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Abstract. A recent theoretical result by Achlioptas et al. shows that
many models of random binary constraint satisfaction problems become
trivially insoluble as problem size increases. This insolubility is partly
due to the presence of ‘lawed variables’, variables whose values are all
‘flawed’ (or unsupported). In this paper, we analyse how seriously ex-
isting work has been affected. We survey the literature to identify ex-
perimental studies that use models and parameters that may have been
affected by flaws. We then estimate theoretically and measure experi-
mentally the size at which flawed variables can be expected to occur. To
eliminate flawed values and variables in the models currently used, we
introduce a ‘flawless’ generator which puts a limited amount of structure
into the conflict matrix. We prove that such flawless problems are not
trivially insoluble for constraint tightnesses up to 1/2. We also prove that
the standard models B and C do not suffer from flaws when the cons-
traint tightness is less than the reciprocal of domain size. We consider
introducing types of structure into the constraint graph which are rare
in random graphs and present experimental results with such structured
graphs.
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1 Introduction

One of the most exciting areas in Al in recent years has been the study of phase
transition behaviour. In a seminal paper that inspired many later researchers,
Cheeseman, Kanefsky, and Taylor showed empirically that the hardest instances
to solve in a number of NP-complete problems often occur around a rapid tran-
sition in solubility [7]. Problems from such transitions in solubility are routinely
used to benchmark algorithms for many different NP-complete problems. Exper-
imental results about phase transition behaviour have come thick and fast since
the publication of [7]. For example, in random 3-SAT, the phase transition was
quickly shown to occur when the ratio of clauses to variables is approximately 4.3
[45]. Unfortunately, theory has often proved more difficult. A recent result proves
that the width of the phase transition in random 3-SAT narrows as problems in-
crease in size [15]. However, we only have rather loose but hard won bounds on
its actual location [16, 37]. For random constraint satisfaction problems (CSPs),
Achlioptas et al. recently provided a more negative theoretical result [1]. They
show that, as the number of variables increases, the conventional random models
produce problems which almost surely contain flawed variables and are there-
fore trivially insoluble. Thus, these models do not have an asymptotic phase
transition over most of their parameter space. This paper studies the impact
of this theoretical result on experimental studies. We show how to add struc-
ture to random problems to overcome such flaws, as well as to make them more
representative of problems met in practice.

The paper can be broadly divided into two parts reflecting our subtitle: flaws
and structure. In the first part of the paper, from Section 4 to Section 6, we
analyse the consequences of Achlioptas et al.’s discovery that the most commonly
used methods of generating random problems suffer from flaws. In Section 4 we
survey the literature, showing that many past studies may indeed have been
compromised by flaws. In Section 5 we estimate theoretically the likelihood of
flaws arising and in Section 6 confirm these estimates theoretically. In the second
part of the paper, from Section 7 to Section 10 we show how structure can be
added to generation methods to eliminate flaws and we consider using constraint
graphs with specific structure, to make random problems more representative of
problems met in practice. In Section 7 we introduce a new flawless method of
generating binary CSPs, and show how it can be used with existing models. In
Section 8, we justify the name ‘flawless’ by proving that, asymptotically, flawless
instances are not trivially insoluble. A corollary of this result is that problems
from the standard models B and C are not trivially insoluble in the limit, if the
constraint tightness < 1/m, where m is the domain size. We also report empirical
results using both the flawless method (Section 9) and constraint graphs which
have specific structure, rather than being purely random (Section 10).

2 Constraint Satisfaction

A binary constraint satisfaction problem consists of a set of variables, each with
a domain of values, and a set of binary constraints. Each constraint defines



the incompatible values for a pair of variables. Each assignment of values to
variables ruled out is called a nogood. We can describe the constraint between
the variables v, and vy by a conflict matrix. This is a 0-1 matrix with 0 in the
(1, 7) entry iff the ith value for v, is incompatible with the jth value for variable
vy and 1 otherwise. Associated with each problem is a constraint graph. This
has variables as vertices and edges between variables that appear together in a
constraint. The constraint satisfaction decision problem is to decide if there is an
assignment, of values to variables such that none of the constraints are violated.

Randomly-generated binary CSPs have been widely used experimentally, for
instance to compare different solution algorithms. Most experimental and the-
oretical studies use one of four simple models of random problems. In each of
these models, we generate a constraint graph G, and then for each edge in this
graph, we choose pairs of incompatible values for the associated conflict ma-
trix. The models differ in how we generate the constraint graph and how we
choose incompatible values. In each case, we can describe problems by the tuple
{n,m,p1,p2), where n is the number of variables, m is the uniform domain size,
p1 is a measure of the density of the constraint graph, and ps is a measure of
the tightness of the constraints.

model A: we independently select each one of the n(n — 1)/2 possible edges
in G with probability p;, and for each selected edge we pick each one of
the m? possible pairs of values, independently with probability p2, as being
incompatible;

model B: we randomly select exactly pin(n — 1)/2 edges for G, and for each
selected edge we randomly pick exactly pam? pairs of values as incompatible;

model C: we select each one of the n(n—1)/2 possible edges in G independently
with probability p;, and for each selected edge we randomly pick exactly
pam? pairs of values as incompatible;

model D: we randomly select exactly pin(n—1)/2 edges for G, and for each se-
lected edge we pick each one of the m? possible pairs of values, independently
with probability p,, as being incompatible;

While we use the same notation p; and py in each model, note that in some
cases the value is used as a proportion, and in others as a probability. For example
in model D, p; is used as a proportion but p, is used as a probability.

3 The Problem with Random Problems

Achlioptas et al. [1] identify a shortcoming of all four random models. They
prove that if po > 1/m then, as n — oo, there almost surely exists a flawed
variable, one for which every value is flawed. A value for a variable is flawed if,
when the value is assigned to the variable, there exists an adjacent variable in the
constraint graph that cannot be assigned a value without violating the constraint
between the two variables. A value for a variable is supported if it is not flawed. A
problem with a flawed variable cannot have a solution. They argue that therefore
“the currently used models are asymptotically uninteresting except, perhaps, for



a small region of their parameter space” (when ps < 1/m). Further, they claim
that “the threshold-like picture given by experimental results [with these models]
is misleading, since the problems with defining parameters in what is currently
perceived as the underconstrained region (because a solution can be found fast)
are in fact overconstrained for large n (obviously, larger than the values used
in experiments)”. As they point out, this result does not apply to problems in
which the constraints are not completely random but have a certain amount of
structure. For example, if conflict matrices only have 0’s on the diagonal then
neighbouring variables in the constraint graph must take different values. These
are graph colouring problems, which have good asymptotic properties.

