the cliques and inter-clique
permutations.

As can be seen in Table 4, we achieve speed-up
on the unsatisfiable instance DW3. For the other
instances, all of which are satisfiable, no complete
traversal of the search space is necessary, and the
branching heuristic used in our approach some-
times appears to be misled by the extra variables

Table 4

Average time for completed runs in seconds and the num-

ber of timeouts on graceful graph instances, each shuffled
5 times. Timeouts, if any, are given in parenthesis. The
∗asterisk denotes instances that have no answer sets.

sbass claspπ
1 claspπ

5 claspπ clasp

DW3
∗ 0.02 4.24 1.45 1.32 5.40

DW6 0.17 0.46 0.56 1.09 0.57

DW8 0.48 28.81 5.47 17.11 4.30

DW10 1.21 191.86 66.18 61.59 27.04(2)

DW12 3.34 145.89 202.18(1) 111.96(1) 112.38(4)

K3P3 0.04 0.08 0.08 0.07 0.08

K4P2 0.07 0.20 0.10 0.54 0.19

K4P3 0.29 24.68 29.06 198.57 24.01

K5P2 0.37 274.85(3) 334.55(3) 312.56(1) 226.03(3)

introduced in claspπk . That explains some of the
variability in the runtimes. However, we still ob-
serve a substantial impact of our symmetry break-
ing techniques on the difficult instances.

It seems safe to assume that the detection of
symmetries in logic programs through reduction
to graph automorphism is computationally quite
feasible using today’s GAP tools such as saucy,
considering sbass’ runtime.

7.4. Answer Set Enumeration

Finally, we want to test the impact of symme-
try breaking on the number of answer sets. Our
study considers instances from the all-interval se-
ries problem and graceful graphs. Recall, the all-
interval series problem is to find a permutation of
the n integers from 0 to n − 1 such that the dif-

14 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

ference of adjacent numbers are also all-different.
It has been proposed as a benchmark domain for
CP systems by Hoos in [32] and is part of the
CSPlib [14]. We modelled the all-interval series
problem (AllInt) as previously described in Ex-
ample 2.2, using a direct representation for n inte-
ger variables and auxiliary variables to represent
the differences between adjacent numbers, and re-
quired both sets of variables to be all-different.

As one might expect, we can observe that
symmetry breaking significantly compresses the
solution-space (see Table 5), and therefore, reduces
the time necessary for post-processing solutions.
Clearly, claspπk discards more solutions (eliminat-
ing up to 90 per cent of the solution space) for an
increasing number k.

Recall that a given problem can be encoded in
many equivalent logic programs, and with each dif-
ferent encoding our techniques may detect a differ-
ent generating set. For instance, we tried symme-
try detection and symmetry breaking on logic pro-
grams that were preprocessed, i.e., simplified. The
key idea of preprocessing logic programs is to iden-
tify equivalences among its relevant constituents.
These equivalences are then used for building a
compact representation of the program [23]. Some-
times, we observed significant better results in
terms of time and number of answer sets, elimi-
nating up to 95 per cent of the solution space.

8. Conclusions

Our work addresses solving combinatorial prob-
lems in ASP whose difficulty arise from symme-
tries and redundant search caused by them. We
have shown a reduction of symmetry detection to
a graph automorphism problem which allows us
to extract symmetries of a logic program from the
symmetries of the constructed coloured graph. Our
techniques are formulated as a completely auto-
mated flow that (1) starts with a logic program,
(2) detects all of its symmetries within a very
general class, including all permutations that do
not change the logic program, (3) represents all
symmetries implicitly and always with exponential
compression in terms of irredundant group gener-
ators, and (4) constructs a linear-sized symmetry-
breaking constraint that does not affect existence
of answer sets. This flow does not require source
code modifications in ASP solvers. We success-

fully validated our implementation with clasp
and smodels (smodels results are not included
in this paper). Experiments indicate that break-
ing just the symmetries in a generating set is an
efficient and effective way to deal with large num-
bers of symmetries. In many cases, our techniques
achieved significant pruning of the search space
and yield solutions to problems which are other-
wise intractable. We also observed a significant
compression of the solution space which makes
symmetry breaking attractive whenever all answer
sets have to be post-processed.

Our techniques can be easily extended to con-
straint answer set programming using our transla-
tion based approach [17], where a constraint logic
program is decomposed into a logic program un-
der answer set semantics. Then generic symmetry
detection and symmetry breaking can be applied.

However, we stress that the proposed flow may
not be useful on ASP instances that are easy, or
do not have symmetries. Many ASP benchmarks
in [4] have large numbers of symmetries, but can
be solved so quickly that the symmetry detection
and breaking overhead is not justified.

Furthermore, it is often reasonable to assume
that the symmetries for a problem are known.
For particular symmetries, there are more efficient
breaking methods (see, for instance, [56]). This is
target of future work.

