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Abstract

We consider soft constraint problems where some of the rEneées may be
unspecified. This models, for example, settings where agaet distributed and
have privacy issues, or where there is an ongoing preferelizitation process.
In this context, we study how to find an optimal solution withdaving to wait
for all the preferences. In particular, we define algoriththat interleave search
and preference elicitation, to find a solution which is neaeity optimal, that is,
optimal no matter what the missing data will be, with the ainagk the user to re-
veal as few preferences as possible. We define a combinddgalvd preference
elicitation scheme with a large number of different insttitins, each correspond-
ing to a concrete algorithm, which we compare experimentsle compute both
the number of elicited preferences and the user effort, vhiay be larger, as it
contains all the preference values the user has to compltte &ble to respond
to the elicitation requests. While the number of elicitedfprences is important
when the concern is to communicate as little information@ssible, the user ef-
fort measures also the hidden work the user has to do to ba@bammunicate
the elicited preferences. Our experimental results orsidak fuzzy, weighted
and temporal incomplete CSPs show that some of our algasitimnvery good at
finding a necessarily optimal solution while asking the dseonly a very small
fraction of the missing preferences. The user effort is atgy small for the best
algorithms.
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1 Introduction

Traditionally, tasks such as scheduling, planning, andue® allocation have been
tackled using several techniques, among which constre@&staning is one of the most
promising. The task is represented by a set of variableg, dioenains, and a set of
constraints, and a solution of the problem is an assignnoeait the variables in their
domains such that all constraints are satisfied. Prefesarogbjective functions have
been used to extend this formalism and allow for the modgbinconstraint optimiza-
tion, rather than satisfaction, problems. In all these aggines, the data (variables, do-
mains, constraints) are completely known before the sglpiocess starts. However,
the increasing use of web services and in general of mudtivegpplications demands
for the formalization and handling of data that is only paltlyiknown when the solving
process works, and that can be added later, for exampleigimgbn [23, 24]. In many
web applications, data may come from different sources;himay provide their piece
of information at different times. Also, in multi-agent 8egs, data provided by some
agents may be voluntarily hidden due to privacy reasonspahdreleased if needed
to find a solution to the problem.

Here we consider these issues focusing on constraint ggatiion problems where
we look for an optimal solution. In particular, we considenlplems where constraints
are replaced by soft constraints, in which each assignmehgtvariables of the con-
straint has an associated preference coming from a prefesat [1]. We assume that
variables, domains, and constraint topology are giveneab#ginning, while the pref-
erences are partially specified and are elicited duringahergy process.

There are several application domains where this might e2iL€One regards the
fact that quantitative preferences, needed in soft cansttanay be difficult and te-
dious to provide for a user. Another one concerns multi-agettings, where agents
agree on the structures of the problem but they may provigie tineferences on dif-
ferent parts of the problem at different times. Finally, ggoneferences can be initially
hidden because of privacy reasons.

Formally, we take the soft constraint formalism and we allomsome preferences
to be left unspecified. In our setting, users may know all tleégrences but are willing
to reveal only some of them at the beginning. Although sontb@preferences can be
missing, it could still be feasible to find an optimal solutidf not, we ask the user to
provide some of the missing preferences and we start agaimtfre new problem. We
consider two notions of optimal solutiopossibly optimasolutions are assignments to
all the variables that are optimal &t least one wayn which the currently unspecified
preferences can be revealed, whitcessarily optimadolutions are assignments to all
the variables that are optimal &l waysin which the currently unspecified preferences
can be revealed. This notation comes from multi-agent peafee aggregation [17, 20,
21], where, in the context of voting theory, some prefersrare missing but still one
would like to declare a winner.

Given an incomplete soft constraint problem (ISCSP), itso$g@ossibly optimal
solutions is never empty, while the set of necessarily ogitsolutions can be empty.
Of course what we would like to find is a necessarily optimalion, to be on the
safe side: such solutions are optimal regardless of how tissimy preferences are
specified. Unfortunately, such a set may be empty. In this ttzere are two choices:



either we may be satisfied with a possibly optimal solutionye can elicit some of the
missing preferences from the user and see if the new ISCS®& heasessarily optimal
solution.

In this paper we follow this second approach and we repegpitheess until the
current ISCSP has at least one necessarily optimal solutioorder to do that, we
exploit a modified version of the classical branch and bowheése and we consider
different elicitation strategies. In particular, we defingeneral algorithm scheme that
is based on three parameteshento elicit, whatto elicit, andwhochooses the value to
be assigned to the next variable. For example, we may ordit slissing preferences
after running branch and bound to exhaustion, or at the erglexfy complete branch,
or even at every node in the search tree. Also, we may elicihiaking preferences
related to the candidate solution, or we might just ask tiee ios the worst preference
among some missing ones. Finally, when choosing the valagsign to a variable, we
might ask the user, who knows or can compute (all or some efirissing preferences,
for help.

We test all possible instances of the scheme, obtained bygtsd different elicita-
tion strategies, on randomly generated soft constrairtlpros (fuzzy and weighted).
By varying the number of variables, the tightness and dgos$itonstraints as well as
the percentage of missing preferences, we produce a diedraind meaningful test
set. The experiments demonstrate that some of the algarigtinenvery good at finding
necessarily optimal solutions without eliciting too mamgferences. We also test some
of the algorithms on problems with hard constraints and aaytemporal constraints.
Our experimental study on randomly generated problemsifeus to filter out algo-
rithms with a poor performance and, thus, to identify thdwse &re more promising for
future testing on real-life scenarios.

In our experiments, we compute the elicited preferencasjshthe missing values
that the user has to provide to the system because they arested by the algorithm.
Providing these values usually has a cost, either in terntfeeafomputational effort, or
in terms of a decrease in privacy, or in terms of the commuioicdandwidth. Whilst
knowinghow many preferences are elicitedimportant, we also compute a measure
of theuser’s effort This may be much larger than the number of elicited prefagen
as it contains all the preference values the user may haverpute to be able to
respond to the elicitation requests. For example, suppesesWwthe user for the worst
preference value amorigmissing ones. The user will communicate only one value,
but he may have to compute and considekalf them. Knowing the number of elicited
preferences is important when the concern is to communastitle information as
possible. The user effort, on the other hand, measures ddetiwork the user has to
do to be able to communicate the elicited preferences. Tdasseffort is therefore
also an important measure.

As a motivating example, recommender systems give suggedtiased on partial
knowledge of the user’s preferences. Our approach couldowepperformance by
identifying some key questions to ask before giving recomiadions. Privacy con-
cerns regarding the percentage of elicited preferencesatigated by eavesdropping.
User's effort is instead related to the burden on the usenr r@sults show that the
choice of the preference elicitation strategy is cruciatfie performance of the solver.
While the best algorithms need to elicit as little as 10% efrthissing preferences, the



worst ones need much more. The user’s effort is also veryl $onaghe best algorithms.

The performance of the best algorithms also shows that wergdd to ask the user
for a very small amount of additional information to be albesblve problems with

missing data.

The paper is structured as follows. In Section 2 we definecawfstraint problems,
known in literature, where all the preferences are giversdation 3 we introduce soft
constraint problems where some preferences are missengl8CSPs), we give new
notions of optimal solutions, i.e., the possibly and theessarily optimal solutions,
and we characterize them in Section 4. In Section 5 we presganeral algorithmic
scheme for ISCSPs with all its possible instances. In Seétiwe describe the problem
generator used in the experimental studies and we indidasaewe measure in the ex-
periments. Next, in Section 7 we summarize and discuss qargrental comparison
of all the algorithms. Finally, in Section 8 we compare oupr@ach to other existing
approaches to deal with incompletely specified constratitrozation problems, and
in Section 9 we summarize the results contained in this paperwe give some hints
for future work.

Preliminary versions of parts of this paper have appearft?inl3].

2 Soft constraints

A soft constraint [1] is just a classical constraint [5] wleyach instantiation of its
variables has an associated value from a (totally or phrivatiered) set. This set has
two operations, which makes it similar to a semiring, anchited a c-semiring. More
precisely, a c-semiring is a tuplel, +, x, 0,1) whereA is a set, called the carrier of
the c-semiring, an@,1 € A; + is commutative, associative, idempotehis its unit
element, and is its absorbing elemenx is associative, commutative, distributes over
+, 1 is its unit element an@ is its absorbing element. Consider the relatiofn over

A suchthate <g biff a + b = b. Then:<g is a partial order} and x are monotone
on <g; 0 is its minimum andL its maximum;(4, <g) is a lattice and, for alk, b € A,
a+ b = lub(a,b). Moreover, ifx is idempotent, therA, <g) is a distributive lattice
and x is its glb. Informally, the relatior< s gives us a way to compare (some of the)
tuples of values and constraints. In fact, when we haves b, we will say thatb is
better than aThus,0 is the worst value antl is the best one.

Given ac-semiring = (4, +, x, 0, 1), afinite setD (the domain of the variables),
and an ordered set of variabl®s a constraint is a paifde f, con) wherecon C V' is
the scope of the constraint addf : DIc°*l — A is the preference function of the
constraint. Therefore, a constraint specifies a set of bkesa(the ones imon), and
assigns to each tuple of valuesiBfof these variables an element of the semiring set
A. A soft constraint satisfaction problem (SCSP) is just ao$ebft constraints over a
set of variables.