Achlioptas et al. [1] propose an alternative random problem class, model
E, which they show has better asymptotic properties than models A to D. This
model does not separate the generation of the constraint graph from the selection
of the nogoods.

model E: we select uniformly, independently and with repetitions, pm?2n(n —
1)/2 nogoods out of the m?n(n — 1)/2 possible.

They show that there is a range of parameter values for which instances generated
by this model almost surely have a solution, and a range of parameters for which
instances almost surely do not have a solution, and hence this model does not
suffer from the deficiencies of the other models discussed earlier.

In passing, we note that model E is not entirely novel since Williams and Hogg
study random problems both with a fixed number of nogoods picked uniformly
from the set of all possible nogoods, and with a uniform probability of including
a nogood [58]. As Achlioptas et al. themselves observe [1], the expected number
of repetitions in model E is usually insignificant (for instance, it is O(1) when the
number of nogoods is @(n)), and repetitions are only allowed in order to simplify
the theoretical analysis. The differences between model E and the models of
Williams and Hogg are therefore likely to be slight.

More recently, Xu and Li [59] and Smith [56] have shown that variants of
models B and D respectively can exhibit interesting asymptotic behaviour. In
these variants, both the number of values, m, and the number of constraints
increase with n in a specified way, dependent on additional parameters. Further,
Xu and Li show that the location of the asymptotic phase transition can be
determined exactly for a certain range of these parameters.

Model E was proposed in order to deal with the difficulty that, as the number
of variables increases, asymptotically these models produce trivially insoluble
problems. It might therefore be natural to wonder whether model E should be
used as an experimental problem generator, in preference to the standard models.

However, models A to D generate the constraint graph and constraint ma-
trices separately, whereas in model E the constraint graph emerges from the
nogoods selected, and cannot be independently controlled. The standard models
therefore give much greater flexibility in the range of instance types that can
be generated. A particular shortcoming of model E as a source of benchmark
problems is that it generates complete constraint graphs for quite small values



of p, even though each constraint contains just a few nogoods. It is hard there-
fore to generate sparse constraint graphs with tight constraints. In model E,
we randomly select pm®n(n — 1)/2 nogoods independently and with repetitions.
By a coupon collector’s argument, we expect a complete constraint graph when
p ~ log(n(n —1)/2)/m?. For example, for n = 20, m = 10, we expect a complete
constraint graph when p = 0.052. With a larger number of nogoods, there is
a very small probability that the constraint graph is not complete. Hence, al-
though model E has good asymptotic properties, it is not suitable for use as a
problem generator at the small problem sizes which are feasible for experimental
studies.

4 Past Experimental Practice

Achlioptas et al.’s result, that models A to D are “asymptotically uninteresting”,
does not apply to random problems from models B and C for which py < 1/m.
Indeed, as we prove in Section 8, such problems are not trivially insoluble in
the limit. To study the practical significance of this restriction, we surveyed the
literature from 1994 (when phase transition experiments with random constraint
satisfaction problems first started to appear) to 1997, covering all papers in the
proceedings of the CP, AAAI, ECAI and IJCAI conferences which gave details
of experiments on random constraint satisfaction problems. The results of this
survey are summarized in Table 1. Just over a quarter of the papers include some
set of problems to which the results of [1] do not apply. Most commonly, these
exceptions are random problems with m = 3 and p» = 1/9 or 2/9, using Model
B. However, all of the papers which included inapplicable problem sets also
used some sets with ps > 1/m. In conclusion, all published experiments which
we have considered use ensembles of problems that satisfy the preconditions of
Achlioptas et al.’s result.

5 Probability of Flawed Variables

As Achlioptas et al. themselves suggest [1], most previous experimental studies
will not have been greatly influenced by the existence of flawed variables since
the number of variables is usually too small. Using the Markov inequality, they
give a first moment bound on the probability of a flawed variable,

Pr{problem has a flawed variable} < n(l — (]. — p;n)n)m

For example, for the (n,10,1,1/2) problem class, they calculate that the prob-
ability of a flawed variable is less than 1075 even for n as large as 200. At what
size of problem and sample do flawed variables start to occur?

By making a few simplifying assumptions, we can estimate the probability
of a flawed variable with reasonable accuracy. Our first assumption is that each
variable is connected to exactly pi(n — 1) others. In practice, some variables have
a greater degree, whilst others have a lesser degree. Fortunately, our experiments