References

[1] L. Aiello and F. Massacci. Verifying security protocols
as planning in logic programming. ACM Transactions

on Computational Logic, 2(4):542–580, 2001.

[2] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Shatter:

efficient symmetry-breaking for Boolean satisfiability.

In Proceedings of DAC’03, pages 836–839. ACM, 2003.

[3] F. A. Aloul, A. Ramani, I. L. Markov, and K. A.
Sakallah. Solving difficult instances of Boolean satisfi-

ability in the presence of symmetry. Technical Report
CSE-TR-463-02, University of Michigan, 2002.

[4] http://asparagus.cs.uni-potsdam.de/.

[5] L. Babai. Automorphism groups, isomorphism, re-

construction. In R. L. Graham, M. Grötschel, and
L. Lovász, editors, Handbook of Combinatorics, vol-

ume 2, pages 1447–1540. Elsevier, 1995.

[6] C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press, 2003.

[7] C. Baral, K. Chancellor, N. Tran, N. Tran, A. Joy, and
M. Berens. A knowledge based approach for represent-

ing and reasoning about signaling networks. In Pro-
ceedings of ISMB/ECCB’04, pages 15–22, 2004.

Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving 15

Table 5

Results on computing all answer sets of selected instances.
Runtime and number of solutions are shown.

sbass claspπ
1 claspπ

5 claspπ clasp

#gen. time time #sol. time #sol. time #sol. time #sol. compression

AllInt8 2 0.01 0.15 39 0.11 15 0.17 14 0.14 40 65%

AllInt9 2 0.01 0.78 119 0.60 60 0.93 40 0.77 120 67%

AllInt10 2 0.01 4.60 295 3.43 148 5.69 107 4.08 296 64%

AllInt11 2 0.01 23.26 647 22.82 372 32.70 238 24.40 648 63%

AllInt12 2 0.01 161.90 1327 147.17 862 211.27 442 160.32 1328 67%

DW4 5 0.07 282.36 9472 168.03 5152 85.65 1150 314.15 11264 90%

K3P3 3 0.05 229.15 5704 119.99 2836 126.25 1487 268.80 6816 76%

K4P2 4 0.08 119.66 1080 67.96 552 27.72 146 145.13 1440 90%

[8] R. Ben-Eliyahu and R. Dechter. Propositional seman-

tics for disjunctive logic programs. Annals of Mathe-
matics and Artificial Intelligence, 12(1-2):53–87, 1994.

[9] A. Biere, M. Heule, H. van Maaren, and T. Walsh,

editors. Handbook of Satisfiability. IOS Press, 2009.

[10] G. Brewka and T. Eiter. Preferred answer sets for

extended logic programs. In Proceedings of KR’96,
pages 86–97. Morgan Kaufmann Publishers, 1996.

[11] K. Clark. Negation as failure. In Logic and Data Bases,

pages 293–322. Plenum Press, 1978.

[12] D. Cohen, P. Jeavons, C. Jefferson, K.E. Petrie, and

B.M. Smith. Symmetry definitions for constraint satis-
faction problems. Constraints, 11(2-3):115–137, 2006.

[13] J. Crawford, M. Ginsberg, E. Luks, and A. Roy.
Symmetry-breaking predicates for search problems. In

Proceedings of KR’96, pages 148–159. Morgan Kauf-

mann, 1996.

[14] http://http://www.csplib.org/.

[15] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L.
Markov. Exploiting structure in symmetry detection

for CNF. In Proceedings of DAC’04, pages 530–534.

ACM Press, 2004.

[16] C. Drescher, M. Gebser, T. Grote, B. Kaufmann,

A. König, M. Ostrowski, and T. Schaub. Conflict-

driven disjunctive answer set solving. In Proceedings
of KR’08, pages 422–432. AAAI Press, 2008.

[17] C. Drescher and T. Walsh. A translational approach
to constraint answer set solving. Theory and Practice

of Logic Programming, 10(4-6):465–480, 2010.

[18] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diag-
nosis frontend of the dlv system. AI Communications,

12(1-2):99–111, 1999.

[19] T. Eiter and M. Fink. Uniform equivalence of logic

programs under the stable model semantics. In Pro-
ceedings of ICLP’03, pages 224–238. Springer, 2003.

[20] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and

H. Tompits. Combining answer set programming with
description logics for the semantic web. Artificial In-
telligence, 172(12-13):1495–1539, 2008.

[21] E. Erdem and V. Lifschitz. Tight logic programs. The-

ory and Practice of Logic Programming, 3(4-5):499–

518, 2003.

[22] E. Erdem and M. Wong. Rectilinear Steiner tree con-

struction using answer set programming. In Proceed-
ings of ICLP’04, pages 386–399. Springer, 2004.

[23] M. Gebser, B. Kaufmann, A. Neumann, and

T. Schaub. Advanced preprocessing for answer set
solving. In Proceedings of ECAI’08, pages 15–19. IOS

Press, 2008.