Many classes of satisfaction or optimization problem cardéined in this for-
malism. A classical CSP is just an SCSP where the chosen icisgns: Scsp =
({ false, true}, V, A, false,true). On the other hand, fuzzy CSPs [22, 11] can be
modelled in the SCSP framework by choosing the c-semiriigesp = ([0, 1],
max, min, 0, 1). For weighted CSPs, the semiring $ycsp = (RT, min, +,



+00,0). Here preferences are interpreted as costs fiotm +oo, which are com-
bined with the sum and compared within. Thus the optimization criterion is to
minimize the sum of costs. For probabilistic CSPs [10], temising is Spcsp =
([0, 1], maz, x,0,1). Here preferences are interpreted as probabilities rarfgim 0
to 1, which are combined using the product and compared using Thus the aim is
to maximize the joint probability.

Given an assignmentto all the variables of an SCSP, i.e., a solution ofP, we
can compute its preference valpee f (P, s) by combining the preferences associated
by each constraint to the sub-tuples of the assignmentsireje¢o the variables of the
constraint. More preciselyref(P, s) = I get,conyecdef (s con), Wherell refers to
the x operation of the semiring and .., is the projection of tuple on the variables
in con. For example, in fuzzy CSPs, the preference of a completgramsnt is the
minimum preference given by the constraints. In weightetstaints, it is instead the
sum of the costs given by the constraints.

Definition 1 (optimal solution) An optimal solution of an SCSP is a complete as-
signments such that there is no other complete assignmémntith pref(P,s) <s
pref(P,s’). The set of optimal solutions of an SCBRuvill be written asOpt(P).

Notice that Opt(P) is always well-defined, since the domais fihite, so there can
only be finitely many preference values for an SCSP.

3 Incomplete Soft Constraint Problems (ISCSPs)

Informally, an incomplete SCSP, written ISCSP, is an SCSRrevtthe preferences
of some tuples in the constraints, and/or of some of the gdluéhe domains, are not
specified. In detail, given a set of variablésvith finite domainD, and c-semiring =
(A,+, x,0,1), we extend the SCSP framework to incompleteness by thexfinitp
definitions.

Definition 2 (incomplete soft constraint) Given a set of variable® with finite do-
mainD, and a c-semirindA, +, x, 0, 1), an incomplete soft constraint is a pdikle f,
con) wherecon C V is the scope of the constraint ande f : DI*o"l — AU {?}is
the preference function of the constraint. All tuples mapio¢o ? by ide f are called
incomplete tuples.

In an incomplete soft constraint, the preference functian either specify the
preference value of a tuple by assigning a specific element the carrier of the
c-semiring, or leave such preference unspecified. Formalthe latter case the asso-
ciated value i?. A soft constraint is a special case of an incomplete sofsttamt
where all the tuples have a specified preference.

Definition 3 (incomplete soft constraint problem (ISCSP)) An incomplete soft con-
straint problem is a paiKC, V, D) whereC'is a set of incomplete soft constraints over
the variables ini” with domainD. Given an ISCSEP, we will denote with T'(P) the
set of all incomplete tuples iR.



Definition 4 (completion) Given an ISCSHP, a completion of” is an SCSP”’ ob-
tained fromP by associating to each incomplete tuple in every consti@inélement
of the carrier of the c-semiring. A completion is partial dree preference remains
unspecified. We will denote witti(P) the set of all possible completions Bfand
with PC(P) the set of all its partial completions.

Example 1 A travel agency is planning Alice and Bob’s honeymoon. Thealickte
destinations are the Maldive islands and the Caribbean, tfuegf can decide to go by
ship or by plane. To go to Maldives, they have a high preferé¢ago by plane and a
low preference to go by ship. For the Caribbean, they havega pireference to go by
ship, and they don't give any preference on going there byepla

Assume we use the fuzzy c-semirifig 1], mazx, min,0,1). We can model this
problem by using two variable®' (standing forTransport) and D (standing for
Destination) with domainsD(T) = {p, sh} (p stands forplane and sh for ship)
and D(D) = {m,c} (m stands forM aldives, ¢ for Caribbean), and an incomplete
soft constraint(ide f, con) with con = {T, D} and preference function as shown in
Figure 1. The only incomplete tuple in this soft constrad(pi, c).

Also, assume that for the considered season the Maldivesliglgly preferable
to the Caribbean. Moreover, Alice and Bob have a high prefegefor plane as a
means of transport, while they don't give any preferencehtp.sMoreover, as far as
accommodations, which can be in a standard room, a suite, louregalow, assume
that a suite in the Maldives is too expensive while a standaoth in the Caribbean
is not special enough for a honeymoon. To model this newrrdtion we use a vari-
able A (standing forAccommodation) with domainD(A) = {r, su, b} (r stands for
room, su for suite andb for bungalow), and three constraints: two unary incomplete
soft constraints{idef1, {T'}), (idef2,{D}) and a binary incomplete soft constraint
(idef3,{A, D}). The definition of such constraints is shown in Figure 1. Tétesin-
complete tuples of the entire problemlis (P) = {(sh), (p, ¢), (su, ¢), (b,c), (r,m),

(su,m)}. ]
idef(p, c) =?
idef1(p)=0.8 . _ idef2(c) = 0.7
idef1(sh) = ? fder(Sh’C) 08 idef2(m) = 0.¢
idef(p,m) = 0.7

idef(sh,m) = 0.1
T

idef3(r,c) = 0.3
idef3(su, c) =7
idef3(b, c) =?
idef3(r, m) =7
idef3(su, m) = ?
idef3(b, m) = 0.2

Figure 1: An ISCSP.

Definition 5 (preference of an assignment, incomplete tup® Givenan |ISCSP =
(C,V, Dy and an assignmentto all its variables, we denote withre f (P, s) the pref-



erence ofs in P and with DEF(P,s) the set of soft constraints with no s-edamiss-
ing preferences, that iDEF (P, s) = < idef,con >€ Clidef(s|con) #?. In detalil,
pref(P,s) = Hcigef.con>epER(Ps)idef(s|con). Moreover, we denote bit(s) the
set of all the projections of over constraints of? which have an unspecified prefer-
ence.

The preference of an assignmenih an incomplete problem is thus obtained by
combining the known preferences associated with the piiojex of the assignment,
that is, of the appropriated sub-tuples in the constraifte projections which have
unspecified preferences, that is, thosé {s), are simply ignored.

Example 2 Consider the two assignmers = (p, m,b) andsy = (p, m, su) for the
problem in Figure 1. We have thatef (P, s1) = min (0.8,0.7,0.9,0.2) = 0.2, while
pref(P,s2) = min (0.8,0.7,0.9) = 0.7. However, while the preference of is fixed,
since none of its projections is incomplete, the prefereice may become lower than
0.7 depending on the preference of the incomplete tgplem). O

As shown by the example, the presence of incompletenesisigpastthe set of
assignments into two sets: those which have a certain grefemwhich is independent
of how incompleteness is resolved, and those whose prefeigonly an upper bound,
in the sense that it can be lowered in some completions. GindiSCSPP, we will
denote the first set of assignmentsfased(P) and the second with'n fixzed(P). In
Example 2,Fized(P) = {s1}, while all other assignments belonglio: fized(P).

In SCSPs, an assignment is an optimal solution if its globeflgrence is undom-
inated. This notion can be generalized to the incompletegetin particular, when
some preferences are unknown, we will speak of necessadlyassibly optimal so-
lutions, that is, assignments which are undominated irrediy., some) completions.

Definition 6 (necessarily and possibly optimal solution)Given an ISCSP = (C, V,
D), an assignment € D!V| is a necessarily (resp, possibly) optimal solution iff

VQ € C(P) (resp.,3Q € C(P)) Vs’ € DV, pref(Q,s") # pref(Q, s).

Given an ISCSHP, we will denote withVOS(P) (resp..POS(P)) the set of nec-
essarily (resp., possibly) optimal solutionsif Notice that, whilePO.S(P) is never
empty, in generalVOS(P) may be empty. In particulatYOS(P) is empty when-
ever the available preferences are not sufficient to estatiie relationship between an
assignment and all others.

Example 3 In the ISCSPP of Figure 1, we can easily see thatOS(P) = 0 since,
given any assignment, it is possible to construct a congaietf P in which it is not an
optimal solution. On the other hanéO.S(P) contains all assignments not including
tuple (sh, m). a

4 Characterizing POS(P) and NOS(P)

In this section we characterize the set of necessarily asdilplg optimal solutions
of an ISCSP given the preferences of the optimal solutiorterofof the completions



of P. All the results are given for ISCSPs defined on totally oeder-semirings. In
particular, given an ISCSP defined on the c-semirind, +, x, 0, 1), we consider:

e the SCSPP, € C(P), called theD-completion ofP, obtained fromP by asso-
ciating preferenc® to each tuple of 7'(P).

e the SCSPP; € C(P), called thel-completion ofP, obtained fromP by asso-
ciating preferencé to each tuple of 7'(P).

Let us indicate respectively withre fy and pref; the preference of an optimal
solution of Py and P,. Due to the monotonicity ok, and sinceéd < 1, we have that

prefo < prefi.

Example 4 Consider the problem shown in Figure 1. We have hatf, = 0.2 and
prefr = 0.7. a

We will now give some lemmas that will be useful to show thédiwing theorems.