Conference|Author initials Reference|Model|(n, m) B/C & p2 <1/m?
AAAT-94 |DF,RD] 7] B (25— 250,3) pz=1/9,2/9
[DF,RD] (18] B [(25 —275,3) p2 =1/9,2/9
(15 — 60, 6) ps = 4/36
(15 — 35, 9) no
NY,YO,HH] 60 B [(20,10) no
ECATI-94 |[PP] a7 D [(20,10), (20, 20, (30, 10) no
BMS] 51 B ,10 no
DI)] 42 B [(10,20) no
DS,ECF] 49 A |(50,8) no
CP-95 TPG,EM, PP, TW] 26 B [(10 — 110, 3) Pz = 2/9
(10, 10), (20,10), (10,5 — 50), ... no
[JL,PM] [39] A |(10,10 no
[FB,PR] B | B |(253) p2=1/9
(35,6), (50,6) p2 = 4/36
(15,9), (35,9) no
[FB,AG] [2] : P2 =2/9
(25,6), (15,9) no
TJCAT-95 |[ECF,PDH] [14] A [(50,8) no
[DF,RD] [19] B |(125,3) p2=1/9
(35, 6) p2 = 4/36
(250, 3), (50, 6), (35,9), ... no
PM,JL] [44] D |{10,10), (20, 10), (30, 10) no
KK,RD] [35] B [(100,8) no
BMS,SAG] [55] B [(20,10), (50,10) no
AAAT-96 |[AC,PJ] B B [(16,8), (32, 8) no
ECF,CDE] [13] B |(100,6) no
IPG,EM,PP,TW] [27] B [(20,10) no
[KK,RD] [36] B [(100,8), (125,6), (150,4) no
CP-96 [CB,JCR] 4] B [(35,6) ps = 4/36
(125,3), (350, 3) pr=1/9
(35,9), (50,86), (50,20), ... no
DAC,JF,IPG,EM,NT,TW]  [9] B [(20,10) no
1PG,EM,PP,BMS,TW] [24] B [(20 — 50, 10) no
JL,PM] [40] B |(15,5) pa =1/25 —4/25
(10, 10) p2 = 1/100 — 9/100
RJW] [57] A [(30,5), (100, 5) no
ECAI-96 |[JEB,EPKT,NRW] B B [(50,10) no
BC,GV,DM,PB] [6] B [(50,10), (20,5) no
SAG,BMS] [34] B |(30 — 70, 10) no
[ACMK,EPKT,JEB] (38] B [(30,5) p2 =0.12
(40, 5) p2 = 0.08
(60, 5) ps = 0.04
(10, 5), (20,5), (10,10), ... no
JL,PM] [41] B [(10,10) no
AAAT-97 |[AM,SES,GS] [43] B (6 -12,9) no
DRG,WKJ,WSH] [22] B |(10,5) no
1PG,EM,PP,TW] [28] B [(10—120,3) pa=2/9
(10,10 — 100) no
[DF,IR,LV] [20] B [(20,4) p2 = 0.125
(150, 3) pa = 0.222
(20 — 75, 6), (20, 10) no
CP-97 [IPG,JLU] 129] D [(10,10) no
IR,DF] 48 B [(100,8) no
DS,ECF] 50 B [(20,20), (40, 20) no
BMS,SAG] 54 B |(10,10) no
PG,JKH] 21 B |(50,10), (100,15), (250, 25), ... no
RD,CB] 10 B |(100, 20) no
IPG,EM, PP, PS, TW] 23 B [(20 — 70, 10) no
TJCAL-97 |[RD, CB] 11 B [(20, 10) no

Table 1. Parameters and models used in some previous studies of random constraint
satisfaction problems. The final column details studies in which model B or C was used
and p2 < 1/m. In the limit, such problem classes are not trivially insoluble.




show that this mean-field approximation does not introduce a large error into
the estimate. We also assume independence between the probabilities that the
different variables have at least one unflawed value. The probability that there
are no flawed variables is then simply the product of the probabilities that the
variables have at least one unflawed value. For model A problems, we have:

Pr{problem has a flawed variable}

= 1 — Pr{there are no flawed variables}

=1- (Pr{a variable has at least one unflawed value})"

=1- (1 — Pr{every value for the variable is ﬂawed})

=1- (1 — (PI‘{a value for the variable is ﬂa.wed}) )

=1- ( (Pr{value inconsistent with every value of an adjacent variable})m)n
(1 (1 — Pr{value consistent with a value of every adjacent variable})m)n

=1- (1 (1 - (Pr{value consistent with a value of an adjacent vauriable})p1 (n—l))m)n
(1 (1 — (1 — Pr{value inconsistent with every value of adjacent variable})pl(nfl) myn
(1=

1-— (1 — (Pr{value inconsistent with a value of adjacent va.riable})m)p1 ("71))7”)”

For model A, the probability that a given value is inconsistent with a value
of an adjacent variable is p». Hence, we obtain the estimate,

Pr{problem has a flawed variable} = 1 — (1 — (1 — (1 — p5*)P* (n—l))m)n

A similar derivation can be made for model B problems, except that the last line
can be omitted. Instead, we can calculate directly the value of the probability
that there is a value inconsistent with every value of an adjacent variable. In
model B each constraint matrix is picked uniformly from the (p:”;2) possible
matrices. If we assign a value to one of the variables involved in a constraint,
then ( ;”;Z”m) of the possible constraints have nogoods that rule out all the
values for the other variable. Hence, the probability that a particular value for
a variable is inconsistent with every value for an adjacent variable is given by,

m2 —m m2
Pr{value inconsistent with every value of adjacent variable} = 9 9
M —Mm 1M

Thus, for model B problems, the estimate for Pr{problem has a flawed variable} is:

(-6 /) T))

Note that we have assumed independence between the probabilities that the
m different values for a given variable are flawed. The probability that every
value for a variable is flawed is then simply the product of the probabilities that
each individual value is flawed. Whilst this independence assumption is valid for
model A, it is not strictly true for model B.



6 Occurrence of Flawed Variables

We can use these estimates for the probability of a flawed variable to determine
when flawed variables will start to occur in experimental studies. To test the
accuracy of the estimates and to compare them with the simpler first moment
bound, we generated random problems using model B. We tested each instance
for flawed variables. This test is linear in the size of the problem, so we were able
to experiment with problems containing thousands of variables with large sam-
ples. Since flawed variables are more likely in dense constraint graphs, we gen-
erated problems with complete constraint graphs (i.e. with p; = 1). As in other
studies (e.g. [33,24]), we also generated a separate ensemble of problems in which
the constraint graph has constant average degree, . That is, p; = v/(n — 1).
The constraint tightness for which the expected number of solutions is 1 is then
constant as n increases; this constraint tightness is often a good predictor of
the transition from soluble to insoluble problems ([52]). Empirically, the tran-
sition is observed to occur at roughly the same value of p over a wide range
of values of n. Keeping the average degree constant also reduces the probability
of flawed variables occurring. In Table 2, we give the results for (n,10,1,1/2)
and (n,10,19/(n — 1),1/2) with n from 200 to 4000. In this (and indeed all the
subsequent experiments) our estimate for the probability of a problem having
a flawed variable is very close to the observed fraction of problems with flawed
variables, and much closer than the first moment bound to the observed fraction
of flawed variables.