[24] M. Gebser, B. Kaufmann, and T. Schaub. The conflict-

driven answer set solver clasp: Progress report. In Pro-

ceedings of LPNMR’09, pages 509–514. Springer, 2009.

[25] M. Gebser, J. Lee, and Y. Lierler. Elementary sets

for logic programs. In Proceedings of AAAI’06. AAAI

Press, 2006.

[26] M. Gelfond and V. Lifschitz. Classical negation in logic

programs and disjunctive databases. New Generation
Computing, 9:365–385, 1991.

[27] M. Gelfond, V. Lifschitz, H. Przymusinska, and

M. Truszczyński. Disjunctive defaults. In Proceedings
of KR’91, pages 230–237. Morgan Kaufmann, 1991.

[28] I. P. Gent and T. Walsh. CSPLIB: A benchmark li-
brary for constraints. In Proceedings of CP’99, pages

480–481. Springer, 1999.

[29] R. L. Graham and B. L. Rothschild. Ramsey theory.
Studies in combinatorics, 17:80–99, 1978.

[30] M. Hall. Theory of Groups. McMillan, 1959.

[31] K. Heljanko and I. Niemelä. Bounded LTL model

checking with stable models. Theory and Practice of

Logic Programming, 3(4-5):519–550, 2003.

[32] H. H. Hoos. Stochastic Local Search - Methods, Mod-

els, Applications. infix-Verlag, 1999.

[33] T. Junttila and P. Kaski. Engineering an efficient

canonical labeling tool for large and sparse graphs. In
Proceedings of the Workshop on Algorithm Engineer-
ing and Experiments, ALENEX’07. SIAM, 2007.

[34] G. Katsirelos, N. Narodytska, and T. Walsh. Break-
ing generator symmetry. In Proceedings of Symcon’09,
2009.

16 Christian Drescher, Oana Tifrea and Toby Walsh / Symmetry-breaking Answer Set Solving

[35] B. Krishnamurthy. Short proofs for tricky formulas.

Acta Informatica, 22(3):253–275, 1985.

[36] J. Lee. A model-theoretic counterpart of loop formu-

las. In Proceedings of IJCAI’05, pages 503–508. Pro-

fessional Book Center, 2005.

[37] J. Lee and V. Lifschitz. Loop formulas for disjunctive
logic programs. In Proceedings of ICLP’03, pages 451–

465. Springer, 2003.

[38] N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina,

T. Eiter, W. Faber, M. Fink, G. Gottlob, R. Rosati,
D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka, B. Now-

icki, and W. Staniszkis. The INFOMIX system for ad-

vanced integration of incomplete and inconsistent data.
In Proceedings of SIGMOD’05, pages 915–917, 2005.

[39] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob,
S. Perri, and F. Scarcello. The dlv system for knowl-

edge representation and reasoning. ACM Transactions
on Computational Logic, 7:499–562, 2002.

[40] V. Lifschitz. Answer set programming and plan gen-
eration. Artificial Intelligence, 138(1-2):39–54, 2002.

[41] V. Lifschitz, D. Pearce, and A. Valverde. Strongly

equivalent logic programs. ACM Transactions on

Computational Logic, 2(4):526–541, 2001.

[42] T. Linke. Suitable graphs for answer set programming.

In Proceedings of ASP’03, pages 15–28, 2003.

[43] B. McKay. Practical graph isomorphism. In Numerical
mathematics and computing, pages 45–87, 1981.

[44] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson,
and M. Barry. An A-prolog decision support system for

the space shuttle. In Proceedings of PADL’01, pages

169–183. Springer, 2001.

[45] K. E. Petrie and B. M. Smith. Symmetry breaking in
graceful graphs. In Proceedings of CP’03, pages 930–

934. Springer, 2003.

[46] http://potassco.sourceforge.net/labs.html.

[47] http://potassco.sourceforge.net/.

[48] J.-F. Puget. On the satisfiability of symmetrical con-
strained satisfaction problems. In Proceedings of IS-

MIS’93, pages 350–361. Springer, 1993.

[49] http://www.satcompetition.org/.

[50] P. Simons, I. Niemelä, and T. Soininen. Extending and

implementing the stable model semantics. Artificial
Intelligence, 138(1-2):181–234, 2002.

[51] T. Soininen and I. Niemelä. Developing a declarative
rule language for applications in product configuration.
In Proceedings of PADL’99, pages 305–319. Springer,

1999.

[52] T. Syrjänen. Lparse 1.0 user’s manual.
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.

[53] http://vlsicad.eecs.umich.edu/BK/SAUCY/.

[54] http://www.tcs.hut.fi/Software/smodels/.

[55] A. Urquhart. Hard examples for resolution. Journal

of the ACM, 34(1):209–219, 1987.

[56] T. Walsh. Symmetry breaking using value precedence.
In Proceedings of ECAI’06, pages 168–172. IOS Press,
2006.