Lemma 1 Given an ISCSRH and the completio?; € C(P) as defined above, we
have thapref (P, s) = pref(Pi, s).

Proof: Follows immediately from the definition gfe f (P, s) and from the fact that
in a c-semirindl is the unit element. O

Lemma 2 Given an ISCSR and the completio®; € C(P) as defined above, there
always exists an assignmensuch thaipref(P, s) = pref;.

Proof: Follows from Lemma 1 and choosing agy Opt(Py). O

Lemma 3 Given an ISCSHP, the completion$,, P, € C(P) as defined above, and
another completio®’ € C(P), then,¥s € Opt(P'), prefo < pref(P’,s) < prefi.

Proof: Due to monotonicity, for any solutionwe have thapref(P’, s) < pref (P,

s) < prefi, sinceprefi is the optimal preference d?,. Assume there is a solution
s € Opt(P')suchthapref(P’, s) < prefy. Then, for any solutiony € Opt(FPy), we
have, by monotonicityyref(P’, s) < prefo = pref(Po, so) < pref(P’, so). Thus,
we have a contradiction, singés an optimal solution of*’. O

Lemma 4 Given an ISCSHP and the completior?, € C(P) as defined above, if
prefi > prefo, thenOpt(Py) C Unfixzed(P).

Proof: Assume there is a fixed solutionsuch thats € Opt(P;). Then we would
have thapre f(Py, s) = Pref(P1, s) = pref; and thupre f(Py, s) > prefy which
is a contradiction, sincgre f is the optimal preference if. O

Lemma 5 Given an ISCSH, we have thatVOS(P) = NprccpyOpt(FP').



Proof: Any solutions € Np:ec(p)Opt(P’) satisfies the definition of necessarily opti-
mal. Consider now¢ € NOS(P) and a completio?’ of P. Then, by Definition 65
cannot be dominated by another solutidnand thuss € Opt(P’). m

In the following theorem we will show that, #irefy > 0, there is a necessarily
optimal solution ofP iff prefy = pref1, andin this cas&O.S(P) coincides with the
set of optimal solutions of.

Theorem 1 Given an ISCSRHP and the two completions,, P, € C(P) as defined
above, ifprefy > 0 we have thatvGOS(P) # ( iff prefi = prefo. Moreover, if
NOS(P) # 0,thenNOS(P) = Opt(P,).

Proof: Since we know thaprefy < prefi, if prefo # pref thenpref; > prefy.
We prove that, ifpre f1 > prefo, thenNOS(P) = (). Let us consider any assignment
s of P. Due to the monotonicity ok, for all P’ € C(P), we havepref(P’,s) <

pref(Pr,s) < prefi.

o If pref(P1,s) < prefi, thensis notin NOS(P) sinceP; is a completion of?
wheres is not optimal.

e Ifinsteadpref(Py,s) = prefi, then,s € Opt(P;) and, by Lemma 4 we have
thats € Unfized(P). Thus we can consider completidtj obtained fromP;
by associating preferen@eto the incomplete tuples af In P| the preference of
s is 0 and the preference of an optimal solutionRjfis, due to the monotonicity
of x, at least that of an optimal solution &}, that ispref, > 0 Thuss ¢
NOS(P).

Next we consider whepre fo = prefi1. ¢ From Lemma 5 follows thdf O.S(P) C
Opt(Py). We will show thatNOS(P) # 0 by showing that any € Opt(P) is
in NOS(P). Let us assume, on the contrary, that there is Opt(P,) such that
s ¢ NOS(P). Thus there is a completio®’ of P with an assignment’ with
pref(P’,s") > pref(P’,s). By construction o, any assignment < Opt(Fy) must
be in Fized(P). In fact, if it had some incomplete tuple, its preferencé’inwould
be 0, since0 is the absorbing element of. Sinces € Fized(P), pref(P’,s) =
pref(Po, s) = prefo. By construction of?, and monotonicity of, we havepre f (P,
s') > pref(P’,s'). Thus the contradictiopref, > pref(Py, s') > pref(P’,s') >
pref(P’,s) = prefo. This allows us to conclude thate NOS(P) = Opt(Fy). O

In the theorem above we have assumedghaf, > 0. The case in whichref, =
0 needs to be treated separately. We consider it in the fallgWieorem.

Theorem 2 Given ISCSPP = (C,V, D) and the two completiongy, P, € C(P)

as defined above, assumeef, = 0. Then, ifpref, = 0, NOS(P) = DIVI. If

prefi > 0, NOS(P) = {s € Opt(P,)|Vs' € DIVIwithpref(Py,s') > 0 we have
it(s) Cit(s')}.

Proof: We prove the two items separately.



o If prefy = pref; = 0, then, from Lemma 3 follows that the preference level
of the optimal solution of SCSIP”’ is 0. Thus all assignments have always the
same preference equal@oThus they are all necessarily optimal solutions.

e Letus now assume that= prefy < prefi;. From Lemma 5, only assignments
in Opt(P;) can be inNOS(P) since all other assignments are not optimal in
P;. Let us now consides € Opt(P;). By Lemma 4 we have that(s) # 0.

If there existss’ € DIV, with pref(Py,s’) > 0, such thatit(s) Z it(s")
then we can construct a completion Bf say P’ wheres is not optimal. It
is sufficient to set the preference of the tuplesiifs’) to 1 and the tuples in
it(s)\it(s") to 0. We have thapref(P’, s) = 0, since0 is the absorbing element
of x, andpref(P’,s") = pref(P1,s’). Thus, inP’ we havepref(P',s') =
pref(P1,s") > pref(P’,s) = 0.

We will now show that, if givens € Opt(P;) there is nos’ € DIVI with
pref(Py,s’) > 0 such thatt(s) € it(s’), thens € NOS(P).

First notice that, sinca is the unit element ok, VP’ € C(P) pref(P’,s) =
pref(Pr,s)xit-pref(P’,s)andpref(P’,s") = pref(Py,s") xit-pref (P’ s)
whereit-pref(P’, s) (resp. it-pref(P’,s')) is the combination of the prefer-
ences associated i to the incomplete tuples iit(s) (resp.it(s’)).

Since for every’ € DIVl with pref(Py,s') > 0 we are assuming that(s) C
it(s'), thenvVP’ € C(P), it-pref(P’,s) > it-pref(P’,s’), due to the inten-
sive property ofx. Moreover, sinces € Opt(Py), pref(P1,s) = prefr >
pref(P1,s'). Thus, for every?’ € C(P), Vs € DIV (trivially for those with
pref(P1,s’) = 0) we have thapref(P’,s) > pref(P’,s’). This allows us to
conclude that € NOS(P). a

Intuitively, if the tuples ofs are not a subset of the incomplete tuples of some
assignment’, then we can make’ dominates in a completion by setting all the
incomplete tuples of’ to 1 and all the remaining incomplete tuplessato 0. In such
a completiors is not optimal. Thus is not a necessarily optimal solution. However, if
the tuples ofs are a subset of the incomplete tuples of all other assigrsnt@n it is
not possible to lowes without lowering all other tuples even further. This medwmeatt
s is a necessarily optimal solution.

We now turn our attention to possible optimal solutions.dBia c-semiringA, +,

x, 0,1), it has been shown in [2] that idempotency and strict morotigrnof the x
operator are incompatible, that is, at most one of these twpgsties can hold. In
the following two theorems we show that the presence of orteeoother of such two
properties plays a key role in the characterizatio®?6fS (P) whereP is an ISCSP. In
particular, if x is idempotent, then the possibly optimal solutions are gsgaments
with preference inP betweenprefy andpref;. If, instead,x is strictly monotonic,
then the possibly optimal solutions have preference metweerpre fy andpre f; and
dominate all the assignments which have as set of incompuiptes a subset of their
incomplete tuples.

Theorem 3 Given an ISCSP defined on a c-semiring with idempotentind the two
completiong?, P, € C(P) as defined above, jfre f; > 0 we have thatPOS(P) =
{s € DWVliprefy < pref(P,s) < prefi}.
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Proof: First we show that any such thatprefy < pref(P,s) < prefi is in
POS(P). Let us consider the completion &f, P’, obtained by associating prefer-
encepref(P, s) to all the incomplete tuples of and0 to all other incomplete tuples
of P. For any other assignmesitwe can show that it never dominates

e s’ € Fized(P) and thupref(P',s') = pref (P, s’) < prefo < pref (P, s);
o s’ € Unfized(P)and

— it(s") € it(s), thenpref(P’,s’) = 0 since inP’ the incomplete tuples in
it(s") which are not init(s) have been associated with preferefice

— 1t(s") C it(s). By construction ofP’ and sincex is idempotent and asso-
ciative we have thatpre f (P, s) = (pref(P, s) x (I pref(P, s))) =
pref(P,s) andpref(P’,s") = (pref(P,s") x (W pref(P,s))) =
pref(P, s') x pref(P, s). Sincex is intensivepref(P’,s") = (pref(P,
s') xpref(P, s)) < pref(P,s) = pref(P’,s).

Thus inP’ no assignment dominatesThis means that € POS(P).

We will now show that ifs € POS(P), prefo < pref(P,s) < prefi. If
s € POS(P), thens € Opt(Q) form some@) € C(P). Thus we can conclude
by Lemma 3. ]

Informally, given a solutiors such thaprefy < pref(P,s) < prefi, it can be shown
that it is an optimal solution of the completion Bfobtained by associating preference
pref (P, s) to all the incomplete tuples af andO to all other incomplete tuples d?.