With complete constraint graphs, flawed variables are observed in samples
of 1000 when the problems have 500 or more variables. This is beyond the size
of problems typically solved with systematic procedures but potentially within
the reach of approximation or local search algorithms. By comparison, with
constraint graphs of constant average degree, flawed variables are not observed
in samples of 1000 even when the problems have thousands of variables. Because
of the greater homogeneity of model B problems, we expect flawed variables to
be less likely than in model A. Our estimates for the probability of a flawed
variable support this conjecture. For example, for (1000,10,1,1/2) problems,
our estimate for the probability that a model A problem has a flawed variable
is 0.99986 whilst for a model B problem it is 0.275.

With constraint graphs of constant average degree, we can estimate the size
of problems at which we expect to observe flawed variables. If p; = v/(n — 1)
and a fraction f of problems contain flawed variables then, by rearranging our
estimates for the probability of a flawed variable, the number of variables ny in
model A problems is,

ne— log(1 - f)
T log1 - (1= (1 =p5)M)™)

and in model B problems,

_ log(1 — f)
log(1 = (1= (1= (2 "0) / (o)) )™

nf



sample| fraction with estimate for|1st moment

n| size|flawed variables|Pr{flawed variable} bound
200  10° 0 < 107%]  0.000006
500/ 10* 0.0005 0.0006 0.0370
1000 10% 0.272 0.275 >1
1200 103 0.753 0.755 >1
1500  10° 1 0.999 >1
2000, 10° 1 1.000 >1
4000/ 10° 1 1.000 >1

(a) (n,10,1,1/2)

sample| fraction with estimate for|1st moment

n| size|flawed variables|Pr{flawed variable} bound
200/ 10° 0 <1073 0.000
5000 10° 0 <1073 0.037
1000 103 0 <1073 >1
1500 10® 0 <1073 >1
2000/ 10° 0 <1078 >1
4000 10% 0 <1073 >1

(b) (n,10,19/(n —1),1/2)

Table 2. The impact of flawed variables on model B problems with a domain size of 10
and: (a) complete constraint graphs; (b) constraint graphs of constant average degree.

For instance, for model B problems with similar parameters to those of Table 2
(i.e. m =10, v = 19 and p> = 1/2), 1/1000 ~ 3.2 10'7 and nq/» & 2.2 10".
That is, problems need more than 10!7 variables before we expect to observe
flawed variables in samples of 1000 problem instances, and more than 10'° vari-
ables before half can be expected to contain a flawed variable. As a consequence,
at this domain size, constraint tightness, and degree of the constraint graph,
experimental studies can safely ignore flawed variables.

With smaller domain sizes, we expect flawed variables to be more prevalent.
To test this hypothesis, we generated problems with m = 3, p» = 1/m and either
complete constraint graphs or constraint graphs of constant average degree. Note
that, for model B, po = 1/m is the smallest possible value which gives flawed
variables. If po < 1/m then at least one value for each variable must be supported,
as each constraint rules out strictly less than m possible values. Note also that
problems with m = 3 and p» = 1/m have the same domain size and constraint
tightness as 3-colouring problems. Table 3 gives the results for (n,3,1,1/3) and
(n,3,19/(n — 1),1/3) with n = 10 to 2000. With complete constraint graphs,
flawed variables occur with significant frequency in problems with as few as 20
variables. With constraint graphs of constant average degree, although flawed
variables again occur in problems with as few as 20 variables, their frequency
increases much more slowly with n. We need a thousand or more variables to
ensure that problems almost always include a flawed variable. By comparison,
with complete constraint graphs, we need just 60 or so variables.



Some of the experiments surveyed in Section 4 used random problems con-
taining hundreds of variables with m = 3 and ps between 1/9 and 4/9. We
performed a simple experiment to show that flawed values will have significantly
influenced such experiments. We tested problems generated using model B with
100 variables, p; = 4/9, and 92 constraints, repeating one of the experiments
reported by [18] at the 50% solubility point. In a sample of 100, all problems
contained flawed values. On average a problem contained 26.7 flawed values (min-
imum 19, maximum 36). Four problems contained a flawed variable and were
thus trivially insoluble. The extent to which these flaws influenced behaviour can
also be seen in Section 9, where we compare the phase transition from model
B with a new generation method which is guaranteed to give problems without
flawed values or variables.

The papers in Table 1 were for the most part using experiments on ran-
dom CSPs in order to compare the performance of different solution methods.
The presence of flawed values or variables would favour methods which look for
such flaws, and unless this is recognised by the experimenter can distort the
conclusions.

sample| fraction with estimate for|1st moment
n| size/flawed variables|Pr{flawed variable} bound
10/ 103 0.006 0.011 0.311
20 10° 0.143 0.156 >1
30| 10° 0.504 0.536 >1
40| 10 0.869 0.882 >1
50/ 10° 0.987 0.990 >1
60| 10° 1 1.000 >1

(a) (n,3,1,1/3)

sample| fraction with estimate for|1st moment

n| size|flawed variables|Pr{flawed variable} bound

20 10° 0.143 0.156 >1
50/ 10° 0.318 0.345 >1
100, 10° 0.524 0.571 >1
200 108 0.796 0.816 >1
500 10% 0.986 0.985 >1
1000 108 0.999 1.000 >1
2000 10° 1 1.000 >1

(b) (n,3,19/(n —1),1/3)

Table 3. The impact of flawed variables on model B problems with a small domain size
and: (a) complete constraint graph; (b) constraint graph of constant average degree.



7 Flawless Random Problem Generation

Until this point in the paper, we have been analysing the effect of flawed values
and variables on past experiments and existing models. Unfortunately no existing
model meets the twin desiderata of allowing the flexibility of traditional models
like A to D, with the good asymptotic property of model E. We will therefore
introduce some simple variants of models A to D which have similar asymptotic
properties to those holding for model E but allow us to generate the constraint
graph and the conflict matrices independently as in models A to D. Aside from
the absence of flaws, these models give problems very similar to those generated
by the traditional models.

The reason that traditional models of random CSPs suffer asymptotically
from trivial insolubility is that they allow flawed values. Flawed values can cause
flawed variables, which in turn cause trivial insolubility. Since a flawed value is
exactly a value without support across some constraint, simply insisting that
all constraints are arc consistent guarantees that flawed values and variables
cannot occur. It is easy to adapt all the traditional models by discarding and re-
generating constraints which are not arc consistent. Unfortunately this does not
give us an asymptotic guarantee against trivial insolubility, because simple cycles
in a small part of the constraint graph might make a problem insoluble, and these
may be sufficiently probable to lead asymptotically to trivial insolubility.

Instead we propose a new way of generating conflict matrices which we call
‘flawless’ since problems are guaranteed not to be trivially insoluble. The basic
idea is that each value is supported by at least one unique value, i.e. at least one
value which is not also required to support another value. We cannot then get a
chain reaction in which support for values of several other variables disappears
if we remove one value. We first introduce the flawless model and then prove its
desirable asymptotic properties.

Definition 1 (Flawless). A conflict matriz is flawless if there is a permu-
tation w of 1,2,... ,m such that all the pairs of values (1,w(1)),(2,7(2)),...,
(m,m(m)) are allowed.

It is clear that a flawless matrix must be arc consistent, because the value (%)
always supports value ¢. We mistakenly believed the converse, and are grateful
to Yeo Shao Hong for suggesting the matrix in Figure 1 which contradicts this.!
Insisting on flawless matrices gives us good asymptotic properties as we shall
prove in the next section. First, however, we illustrate how easy it is to adapt
any of the existing models A to D to generate flawless conflict matrices.

For models B and C, in which all conflicts for a constraint are selected to-
gether, there is a simple way to generate flawless instances. Given a pair of
variables between which we wish to construct a constraint, we choose a random

! Unfortunately the mistake is present in the original Research Report version of this
paper [25], so we ask readers to use definitions from this paper and not the original
report. In particular, note that our definition of flawless here corresponds to the
definition of “strongly flawless” in the original.
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Fig. 1. A conflict matrix which is arc consistent but not flawless. Since a permutation
of 1,...m corresponds to a placement of m non-attacking rooks on a m by m chess
board, we can see that the problem is not flawless by trying to place 3 rooks on the
squares where there are 1s in the matrix. In this case two rooks in the third row and
in the third column leave no space for a third rook.

V2 V2
1234 1234
110010 110110
’U121000 U121000
310001 3(1111
410100 411100

Fig. 2. The first conflict matrix shows a flawless constraint arising from the permu-
tation 3,1,4,2. Even though the tightness is 3/4, every value for both variables is
supported. The second conflict matrix shows a flawless constraint with tightness 7/16
derived from the first conflict matrix by choosing randomly 7 of the 12 conflicts.

permutation 7 of 1,2,3... ,m. The set of goods based on this permutation is
simply {(1,7(1)),(2,7(2)), (3,7(3)),...,(m,nm(m))}. A conflict matrix that con-
tains these goods cannot give a flawed value. We therefore remove the goods just
chosen from the set of all possible conflicts and choose pm? elements randomly
from the remainder. An example is shown in Figure 2. For models A and D the
process is similar, except that having removed a set of goods, we increase ps to
mps/(m — 1) before selecting conflicts.

8 Theory of Flawlessness

We now prove some asymptotic results about flaws. We will show the unexpected
result that conflict matrices generated by the flawless variants of models B and C
are not trivially insoluble for all p, up to p» < 1/2. As a corollary, the standard
models B and C do not suffer asymptotically from trivial insolubility whenever
p2 < 1/m. Whilst these results do not apply directly to the flawless variants
of models A and D, they can be made to by adapting those models to reject
candidate conflict matrices in which the proportion of conflicts selected > 1/2.

The proof of our main result proceeds in a manner similar to that of Achliop-
tas et al.’s proof of the analogous result for model E: we show that a constraint
graph in which each component has at most one cycle is guaranteed to be solu-



ble, and appeal to a graph theoretic result to show that such constraint graphs
occur with a ratio of constraints to variables bounded away from zero.

Lemma 1. If the constraint graph of a flawless binary CSP (without unary con-
straints) is a forest, the instance has a solution. Furthermore, for each variable
in the instance, and each value in its domain, there is a solution in which it
takes that value.

Proof. A flawless binary CSP is necessarily strongly arc consistent, since we
assume that there are no unary constraints. A forest has width 1, and we can
apply Freuder’s Theorem [12] to show that search is backtrack free. Because
there are no unary constraints, we can choose the first variable and its value
arbitrarily, and extend it to a solution.

Given flawless constraint matrices, we have the following theorem. The fact
that this result extends to such a large value of po, i.e. %, is rather surprising.

Theorem 1. If a binary CSP with uniform domain size contains only flawless
constraints with p; < 1/2, and each component in the constraint graph contains
at most one cycle, the instance is soluble.

Proof. If the constraint graph is acyclic, Lemma 1 applies, and with the result for
one component we can apply it to each component of a graph in turn. So for the
rest of the proof we consider a constraint graph containing a single component
which contains exactly one cycle. We will show that there is an assignment which
satisfies all the constraints in the cycle. Having done that, the assignment can
be extended to the entire component by giving each variable in the cycle the
relevant value, removing all constraints in the cycle, and appealing to Lemma 1.
Thus we have reduced the proof to showing that if a cycle of flawless constraints
is insoluble, p, > 1/2.

For the general case of a cycle of length three or more, consider an insoluble
cycle, say v—zg—x1 —...—xp—v. (In a triangle, k = 1.) Consider the constraints
v — 2o and x; — v. We claim that these two constraint matrices must, between
them, contain at least m? conflicts, so ps > % The proof will be completed by
justifying the claim.