On the other hand, by construction®@f and due to the monotonicity of, any assign-
ment which is not optimal irPy cannot be optimal in any other completion. Also, by
construction ofP;, there is no assignmenwith pref(P, s) > prefi.

Theorem 4 Given an ISCSHP defined on a c-semiring with a strictly monotonic
and the two completionBy, P, € C(P) as defined above, ifre fy > 0 we have that:
s € POS(P) iff prefo < pref(P,s) < pref; andpref (P, s) = max{ pref(P,s')|
it(s") Cit(s)}.

Proof: Let us first show that if assignmesis such thapre fo < pref(P, s) < prefi
andpref(P, s) = max{pref(P,s")|it(s") C it(s)} itisin POS(P). We must show
there is a completion oP wheres is undominated. Let us consider completiBh
obtained by associating preferenteo all the tuples init(s) andO to all the tuples
in IT(P) \ it(s). First we notice thapref(P’,s) = pref(P, s), sincel is the unit
element ofx. Let us consider any other assignmaht Then we have one of the
following:

e it(s’) = 0, which means that’ € Fized(P) and thupref(P’,s") = pref (P,
s') < prefo < pref(P,s) =pref(P',s);
e it(s') < it(s), which means that there is at least one incomplete tuplé(gf)

which is associated with. Since0 is the absorbing element &f, pref (P’ s') =
0 and thuspref(P', s') < prefo < pref(P’, s);
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e it(s') C it(s), inthis caseref(P’,s") = pref(P,s') since all tuples int(s’)
are associated within P’. However sinceref (P, s) = max{pref(P,s")|it(s’)
Cit(s)}, pref(P',s') < pref (P, s).

We can thus conclude thatis not dominated by any assignmentiti. Hences €
POS(P).

Let us now prove the other direction by contradictionpié f (P, s) < pref, then
we can conclude by Lemma 2. We must prove thatdfy < pref(P,s) < prefi
andpref(P,s) < max{pref(P,s)|it(s’) C it(s)} thens is not in POS(P). In
any completionP’ of P we have thapref(P’,s) = pref(P,s) X it-pref(P’,s)
andpref(P',s") = pref(P,s') x it-pref(P’,s") whereit-pref(P’,s) (resp. it-
pref(P’,s")) is the combination of the preferences associated to thariptete tu-
ples init(s) (resp. it(s')). Sinceit(s’) C it(s), for any completion”’ we have
thatit-pref(P’,s) < it-pref(P’,s’). Moreover, lets” be such thapref(P,s") =
max{pref(P,s")|it(s") Cit(s)}. Thenwe have that for any completiot, pref(P’,s") >
pref(P’,s) sincepref(P,s") > pref(P,s) andit-pref(P’,s") > it-pref(P',s)
and x is strictly monotonic. Thus, iprefy < pref(P,s) < pref; andpref(P,s) <
max{pref(P,s")| it(s") Cit(s)}, thensis notin POS(P). a

The intuition behind the statement of this theorem is tHatssignment is such that
prefo < pref(P,s) < pref; andpref(P,s) = max{pref(P,s")|it(s") C it(s)},
then it is optimal in the completion obtained associatingfgnencel to all the tuples
in it(s) and0 to all the tuples infT'(P) \ it(s). On the contrary, ipref(P,s) <
max{pref(P,s)|it(s") C it(s)}, there must be another assignmefitsuch that
pref(P, ") = max{pref(P,s")|it(s") C it(s)}. It can then be shown that, in all
completions ofP, s is dominated by”.

In constrast toNOS(P), whenprefy, = 0 we can immediately conclude that
POS(P) = D!VI, independently of the nature of, since all assignments are optimal
in F.

Corollary 4.1 Given an ISCS® = (C,V, D), if prefy = 0, thenPOS(P) = DV
For ease of clarity, the results shown in this section carubengarized as follows:
e Whenprefy = pref; =0

— NOS(P) = DVl (by Theorem 2);
— POS(P) = D'Vl (by Corollary 4.1) ;

e when0 = prefy < prefi

— NOS(P) = {s € Opt(P,)|Vs' € DIV with pref(P;,s') > 0 we have
it(s) Cit(s')} (by Theorem 2);

— POS(P) = DI (by Corollary 4.1);
e wheno < prefy = pref;

— NOS(P) = Opt(Py) (by Theorem 1);
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— if x isidempotentPOS(P) = {s € DIVl|prefy < pref(P,s) < prefi}
(by Theorem 3);

— if x is strictly monotonic:POS(P) = {s € DVl|prefo < pref(P,s) <
prefi,pref (P, s) = max{ pref (P, s")|it(s’") C it(s)}} (by Theorem 4);

e wheno < prefy < prefi

— NOS(P) = () (by Theorem 1);
— POS(P) as for the case wheh < prefy = prefi.

5 Solving ISCSPs

In this section we first describe a general schema for sold@EPs based on interleav-
ing a branch and bound search with elicitation. Such a géeehn@ma is instantiated
to different elicitation strategies generating severalarete algorithms. A computa-
tional analysis of the algorithms is provided both in termighe number of elicited
preferences and of the user effort for revealing some of tissing preferences.

5.1 The solver schema and its instances

The solving strategy which we propose for ISCSPs is baseti@itdea of combining
a branch and bound search (B&B) with elicitation steps incltthe user is asked to
provide some type of missing information. In general, B&Bgreds by considering
the variables in some order, by choosing a value for eaclabfariin the order, and
by computing, using some heuristics, an upper bound on thtagpreference of any
completion of the current partial assignment. B&B alsoesahe highest preference
(assuming the goal is to maximize) of a complete assignnmmtd so far. If at any
step the upper bound is lower than the preference of thertibyest solution, the search
backtracks.

When some of the preferences are missing, as in ISCSPs, ¢in¢ gy be asked
for some preferences or other information regarding théepeaces in order to know
the true preference of a partial or complete assignment order to choose the next
value for some variable. Preferences can be elicited &diehr run of B&B (as in [12])
or during a B&B run while preserving the correctness of thgrapch. For example, we
can elicit preferences at the end of every complete brahalif, regarding preferences
of every complete assignment considered in the branch anddbalgorithm), or at
every node in the search tree (thus considering every pagsgnment). Moreover,
when choosing the value for the next variable to be assignedan ask the user (who
knows the missing preferences) for help. Finally, rathanthliciting all the missing
preferences in the possibly optimal solution, or the comepte partial assignment
under consideration, we can elicit just some of the missiefgpences.

For example, with incomplete fuzzy constraint problemsC@Ps), eliciting just
the worst preference among the missing ones is sufficierdesinly the worst value is
important to the computation of the overall preference @alastead, with incomplete
weighted constraint problems (IWCSPs), we need to elicihasy preference values
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as needed to decide whether the current assignment is thettethe best one found so

far.
More precisely, the algorithm schema we propose is baseaediolowing param-

eters:
1. WHO chooses the value of a variable:

(a) the algorithm, using one of the following heuristics:

i. values are picked in decreasing order w.r.t. their pexfee values in
the 1-completion. The order is maintained dynamically. We denot
this heuristic withdp;

ii. values are picked in decreasing order w.r.t. the prefegs in thed-
completion of the initial ISCSP. The order is thus static. Wémote
this heuristic withdpi.

(b) The user, revealing the value that he prefers accordiongé of the follow-
ing criteria:

i. the value is the most preferred among those in the domaichwh
haven't been considered yédazy useriu for short);

ii. the value is the most preferred among those which haverén con-
sidered yet given the constraints involving the currenialde and the
past variables in the search ordem@rt usersu for short);

2. WHAT must be elicited:

(a) the preferences of all the incomplete tuples of the ctiraesignment (de-
noted withall);

(b) for IFCSPs, only the preference of the worst tuple of theent assign-
ment, if it is worse than the known ones (denoted withrs);

(c) for IWCSPs:

e the worst missing cost (that is, the highest) until eithethed costs are
elicited or the current global cost of the (possibly pajtedsignment
is higher than the optimum found so far. This strategy is tieshby
WW.

e the best (i.e. the minimum) cost until either all the costs licited
or the current global cost of the (possibly partial) assignhis higher
than t he optimum found so far. This strategy is denoted by BB.

¢ the best and the worst cost in turn. This strategy is denotd&zifa
3. WHEN elicitation should take place:

(a) atthe end of the branch and bound searchr€atevel).

(b) during the search, when we have a complete assignmelhthe a&ariables
(i.e., when we have reached a leaf of the search tree, andvtierswe are
at the end of dranch. We will refer to such a heuristics, by saying “at
branchlevel”.
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(c) during search, whenever a new value is assigned to eblerid/e will refer
to such a heuristics, by saying “at thedelevel”.

Summarizing, we have three features which we wéib, whatandwhen There
are four possible choices farho: dp, dpi, lu, andsu If we work with IFCSPs, there
are two possibilities fotwhat: all andworst. Instead, with IWCSPs, there are four
options:all, WW, BB, and BW.

It should be noticed that while theorst option is meaningful only for the fuzzy c-
semiring. In fact, in the fuzzy semiring the preference obagibly partial assignment
corresponds to the worst one associated with one of its pleéstu Finally, there are
three options fotwhen: tree, branch, andnode. If when = tree, elicitation takes
place only when the search is completed. This means that §lize $#arch can be
performed more than once. In contrastyfien = branch orwhen = node, the B&B
search is performed only once and the elicitation is dorteeeiit every node of the
search tree or at every leaf.