If there is no satisfying assignment, the value v = 1 in particular must be
impossible. Some number r of conflicts involving v = 1 and the constraint v —
xo rules out r values for xg, leaving m — r values when v = 1. Without loss
of generality, suppose that the remaining values are 1,2,...,m — r. Since the
constraint xo — z; is flawless, note that there is a permutation 7 such that each
pair (zg = i,21 = mo(¢)) is allowed by the constraint. This means that all the
pairs (zg = 1,21 = mo(1)), (w0 = 2,21 = m(2)), - -- (w0 = m—r, 31 = We(M—T)),
are consistent with the constraint xo — x1, so there are at least m — r distinct
values of 2 consistent with the constraints in the chain v — zg — 21 when v = 1.
The process iterates since each constraint is flawless. Thus there are m—r distinct
values of x;, consistent with the chain of constraints v —xg — 21 — ... — 2 when
v = 1. We have ignored only the constraint zj — v. If this is to rule out v =1,
there must be at least m — r conflicts involving v = 1. Thus between the two



constraints zr — v and v — xg, there are at least r + (m — r) = m conflicts
involving v = 1. Exactly the same holds for all m values of v, and the set of
m conflicts that must exist for each value are all disjoint. Therefore the two
constraints z; — v and v — xy contain at least m? conflicts, completing the proof.

Theorem 2. In Models B or C with p1 = 2¢/n and ¢ < 1/2, almost all constr-
aint graphs have no components with more than one cycle, that is the components
are trees or unicyclic.

Proof. For model C, the result follows from Theorem 4.2.6 from Palmer [46].
The same result applies to Model B, because the property of being a tree or
unicyclic is ‘convex’ in the terms of Appendix VI of Palmer. Theorem 6.1 then
applies.?

The following results follows immediately from Theorems 1 and 2.

Theorem 3. Almost all random binary CSPs from models B or C with flawless
constraints, ps < %, and fewer than cn constraints, for ¢ < 1/2, are soluble.

Two corollaries follow from this result which confirm the theoretical benefits
of flawless problem generation that we have already claimed. The second is not
immediately obvious, but follows because instances from the standard models B
and C with py < % are automatically flawless. This can be shown by induction
on the domain size m. The base case is that a 1 x 1 conflict matrix with py < 1
must consist of a single, allowed, pair. In the step case, an m x m conflict matrix
with ps < % must have m — 1 or fewer conflicts. Suppose one conflict excludes
the pair of values i, j. There must be at least one value j' consistent with 4, so
set w(i) = j'. Removing the row ¢ and the column j' from the matrix yields
an m — 1 x m — 1 conflict matrix with m — 2 or fewer conflicts, and we can
appeal to induction to complete the construction of the permutation 7« required
for flawlessness.

Corollary 1. Problems generated according to flawless model B or C at any
value of pa < % do not suffer asymptotically from trivial insolubility.

Corollary 2. Problems generated according to standard model B or C at any
value of p2 < 1/m do not suffer asymptotically from trivial insolubility.

These results do not apply directly to flawless models A and D, because
for any value of po > 0 they can generate individual conflict matrices with at
least half of the possible conflicts selected. We can obtain similar asymptotic
results if we condition the models to reject any such conflict matrix. While
inelegant, this step will have little practical effect on generated problems where
p2 is significantly less than 1/2. Apart from the rarity of matrices with the
selected proportion of conflicts > 1/2, the proof of Theorem 1 shows that every
pair of constraints in a cycle of flawless constraints must contain at least m?
conflicts to make a cycle insoluble. This makes cyclic flaws even less likely in

2 We thank Joe Culberson for help with this proof.



flawless models A and D. It is probable therefore that flawless models A and D
will not be affected by flaws at practical problem sizes, and this likelihood can be
extended to a guarantee if the models are adapted to ensure that the proportion
of conflicts in any matrix < 1/2.

Achlioptas et al. [1] say that “Attempting to fix the old models, simply by
conditioning on each value having degree less than D [m in our notation] in C
[i.e. p2 < 1/m] will probably not lead to any interesting new models.” Instead,
they suggest that it is more important to “shift from constraints that contain an
entirely random subset of p» D? forbidden pairs [pam? nogoods in our notation]
... to constraints where this subset has some structure.” This is exactly what
we have done by introducing flawless models. We suggest that flawless problem
generation is a remedy more in keeping with Achlioptas et al.’s recommendation
than their own model E. To guarantee an absence of flawed values, the minimum
property required is arc consistency. However, this is not enough to prevent
problems from being trivially insoluble. Our flawless generation method enforces
a stronger condition than arc consistency, to guard against trivial insolubility for
more complex reasons. Even if conflict matrices are arc consistent, if they are not
flawless, a chain reaction of value removals can be triggered as propagation takes
place. For example in the matrix of Figure 1 removing the single value 3 from
either variable removes support from two values 1 & 2 of the other variable.
Flawlessness prevents such chain reactions occurring and, as we have proved,
prevents trivial asymptotic behaviour. It would be very interesting in the future
to investigate the use of more complex structures in conflict matrices.

Our theoretical results for models B and C show a region of almost sure
solubility when p; < 1/(n — 1). Problems in this region can contain many more
conflicts than model E problems in their almost surely soluble region. That is
because model E just adds one conflict at a time, while in our case each constraint
can have up to m?/2 — 1 conflicts in the flawless case. For models B, C, and the
restricted versions of A and D, we have shown a soluble region when CSPs have
O(n) constraints, the same result obtained for model E previously [1]. When p,
is fixed it is easy to show insolubility also occurs with O(n) constraints. It is
therefore likely that in these cases, there are genuine phase transitions between
the almost-all-soluble and almost-all-insoluble regions.

To summarise, we have shown two surprising results. First, somewhat con-
trary to expectation, the value p, = 1/m does precisely characterise the region
of trivial insolubility in models B and C of binary CSPs. Second, for flawless
generation methods, trivial insolubility is avoided up until the very high value
of p» = 1/2. This second result can be made to apply to flawless models A and
D if the models are adapted to reject constraints with at least half the possible
conflicts selected.



9 Experimental Comparison of Flawless and Flawed
Models

Based on our analysis in Section 6, the experiments from the literature most
likely to contain flawed variables are those with domain size 3, such as those
reported by Frost and Dechter in [18]. We would expect ordinary and flawless
versions of model B to behave very differently on such problems. To test this,
we implemented flawless model B and tested it against model B on the class
(100, 3, p1,4/9). For this problem class, Frost and Dechter reported that 50%
of problems were soluble in model B at 92 constraints, i.e. p; ~ 0.01858. We
found a similar result, with 49.8% soluble problems at 92 constraints in model B
with a sample of 1000. However, when the same parameters were used with flaw-
less model B, we observed 99.3% solubility. This suggests that flawed variables
played a significant role in this experiment. To confirm this, we generated and
solved random problems using both models, varying the number of constraints
(and hence p;) to cover the transition from soluble to insoluble problems, with
a sample size of 1000. The probability of solubility is shown in Figure 3. The
transitions in solubility are very different for the two models. Indeed, the mushy
region for model B (the region in which we have both soluble and insoluble prob-
lems) started with only 20 constraints on the 100 variables, at p; & 0.004, with a
single insoluble problem. This problem contained a flawed variable. For flawless
model B, we saw 52.4% solubility at 112 constraints (p; =~ 0.023) compared to
12.6% for model B. The transition for flawless model B is very sharp, whilst
that for ordinary model B is very spread out. While these two transitions end at
about the same place, the transitions may occur over completely different regions
as n increases, with the flawed transition eventually converging on p; = 0.

Figure 4 shows the difference in median search cost, measured by the number
of consistency checks. The problems were solved using the forward checking
algorithm with conflict-directed backjumping and the fail-first heuristic (FC-
CBJ-FF); the same algorithm was used for all subsequent experiments. The
peak median cost for flawless problems is greater than for standard model B
problems, and the flawless problems remain much harder as problems become
more constrained. We conjecture that as problems become more constrained,
flaws in flaw-prone problems become more common, and flawed problems will
usually be quickly proved insoluble. The relative behaviour of other measures of
search cost such as mean and maximum is broadly similar to that of the median.

Would flawless problem generation have affected experiments which were not
influenced by flawed variables? To investigate this, we compared flawless model
B with model B using the parameters n = 20 and m = 10 and sample size 1000 at
each value of p,. Results are shown in Figure 5. The transitions in probability are
almost indistinguishable. The search cost is shown in Figure 6. Over the phase
transition region, search cost is very similar in the two models. As problems
become more constrained, flawless model B problems are very slightly harder to
prove insoluble than ordinary model B problems. This is perhaps to be expected
as flaws become more likely with increasing constrainedness.
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Fig. 3. Probability of solubility (y-axis) against p1 (x-axis) for ordinary and flawless
model B for (100, 3, p1,4/9) problems.

10000 T T T T T T T ]
F Flawless model B —+—
Model B -->-- 1
1000 [
100 F
10 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Fig. 4. Median number of consistency checks used (y-axis) against p; (x-axis) for FC-
CBJ-FF on ordinary and flawless model B problems with (100, 3, p1,4/9).
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Fig. 5. Probability of solubility (y-axis) against p2 (x-axis) for ordinary and flawless
(20,10,1, p2) model B problems.
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Fig. 6. Median number of checks used (y-axis) against ps (x-axis) for ordinary and
flawless (20, 10, 1, p2) model B problems.



To conclude, experimenters should be aware of the danger of producing prob-
lems with flawed values when using the standard models A to D, and should use
a flawless generator when the occurrence of flaws might affect their conclusions.
For many purposes, a flawless generator could be used as a matter of course,
since the results will only be significantly different from those produced by the
equivalent flaw-prone generators exactly when flaws are occurring.

10 Structured Constraint Graphs

Random problems provide a plentiful and unbiased source of problems for bench-
marking. However, we must be careful that our algorithms do not become tuned
to solve random problems and perform poorly on real problems. Real problems
can contain structures that occur very rarely in the models discussed here, even
when the real problems contain only binary constraints. For example, in a graph
colouring problem derived from a 1994 exam time-tabling problem at Edinburgh
University, Gent and Walsh found a 10-clique of nodes with only 9 colours avail-
able [30]. This was in a 59 node graph with 485 edges. The presence of this clique
dominated the performance of their graph colouring algorithm.

Random graphs of similar size and density are very unlikely to contain such
a large clique. The probability that k& given nodes in a random graph with n
nodes and e edges are connected by the right edges to form a k-clique is,

H e—1
i=0 (g) —i

From this we can get the expected number of k-cliques and hence by the Markov
inequality a bound on the probability of the graph containing a k-clique:

k
G-t .
n e—1
Pr{m—clique in graph of n nodes & e edges} < k H n

i=0 (2) —1

For n =59, k = 10 and e = 485, the probability of clique of size 10 or larger
is less than 10~'4. It is thus very unlikely that a random graph of the same
size and density as the graph in the exam time-tabling problem would contain a
regular structure like a 10-clique. However, cliques of this size occur in the real
data due to the module structure within courses.

As another example, Gomes et al. have proposed quasigroup completion as
a constraint satisfaction benchmark that models some of the structure found in
sports scheduling and fibre-optic routing problems [32]. Quasigroup completion
is the problem of filling in the missing entries in a Latin square, a multiplication
table in which each entry appears once in every row and column. An order n
quasigroup problem can be formulated as n-colouring a graph with n? nodes
and n?(n — 1) edges. The edges form 2n cliques, with each clique being of size




n and representing the constraint that each colour appears once in every row
or column. For example, an order 10 quasigroup has 20 cliques of size 10 in
a 100 node graph with 900 edges. With a random graph of this size and edge
density, the probability of a clique of size 10 or larger is less than 10720, Tt
is thus extremely unlikely that a random graph of this size and density would
contain a regular structure like a 10-clique, let alone 20 of them linked together.
The random models will therefore not generate sets of problems like the exam
time-tabling problem or quasigroup completion.

It is clear that the existing models can be adapted to use any constraint
graph that is desired. In models A to D, problems are generated in a two stage
process: the first stage is to generate a constraint graph, and the second stage
is to generate conflict matrices for edges in this graph. There is no technical
reason why the first stage must be random; it can instead involve a particular
constraint graph. This approach was taken by Smith and Grant [53] where they
used a “braided” constraint graph and generated random constraints on this
as in model B. Given a particular constraint graph, we can then generate the
conflict matrices as in models A & C or as in models B & D, including generating
flawless constraints if required.