By choosing a value for each of the three parameters abovednsstent way, we
obtain, for IFCSPs, a total of 16 different algorithms, asimarized in Figure 2.

tree

When

branch

node

Who

Figure 2: The algorithms for IFCSPs.

If instead we work with IWCSPs, we have a total of 32 algorishas can be seen
in Figure 3.

The pseudocode of our general solver, which we call ISCSREME, is shown
in Algorithms 1 and 2. Every point in Figure 2 represents atantiation of ISCSP-
SCHEME to specific values for parametarko, what andwhen.

ISCSP-SCHEME takes in input an ISC$Pand the values for the three param-
eters: who, what, andwhen. It returns an ISCSI), a complete assignmestand
a preference. In Theorems 5 and 7 we will show thét is a partial completion
of P ands is a necessarily optimal solution ¢f with preferencen. As a first step,
ISCSP-SCHEME computes tilecompletion ofP, called Py, and finds one of its op-
timal solutions, say,,...., and its preference, sayefn..., by applying a standard
branch and bound procedure (denoted3¥ B). Next, procedurd3 BE is called. If
BBE succeeds, it returns a partial completion/f one of its necessarily optimal
solutions, and its associated preference. Otherwisetutng a solution equal tail.
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tree
when

branch

Figure 3: The algorithms for IWCSPs.

Algorithm 1: ISCSP-SCHEME
Input: an ISCSPP, a parametewho indicating the method of values
instantiation, a parameterhat indicating the elicitation policy, a parameter
when indicating the level at which the elicitation must be done
Output: an ISCSRY, an assignment s, a preference p
computeF,
Q<D
Smazs prefmaa: — B&B(P07 _)
Q' ,s1,pref1 «— BBE(P,0,who,what, when, Smaz, Pre fmaz)
if s1 # nil then
Smax < S1
prefmaz — prefi
L Q—Q

return @, Smaz» Pre fmaz

In the first case the output of ISCSP-SCHEME coincides witt tfi BBE, otherwise
ISCSP-SCHEME returng;, and one of its optimal solutions with the corresponding
preference.

Procedure BBE takes as input the same values as ISCSP-SCld&d/ B addition,
a solutionsol and a preferenck representing the current lower bound of the optimal
preference level. Solutiosvl’ and preferencgref’ are initialized to such values at the
beginning of BBE. ProceduneexV ariable applied to thel-completion of the ISCSP
in input (denoted byP[?/1]) allows to assign taurrentVariable the next variable
to be assigned. The algorithm then assigns a value to thigblar If the Boolean
functionnextValue returns true (if there is a value in the domain), we selectiaeva
for currentV ariable according to the value of parameieho.

The computation of the upper bound for the preference thrabeabtained by any
completion of the current partial assignment is performeprocedurd/ pper Bound.
In general, any kind of upper bound can be used. However, we¢feosen to estimate
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Algorithm 2: BBE

Input: an ISCSPP, the number of currently instantiated variabtds:stVar, a
parametetvho indicating the method of values instantiation, a parametert
indicating the elicitation policy, a parametef.en indicating the level at which
the elicitation must be done, a reference to a solusign/b lower bound
Output: an ISCSPP, a solutionsol and its preferencere f
sol’ « sol
pref’ «— b
currentVariable — nextVariable(P[?/1])
while nextValue(currentVariable, who) do
if when = node then
| P, pref « ElicitQNode(what, P, currentV ariable, lb)
ub «— Upper Bound(P[?/1], currentVariable)
if ub >g [bthen
if nInstvar = number of variables in P then
if when = branch then
| P, pref « Elicit@Qbranch(what, P, lb)
if pref >g lbthen
sol «— getSolution(P[?/1])
L b — pref(P[?/1], sol)
else
| BBE(P,nInstVar + 1, who,what, when, sol, Ib)
if when=tree and nInstVar = 0then
if sol = nil then
sol «— sol’
pref «— pref’
else
P, pref «— ElicitQtree(what, P, sol, b)
if pref >g pref’ then
| BBE(P,0,who, what, when, sol, pref)
else
| BBE(P,0,who,what, when, sol’,pref’)
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it by combining the preferences of the constraints invaivimly variables that have
already been instantiated. Formally, iéie the current partial assignment to variables
in {vy,...,vx} C V, and lete; = (def;, con;) be a constraint, such thatn; C
{v1,...,vr}. Then, the valuab returned byUpper Bound is:

k
ub = H defi(t lconi)a
=1

where[ ] is the combination operator of the semiring.

We will now describe procedure BBE by considering the vagiealues for param-
eterwhen. This corresponds to consider the algorithms in Figuresi23agtivided into
the three horizontal planes obtained fixing the value onthen-axis.

e If when = tree, elicitation is handled by proceduféicit@Qtree and takes place
only at the end of the search over theeompletion. The user is not involved in
the value assignment steps within the search and thus treeomly two possible
values for variablevho, i.e. dpanddpi. At the end of the search, if a solution
is found, the user may be asked to reveal all the prefererfdbge édncomplete
tuples in the solution (iftvhat = all). If we work with IFCSPs, we could also
ask for just the worst one among the missing preferencessfitorst than the
known ones (ifwhat = worst). If instead we work with IWCSPs, preferences
can be asked in decreasingi{at = BB), increasing{hat = WW), or alternating
order what = BW) until we have enough information. If the preferencelo$t
solution is better than the best found so far, BBE is calledirgvely with the
new best solution and preference, otherwise the recursiVéscdone with the
old solution and preference.

e If when = branch, B&B is performed only once and not several times as in the
previous case. The user may be asked to choose the next waltresfcurrent
variable being instantiated. Preference elicitation,ollis handled by function
ElicitQbranch, takes place during search, whenever all variables have bee
instantiated. As above, the user can be asked either tol teeepreferences of
all or some of the incomplete tuples depending on the valughat. In all cases
the information gathered is sufficient to compare the pesfee of the current
assignment against the current lower bound.

e If when = node, preferences are elicited every time a new value is assigned
to a variable, and it is handled by procedWéicit@node. The tuples to be
considered for elicitation are those involving the valuechihas just been as-
signed and belonging to constraints between the currefdbtarand already
instantiated variables. The valuewhat determines whether one or all or some
preference values involving the new assignment are askégktoser. With the
information given by the user, the preference of the curpamtial assignment
is updated in order to determine if the subtree rooted attineot node can be
pruned.
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5.2 Termination and correctness

We will now prove that algorithm ISCSP-SCHEME, when givenl&8&SP in input,
always terminates generating a completion of the ISCSP aedob its necessarily
optimal solution.

Theorem 5 Given an ISCSE’ andwhen = tree, if
e what = all, or
e what = worst and P is an IFCSP, or
e (what = WW orwhat = BB or what = BW) andP is an IWCSP,

algorithmISCSP-SCHEMElways terminates and returns an ISCQRuch that) ¢
PC(P), an assignment € NOS(Q), and its preference ify.

Proof: Clearly ISCSP-SCHEME terminates if and only if BBE termemt If we
consider the pseudo-code of procedure BBE shown in Algorith we see that if
when = tree, BBE terminates wherol = nil. This happens only when the search
fails to find a solution of the current problem with a prefarerstrictly greater than
the current lower bound, i.e., when the conditjpre f >g [b is never satisfied. Let
us denote withQ? and Q**' respectively the ISCSPs given in input to théh and

(¢ + 1)-th recursive call of BBE. First we notice that only procealdlicitQtree
modifies the ISCSP in input by possibly adding new eliciteefg@mrences. Moreover,
whatever the value of parametetat is, the returned ISCSP is either the same as
the one in input or it is a (possibly partial) completion oétbne in input. Thus we
haveQit! € PC(Q') and@’ € PC(P). Since the search is always performed
on thel-completion of the current ISCSP, we can conclude that feryegolution

s, pref(QY,s) <g pref(Q% s). Let us now denote withb’ andlbi*! the lower
bounds given in input respectively to tivh and ¢ + 1)-th recursive call of BBE. It is
easy to see thab’*! > [b'. Thus, since at every iteration the preferences of solation
cannot increase and the bound cannot decrease, and sin@veva finite number of
solutions, we can conclude that BBE always terminates.

The reasoning that follows relies on the fact that valuef returned by function
ElicitQtree is the final preference after elicitation of assignmesitgiven in input.
This is true since eithewhat = all and thus all preferences have been elicited and
the overall preference @bl can be computed, or only theorst preference has been
elicited but in a fuzzy context where the overall preferencmcide with the worst
one, or we are in a IWCSP and we have elicited enough prefesancdiscover that
the current solution is worst then the optimum found so faverhave elicited all its
costs.

If called withwhen = tree ISCSP-SCHEME exits when the last branch and bound
search has ended returningl = nil. In such a caseol andpref are updated to
contain the best solution and associated preference faumat si.e. sol’ andpref’.
Then, the algorithm returns the current ISCSP,@agndsol andpre f. Following the
same reasoning as above done@y we can conclude th& € PC(P).

At the end of a while loop execution of the first call of BBE (ihattom of the call
stack), assignmenbl either contains an optimal solutioal of the 1-completion of
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the current ISCSP ool = nil. sol = nil iff there is no assignment with preference
higher thanib in the 1-completion of the current ISCSP. In this situatiom]’ and
pref’ are an optimal solution and preference of theompletion of the current ISCSP.
However, since the preferencesef’, pre f’ is fixed and since, due to monotonicity, the
optimal preference value of thHecompletion is always better than or equal to that of
the 0-completion, we have thabl’ andpref’ are an optimal solution and preference
of the0-completion of the current ISCSP as well.

By Theorems 1 and 2, we can conclude thadS(Q) is not empty. Ifpref = 0,
thenNOS(Q) contains all the assignments and thus aigo The algorithm correctly
returns the same ISCSP given in input, assignmehtand its preferenceref. If
insteadd < pref, again the algorithm is correct, since by Theorem 1 we knaw th
NOS(Q) = Opt(Q[?/0]), and we have shown thabl € Opt(Q][?/0]). a

Moreover, if parametewhen = tree, then no useless work is done to elicit prefer-
ences related to solutions which cannot be necessarilgnaptor any partial comple-
tion of the given problem.

Theorem 6 If ISCSP-SCHEMES given in inputwhen = tree, then only preferences
of tuples of solutions iPOS(P) are elicited.

Proof: If when = tree then, during the execution of ISCSP-SCHEME, prefer-
ences are elicited only by procedui#icitQtree. A call to such a procedure, such
as ElicitQtree (what, P, sol, 1b), depending on the value of parametérat, elicits

all or a subset of the preferences of the incomplete tuplessifnmensol, return-
ing the (eventually) new global preferencesof, pref and the completion of’ ob-
tained adding the new elicited preferences. During thewi@t of ISCSP-SCHEME,
ElicitQtree is called on the current partial completion of the ISCSP giveinput, P
and on an optimal solution of its-completionsol. By Theorems 3 and 4, any optimal
solution of thel-completion of the current partial completion Bfis a possibly opti-
mal solution of such a partial completion. a

We will now consider other values for paramet@ren.

Theorem 7 Given a fuzzy or weighted ISCSPand (when = branch or when =
node), AlgorithmISCSP-SCHEMElways terminates, and it returns an ISCQRBuch
that@Q € PC(P), an assignmert € NOS(Q), and its preference ifg.

Proof: In order to prove that the algorithm terminates, it is sudiitito show that
BBE terminates. Since the domains are finite, the labelling @pasduces a number
of finite choices at every level of the search tree. Moreaiace the number of vari-
ables is limited, then, we have also a finite number of levethe tree. Hence3 BE
considers at most all the possible assignments, that aréte rimmber. At the end
of the execution of ISCSP-SCHEMEg!, with preferencerref is one of the optimal
solutions of the currenP[?/1]. Thus, for every assignmest, pref(P[?/1],s") <s
pref(P[?/1], sol). Moreover, for every completio)’ € C(P) and for every as-
signments’, pref(Q’, s") <g pref(P[?/1],s’). Hence, for every assignmesitand
for every@’ € C(P), we have thapref(Q’',s') <s pref(P[?/1],sol). In order to
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prove thatsol € NOS(P), now it is sufficient to prove that for evel®’ € C(P),
pref(P[?/1],sol) = pref(Q’, sol). This is true, sinceol € Fized(P) both when
eliciting all the missing preferences, and when elicitimjyahe worst one for fuzzy
ISCSPs, and when eliciting via BB, BW, or WW in weighted ISGSk fact, in both
cases, the preference &l is the same in every completion. To show that the final
problem@ returned by BBE is inPC(P), it is sufficient to note that only the proce-
duresElicit@node and Elicit@branch modify the ISCSP in input by possibly adding
some missing preferences. Thus, the returned ISCSPRE(P). O

6 Problem generator and experimental design

To test the performance of these different algorithms, veated Fuzzy ISCSPs (also
denoted by IFCSPs) using a generator which is a simple egteis the standard
random model for hard constraints to soft and incompletesitaimts. The generator
has the following parameters:

e n: number of variables;
e m: cardinality of the variable domains;

e d. density, that is, the percentage of binary constraintsegarein the problem
w.r.t. the total number of possible binary constraints tteat be defined on
variables;

e t: tightness, that is, the percentage of tuples with prefaxéin each constraint
and in each domain w.r.t. the total number of tuptes for the constraints, since
we have only binary constraints, andin the domains);

e i. incompleteness, that is, the percentage of incompletesuhat is, tuples
with preference) in each constraint and in each domain.

Given values for these parameters, we generate IFCSPd@sgdolWe first generate
variables and thed% of then(n — 1)/2 possible constraints. Then, for every domain
and for every constraint, we generate a random prefererge ira(0, 1] for each of
the tuples (that are: for the domains, aneh? for the constraints); we randomly s6b6
of these preferences p and we randomly s&@6 of the preferences as incomplete.

For example, if the generator is given in input= 10, m = 5, d = 50, t = 10,
and: = 30, it generates a binary IFCSP with variables, each with elements in the
domain,22 constraints (that i50% of 45 = 10(10 — 1)/2), 2 tuples with preference
(thatis,10% of 25 = 5 x 5) and7 incomplete tuples (that i80% of 25 = 5 x 5) in
each constraint, antl missing preference (that i80% of 5) in each domain. Notice
that we use a model B generator: density and tightness angieted as percentages,
and not as probabilities [14].

We also generate random IWSCSPs using the same paramédimri=3SPs, with
costs in[0, 10] U {+o0}.

Our experiments measure thercentage of elicited preferencg@srer all the miss-
ing preferences) as the generation parameters vary. Simge of the algorithm in-
stances require the user to suggest the value for the neabigror ask for the worst
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value among several, we also show treer's effortin the various solvers, formally
defined as the percentage of missing preferences the usér hassider to give the
required help.

Besides the 16 instances of the scheme for IFCSPs desciiogd,ave also con-
sidered a "baseline” algorithm that elicits preferencesafiomly chosen tuples every
time branch and bound ends. All algorithms are named by mefathe three param-
eters. For example, algorithm DPI.WORST.BRANCH has patamsevho = dpi,
what = worst, andwhen = branch. For the baseline algorithm, we use the name
DPI.RANDOM.TREE.

For every choice of parameter values, 100 problem instameegenerated. The
results shown are the average over the 100 instances. Alsm Wwis not specified
otherwise, we set = 10 andm = 5. However, we have similar results far= 5, 8,
11, 14,17, and 20. All our experiments have been performethodMD Athlon 64x2
2800+, with 1 Gb RAM, Linux operating system, and using JVI. 6.

7 Results

In this section we summarize and discuss our experimentapadason of the differ-

ent algorithms. We first focus on Fuzzy ISCSPs. We then censitb special cases:
incomplete CSPs where all constraints are hard, and in@imfilzzy temporal prob-
lems. Finally, we consider incomplete weighted CSPs. Ithallexperimental results,
the association between an algorithm name and a line symbbbwn in Figure 4.

DP.ALL.TREE -+ DPIL.LWORST.NODE --A-- SU.ALL.BRANCH —&—
DP.WORST.TREE --*--- DPLWORST.TREE ---&--- SU.ALL.NODE --e--
DPI.ALL.BRANCH —8— LU.ALL.BRANCH —v— SU.WORST.BRANCH —&—

DPILLALL.NODE --m-- LU.ALLNODE --v-  SU.WORST.NODE --&--

DPI.ALL.TREE --©-- LUWORST.BRANCH —&— DPI.RANDOM.TREE
DPI.WORST.BRANCH —@—  LU.WORST.NODE --¢-—

Figure 4: Algorithm names and corresponding line symbols.

7.1 Incomplete fuzzy CSPs

Figure 5 shows the percentage of elicited preferences wheewmany the incomplete-
ness, the density, and the tightness, respectively. We shiythe results for specific
values of the parameters. However, the trends observedhioéalen general. It is
easy to see that the best algorithms are those that eliditeabranch level. In par-
ticular, algorithm SU.WORST.BRANCH elicits a very smallrpentage of missing
preferences (less than 5%), no matter the amount of incdermes in the problem,
and also independently of the density and the tightnesss dlgorithm outperforms
all others, but relies on help from the user. The best algarihat does not need such
help is DPLWORST.BRANCH. This never elicits more than abb@fb of the miss-
ing preferences. Notice that the baseline algorithm is ydvhe worst one, and needs
nearly all the missing preferences before it finds a neciégssatimal solution. Notice
also that the algorithms witlvhat = worst are almost always better than those with
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what = all, and thatwhen = branch is almost always better thanhen = node or
when = tree.

Figure 6 (a) shows the user’s effort as incompletenesssiaes could be pre-
dicted, the effort grows slightly with the incompletenesgdl, and it is equal to the
percentage of elicited preferences only wheut = all andwho = dp or dpi. For
example, whenvhat = worst, even ifwho = dp or dpi, the user has to consider
more preferences than those elicited, since to identifytbest preference value the
user needs to check all of them (that is, those involved inréighar complete as-
signment). DPI.LWORST.BRANCH requires the user to look a&o68f the missing
preferences at most, even when incompleteness is 100%.

Figure 6 (b) shows the user’s effort as density varies. Aldhis case, as expected,
the effort grows slightly with the density level. In this eaBPI.WORST.BRANCH
requires the user to look at most 40% of the missing prefesreven when the density
is 80%.