To determine how these structured models differ from unstructured models,
we experimented on the timetabling and quasigroup graphs mentioned earlier.
To focus the comparison just on the introduction of structure into the constraint
graph, we only report results for flawless model B. We observed broadly similar
results using model B. Our first experiments are on the constraint graph taken
from the quasigroup problem of order 7. This problem has 49 variables all with
domains of size 7. Each variable is in constraints with 12 others, giving a total of
294 constraints. In the original quasigroup problem these constraints are differ-
ence constraints. Here, we randomly generated flawless constraints of different
tightnesses using the model B method. As a comparison, we generated unstruc-
tured flawless model B problems with the same number of variables, same domain
size and same density of edges in their constraint graph, i.e. (49,7,0.25, p2) pro-
blems. We tested 100 problems at each value of ps from 1/49 to 25/49 in steps
of 1/49, using the FC-CBJ-FF algorithm. Results are shown in Figure 7 and
Figure 8. While the transition in solubility occurs at very similar values of ps in
the two experiments, there is a large difference in search cost. In particular, the
structured instances seem much harder than the random problems at the phase
transition.

We also experimented with the constraint graph derived from the 1994 exam
timetabling problem at Edinburgh University. The graph has 59 nodes and 485
edges. Nodes correspond to exams, while each edge corresponds to two exams
to be taken by one student, for which clashes must be avoided. In the original
problem there were 36 values, corresponding to 9 days with 4 exams per day.
Gent and Walsh solved the original problem using using Prosser’s CSPLab code
for FC-CBJ-FF with directed k-consistency [30]. The problem was insoluble
and took 411,770,462 consistency checks. Unfortunately, solving an ensemble of
structured problems based on this constraint graph was prohibitively expensive
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Fig. 7. Probability of solubility (y-axis) against ps (x-axis) for flawless model B prob-
lems generated with either the constraint graph of a quasigroup problem of order 7 or
a random constraint graphs with the same number of nodes and edges.
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with 36 values in the domain of each variable. Gent and Walsh showed that
the original exam timetabling problem was insoluble because it contains a 10-
clique of exams which all had to happen at different times with only 9 time
slots available. Since our problem generation method preserves this 10-clique, we
generated problems with 9 values for each variable. We tested flawless model B on
random problems generated either with this constraint graph, or with a random
graph with the same number of nodes and edges. Sample size was again 100, and
we tested values of ps from 1/81 to 35/81 in steps of 1/81 using FC-CBJ-FF.
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Fig. 9. Probability of solubility (y-axis) against p» (x-axis) for flawless model B probl-
ems generated with either the constraint graph of the 1994 exam timetabling problem
or a random constraint graph with the same number of nodes and edges.

Figure 9 shows the probability in solubility as the constraint tightness is varied.
The transition in solubility for problems with random constraint graphs is almost
identical to that for problems with structured constraint graphs. Figure 10 shows
the median search cost. The difference in search cost is the opposite of that seen
with the quasigroup constraint graph. Problems with random constraint graphs
require about 100 times more consistency checks at and beyond py, = 0.21.
Similar behaviour is seen in mean and maximum search cost.

To summarise, we have experimented with ensembles of problems based on
specific constraint graphs. Such structured problem generation is particularly
interesting when the constraint graph contains structure unlikely to occur in
random graphs. We have experimented on two such graphs, based on a quasi-
group and a timetabling problem. In both cases, search cost was very different
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Fig. 10. Median number of checks used (y-axis) against p» (x-axis) for flawless model
B problems generated with either the constraint graph of the 1994 exam timetabling
problem or a random constraint graph with the same number of nodes and edges.

to that seen with existing random models; structured problems using the quasi-
group constraint graph were harder than purely random problems with equiv-
alent parameter values, while the timetabling graph gave easier problems than
the random problems. Structured problem generation allows us to repeatedly
test constraint graphs of special interest. This helps address the difficulty that
randomly generated problems may not be realistic, whilst realistic problems may
be hard to collect in statistically significant sample sizes.

11 Conclusions

We have performed a detailed study of the consequences of a recent theoretical
result of Achlioptas et al. [1]. This result shows that as the number of vari-
bles increases, the traditional models of random problems almost surely contain
a flawed variable and are therefore trivially insoluble, provided the constraint
tightness is at least 1/m, where m is the domain size. We proved that this re-
sult is tight for models B and C since they do not suffer from such flaws for
p2 < 1/m. Our survey of previous experimental studies shows that many studies
have, however, used problems with ps > 1/m. Fortunately, most (but not all)
of these studies use too few variables and too large domains to contain flawed
variables. As expected, flawed variables occur most often with dense constraint



graphs and small domains. With constraint graphs of fixed average degree and
large domains, the possibility of flawed variables can usually be ignored.

Achlioptas et al. propose an alternative random model (model E) which does
not suffer from the deficiencies of the standard models as the number of variables
increases, and so give the first evidence that there could be an asymptotic phase
transition in random constraint satisfaction problems. However, from the exper-
imental point of view, model E is much less flexible than the standard models,
since the constraint density and constraint tightness cannot be controlled inde-
pendently.

We have shown how a limited amount of structure can be introduced into the
conflict matrices to make them flawless. We have proved that problems generated
by flawless variants of the models A, B, C and D are not trivially insoluble in
the limit for all values of ps less than 1/2. We can thereby generate ensembles of
problems that are not trivially insoluble due to the presence of flawed variables.
We have also reported on experiments with problems that contain structures in
their constraint graphs which are rare in random graphs.

What general lessons can be learnt from this study? First, experiments can
benefit greatly from theoretical results like those of Achlioptas et al. Flawed
variables are likely to have occurred in a small but significant number of pre-
vious experimental studies. A simple arc consistency algorithm would therefore
have shown very quickly that these problems have no solution. Experimenters
should take this into account when planning future experiments, and consider
choosing a flawless problem generator. Second, theory can benefit greatly from
experiments. Theory provided estimates for the probability of problems having
flawed variables based on some simplifying assumptions. Experiments quickly
determined the accuracy of such estimates. Third, we must continue to improve
and extend our random models so that we have a wide range of realistic and hard
problems on which to test algorithms. Such extensions can introduce structure
either into the constraint graph (as in the experiments reported in section 10)
or into the conflict matrix (as in the flawless generation method proposed here)
or both.
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