All these algorithms have a useful anytime property, siheg tan be stopped even
before their end obtaining a possibly optimal solution vgiteference value higher than
the solutions considered up to that moment. Figure 7 showsfast the various al-
gorithms reach optimality. Thg axis represents the solution quality during execution,
normalized to allow for comparison among different probdenThe algorithms that
perform best in terms of elicited preferences, such as DOR&T.BRANCH, are also
those that approach optimality fastest. We can therefopessich algorithms early and
still obtain a solution of good quality in all completions.

Figure 8 (a) shows the percentage of elicited preferencagdwart of the bar)
over all the preferences (white + grey part), as well as tle'sieffort (black part)
for DPI.LWORST.BRANCH. Even with high levels of incompletss, this algorithm
elicits only a very small fraction of the preferences, wisitking the user to consider
at most half of the missing preferences. For example, witbrimpleteness #0%, the
user effort is at less thad0% and the elicited preferences are at less th#h

Figure 8 (b) shows results for LU.WORST.BRANCH, where therus involved
in the choice of the value for the next variable. Comparedfb. WWORST.BRANCH,
this algorithm is better both in terms of elicited preferem@and user’s effort (while
SU.WORST.BRANCH is better only for the elicited preferesicéle conjecture that
the help the user gives in choosing the next value guidesahecls towards better
solutions, thus resulting in an overall decrease of the rerrabelicited preferences.

Although we are mainly interested in the amount of elicitatiwe also computed
the time to run the 16 algorithms. Ignoring the time takend the user for missing
preferences, the best algorithms need about 200 ms to findebessarily optimal
solution for problems with 10 variables and 5 elements indbmmains, no matter the
amount of incompleteness. Most of the algorithms need hess 500 ms.

7.2 Incomplete CSPs

We also tested these algorithms on incomplete hard CSPsidrtdse, preferences
are only 0 and 1, and necessarily optimal solutions are cet@lssignments which
are feasible in all completions. The problem generator &ptetl accordingly. The
parametetvhat now has a specific meaningthat = worst means asking if there is
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Figure 5: Percentage of eﬁcnedopreferences in incomiletey CSPs.
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user’s effort
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Figure 6: Incomplete fuzzy CSPs: user’s effort
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solution quality
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Figure 7: Incomplete fuzzy CSPs: solution quality.

a 0 among the considered missing preferences. If there iswe Ban infer that all the
considered missing preferences are 1s.

Figure 9 shows the percentage of elicited preferencesiimstef amount of incom-
pleteness, density, and tightness. Notice that the scdleegraxis varies to include the
highest values. The best algorithms are those witht = worst, where the inference
explained above about missing preferences can be perfoltis@dasy to see a phase
transition at tightness about 35% , which is when problenss fiilmm being solvable
to having no solutions. However, the percentage of eligitederences is below 20%
for all algorithms even at the peak.

Figure 10 shows the user’s effort in terms of amount of incletgmess and in
terms of density. Overall, the best algorithm is again DRIRET.BRANCH, whose
percentage of elicited preferences and users effort arershmoFigure 11 in detail. In
this figure we also show the percentage of 1s that are infegréide system (light grey
area). It is possible to note that also with the 100% of mggireferences the user’s
effort is below 22%.

7.3 Incomplete temporal fuzzy CSPs

We also performed some experiments on fuzzy simple tempaoshlems [15]. In such
problems variables represent instantaneous events asttaiots model time intervals
for durations and distances of such events. Moreover, tis$siple to associate a fuzzy
preference to each possible duration or distance. Thuzzy temporal constraint on
variablesX andY has the form([a, b], f) where[a,b] is an interval such that <
Y — X < bandf is a preference function associating a preference in [0,Egach
value in[a, b].

Fast consistency-based solvers have been developed factaltle sub-class of
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Figure 8: Incomplete fuzzy CSPs: best algorithms.

27



elicited preferences (%)

N N

PO S N S S S Y

& & & 4

20 25 30 35

40 45 50 55 60 65 70 75

incompleteness
(a) d=50%, t=10%

80 85 90 95 100

elicited preferences (%)

60

elicited preferences (%)

(h) t=109%, j=30%

AN

tightness
(c) d=50%, i=30%

Figure 9: Elicited preferences in incomplete CSPs.
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Figure 11: Incomplete CSPs: best algorithm.

such problems, where all the preference functions are semiex[15]. Such solvers
are however unable to deal with missing preferences siree ritake the problems
intractable in general. We have thus decided to experimeniis class of problems
our branch-and-bound-based techniques. In fact, in additi the value of testing on
problems with such a specific structure, the large amoumtfofination required by
the specification of such problems makes missing prefeseveny likely to appear in
practice.

We have generated classes of such problems following th@aglpin [15], adapted
to consider incompleteness. Figure 12 shows that evensrdtain it is possible to
find a necessarily optimal solution by asking about 10% ofresing preferences, for
example via algorithm DPI.WORST.BRANCH.

7.4 Incomplete weighted CSPs

We considered incompleteness also on weighted CSPs (WCB&JPs model opti-

mization problems where the goal is to minimize the totat {tfime, space, number of
resources, etc...) of the proposed solution. To handlethesblems, we instantiated
our general framework using tHel, min, +, 400, 0) c-semiring. In a similar way as
in IFCSPs, in Incomplete Weighted CSPs (IWCSPs) some aasisciated with each
tuple, are missing. In this case the multiplicative oper&mot idempotent (as in the
fuzzy setting) and thus, we have to know all the missing cast®ciated with a given
assignment to obtain its global cost.

To adapt our algorithms to deal with IWCSPs, it is necessadgvelop new elicita-
tion strategies optimized for this new environment. We dfithree different ways to
ask the user for the missing costs. The resulting strate@gesiready defined in Section
5, are identified with the following values for thghat parameter: WW, BB, and BW.
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Figure 12: Percentage of elicited preferences in incorafiletzy temporal CSPs.

DPI.ALL.BRANCH -+ DPI.BW.NODE -4 LU.WW.BRANCH —0&— SU.ALL.NODE --@& - DP.ALL.TREE --6--
DPLALL.NODE - DPI.BW.BRANCH —v— LU.WW.NODE --&-- SU.WW.BRANCH —6— DP.WW.TREE --@--
DPLALL.TREE DPI.BB.TREE --v--- LU.BW.BRANCH —©— SU.WW.NODE --@-- DP.BB.TREE --EI-
DPL.WW.TREE --B-- DPI.BB.NODE —¢o— LU.BW.NODE --&--- SU.BW.BRANCH —6— DP.BW.TREE --B&-
DPIL.WW.NODE ---©-- DPLBB.BRANCH --#--- LU.BB.BRANCH —©— SU.BW.NODE --@--

DPI.WW.BRANCH —@— LU.ALL.BRANCH —& LU.BB.NODE --@-- SU.BB.BRANCH —&—

DPIL.BW.TREE --4-- LU.ALL.NODE --# SU.ALL.BRANCH —© SU.BB.NODE --@--

Figure 13: Algorithms for IWCSPs.

Notice that, with WW, we elicit the worst missing cost (th&tthe highest) until either
all the costs are elicited or the current global cost of tlesgbly partial) assignment is
higher than the optimum found so far. By doing this, we knotlié global cost exceeds
the optimum as early as possible. With BB, we elicit the biest (he minimum) cost
until either all the costs are elicited or the current glodzdt of the (possibly partial)
assignment is higher than the optimum found so far. Knowieghtest cost of a given
assignment allows the system to infer that all the otherindssosts are at least as high
as the last one elicited. This inference allows us to updet&-tompletion during the
search by lowering the upper bound of the missing costs. ifnvilay, we overesti-
mate the real value of the unknown costs. Bgt the 1-completion updated with the
inferred costs. Given an assignmenpref(P;,s) >g pref(P1*,s) >g pref(P’,s)
whereP’ is P in which all the incomplete tuples afare elicited. With BW, we elicit
in turn the best and the worst cost. In this case we want toeiegtirically if the
combination of the previous two strategies is better in ficac

In all the experimental results, the association betweealgorithm name and a
line symbol is shown in Figure 13.

We tested our algorithms on randomly generated IWCSPs, antsed thél hat =
ALL method as a baseline because it is the most general ebaitstiiategy that can
be applied in every possible setting: Hard CSPs, Fuzzy ISC&P.

The randomly generated IWCSPs have the same default pamavaéies as in the
IFCSPs experiments, except for the tightness that has altdetdue of 25%. We
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choose this value because it is near the middle from 0 and #0fére we will see a
phase transition in the percentage of elicited tuples ({€id4(c)). We recall that each
cost has a value if), 10] U {+oo}.

Figure 14 shows the percentage of elicited preferences asmalensity, incom-
pleteness and tightness. As expected, the number of dlizifdes increases with the
incompleteness of the problem (see Figure 14(a)). As we trayightness (Figure
14(c)), we can observe a phase transition at t=40%. At thiat pmost of the prob-
lems have an optimal solution with infinite cost, thus theoathms do not need more
information to find that extreme solution.

When the density increases (Figure 14(b)), the percenthghcded costs tends
to decrease slightly. This may be surprising, since, irgingathe number of con-
straints, the number of incomplete tuples increases, teugdrcentage of elicited costs
should increase. However, the number of infinite costs as®e together with the in-
completeness. In this particular case, using t=25% and%s3Be number of infinite
cost values increases enough to make the problem easidwé) s it requires less
elicitation. We performed other experiments decreasiegiéfault tightness value to
t=10%. In this case the percentage of elicited values isealightly, because there
are not enough infinite costs to make the problem easier & s@n the other hand,
the number of incomplete tuples increases with density,imgathe problem harder
to solve (thus requiring more elicitation). Summarizinggrieasing density, both in-
completeness and tightness increase. When t=25% thelmaidn of the tightness is
more important than incompleteness and the problems beeasier to solve. On the
contrary, when t=10%, the contribution of the incompletanis greater and thus the
problems becomes harder.

It easy to see that the best algorithms are those witbn = branch andwho =
su. These algorithms ask for only around 30% of the costs netalsdlve a totally
incomplete problem. The parameteho = su forces the user to select the value to
instantiate, which implies an additional effort by the udéris behavior is depicted in
Figure 16(b) where the algorithm elicits a very small numifdauples but the user has
to check almost all the incomplete tuples every time.

Among the algorithms where the user does not help the systéneivalue instan-
tiation, the algorithm that elicits less values is DPI.BWRHE (see Figure 15(a)).

DPI.BW.TREE elicits less that half of the unknown costs 00%0f incomplete-
ness, requiring the user to look at 70% of incomplete tuplesniswer the system’s
query. All our experiments shown that, iteratively askihg tiser for the best and the
worst preference of a given assignment is the best compeontien the value instan-
tiation is totally done by the system. On the other hand,ritde the user to consider
more than 70% of the incomplete tuples.

If we want to minimize the user effort, the best choice is theéALL.BRANCH
algorithm (see Figure 15(b)). As shown in Figure 17(a), tberwoes less work with
LU.ALL.BRANCH than with the other algorithms when the incplateness is vary-
ing. We obtain the same result when the density or the tigistieevarying (see Fig-
ures 17(b), 17(c)). If we want a balance between the pergerdggelicited costs and
the user effort, the best compromise is LU.BB.BRANCH. Fegd6(a) shows that,
on IWCSPs with no initial costs, it elicits 40% of incomplétgples with a user ef-
fort of about 60%. Summarizing, SU.WW.BRANCH (Figure 1§(is)the algorithm
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Figure 15: Best algorithms for incomplete weighted CSPs.
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which elicits less tuples but, if we want the user to just agrstlue elicitation queries,
the best is DPI.BW.TREE. The algorithm that minimizes therusffort is instead
LU.ALL.BRANCH, whereas the best compromise between udertedind elicitation

is LU.BB.BRANCH.

8 Related work

Recently, some lines of work have addressed issues simitapse considered in this
paper by allowing for open settings in CSPs: both open CSP8][a@nd interactive
CSPs [16] work with domains that can be partially specified, i@ dynamic CSPs [6]
variables, domains, and constraints may change over tirhaslbeen shown that these
approaches are closely related. In fact, interactive C8R%e seen as a special case
of both dynamic and open CSPs [18].

While the main goal of the work on interactive CSPs is to miaarthe run time of
the solver, we emphasize the minimization of the number efigs to the user and/or
of the user effort. The work closest to ours is the one on opeRL An open CSP
is a possibly unbounded, partially ordered §€6tSP(0), CSP(1),...} of constraint
satisfaction problems, each of which contains at least omre mhomain values than its
predecessor. Thus, in [9] the approach is to solve largedanger problems until a
solution is found, while minimizing the number of variablalwes asked to the user.
To compare it to our setting, we assume all the variable wafue known from the
beginning, while some of the preferences may be missingpandlgorithms work on
different completions of the given problem. Also, open C8Rgloit aMonotonicity
Assumptiorthat each agent provides variable values in strictly nocraBesing order of
preference. Even when there are no preferences, each aggesnbgly variable values
that are feasible. Working under this assumption meansthigadgent that provides
new values/costs for a variable must know the bounds on thairgéng possible costs,
since they are provided best value first. If the bound contjoutds expensive or time
consuming, then this is not desirable. This is not needediirsetting, where single
preferences are elicited.

¢From the algorithmic point of view, in [7, 9, 8] the authoewelop specific al-
gorithms for open CSPs, and then generalize it to fuzzy andhted open CSPs.
Our approach instead went from the general to the specifad:leve defined a gen-
eral framework for incomplete soft constraint problems] Hren we instantiated it to
specific classes, such as classical CSPs, fuzzy CSPs, aghteiCSPs. Thus, the
general framework is maintained in all these classes, acahitboe augmented by the
definition of specific optimized elicitation strategies,igthmay exploit the properties
of the c-semiring used.

Besides the theoretical differences between our approadghte one in [9], we
also made an experimental comparison on the same classesbtéps considered in
[9]. We randomly generated coloring problems with 5-14 ablés and 3-11 values
per variable, and inequality constraints between randaimbgen variable pairs so that
the constraint graph is at least connected and at most ctenplée used algorithm
LU.WORST.BRANCH on a test set generated in the following waye randomly
generated 1000 coloring problems each with 5-14 variabléds il values per vari-
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Figure 18: Average number of values used in incomplete oa@quroblems with 11
values per variable.

able. Then we set the cost of 0 to 8 values per variabledo (in order to have 3-11
feasible values). We also ensured that the constraint gvaplat least connected and at
most complete. To simulate the totally unknown domains Jraf%he beginning of the
search process, we generated variables with no known ¢éstgly, we grouped these
problems in classes with the same average number of value®p®in. In [9] the au-
thors measure the average number of queries per variabripare their algorithm
with LU.WORST.BRANCH, we measured the average number dédiht values per
variable our algorithm needs to solve the problem (countireyery time a value is
instantiated for the first time). In Figure 18 we can see thatadgorithm needs about
2 values per variable to solve problems with 4 to 9 values perain. This is the same
result as the best algorithm in [9], which is pleasing as tgorithm is general purpose
and not specifically designed for this purpose.

An example of another approach to explicit elicitation isdmplete CSPs is the
one presented in [4], where the user provides a classicalaD8R partially unknown
utility function over its solutions. The system then penfigrelicitation queries to se-
lect a specific utility function by a regret-based technjgueere the elicitation is used
to ease the computation of the minimax regret function. Irtigaar, the elicitation
concerns bounds on the parameters of the utility functiorarédver, quasi-optimal
decisions may be obtained, since often they require mushdffsrt than finding op-
timal ones. This approach is very interesting but rathefrfizin ours. In particular,
our approach does not work with bounds, since we ask for ip@ceference values.
Moreover, our preference functions are based on the prefesan the constraints, and
not on the variable values. Also, we want to obtain an optisoe#ution, although we
experimentally analyzed all our algorithms to see whethgwad solution is obtained
early (see Figure 7).
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9 Conclusion and future work

We have considered incomplete soft constraint problemgevbeme preferences are
missing. We have defined a formalism, that extends the sofitcaint one, to model
such an incompleteness. Two new notions of optimal solati@ve been considered:
the possibly optimal solutions, that are optimal in at least way of revealing miss-
ing preferences, and the necessarily optimal solutioss,ate optimal in all ways of
revealing missing preferences, and we have given chaizatiens of these two sets
of optimal solutions. To find necessarily optimal soluti@fishese problems, we have
defined a general solver schema, that interleaves brandhcamdl (B&B) search with
elicitation steps. This solver schema can be instantiatekbiways, that depend on
when to elicit (at the end of the B&B search, at a branch, or abde of a B&B
search), what to elicit (all the missing preferences or dmworst one), and who elic-
its (the algorithm or the user). We have tested and compae=#t16 instances of the
general solver on randomly generated Fuzzy ISCSPs, by miegshe percentage of
the elicited preferences and the user’s effort, that isntimaber of missing preferences
that the user has to consider in order to give his elicitatinswers. Experimental re-
sults have shown that the best algorithms are those thtatlithe branch level and,
among those, the ones that perform better are those thihbelig the worst preference
if it is necessary. Such algorithms are also very helpfuteithey reach optimality
very quickly. This fact allows one to stop elicitation amyé, being sure to have a
possibly optimal solution with a higher level of preferentée percentage of elicited
preferences for these best algorithms is bel®% and the user’s effort does not ex-
ceed30%. In addition, we have considered incomplete CSPs whereofihe@nstraints
have been replaced by hard constraints. Experimentatsdste shown a trend which
is similar to the one registered for Fuzzy ISCSPs. We haweaissidered problems
with a precise structure. These are, the fuzzy simple teatpooblems where the con-
straints allow constraints time intervals for durationd distances of events, and fuzzy
preferences associated with each element of an intervad iAlthis context, to find a
necessarily optimal solution with the best algorithm, #latits at the branch level only
the worst preference if it is necessary, it is sufficient to asout 10% of the missing
preferences.

In the problems considered in this paper, we have no infaomabout the missing
preferences. We are currently considering settings inlweéch missing preference is
associated with a range of possible values, that may be enth#in the whole range
of preference values. For such problems, we intend to deéweral notions of opti-
mality, among which necessarily and possibly optimal sohg are just two examples,
and to develop specific elicitation strategies for each efthWe are also studying soft
constraint problems where no preference is missing, buegmaferences are unstable,
and are associated with a perturbation range of possil@malive values. Moreover,
we will consider other approaches to preference elicitaiod measures of the in-
formation elicited from the user, such as those in [3, 4, M% also intend to build
solvers based on local search or variable elimination ndsthBinally, we want to add
elicitation costs and to use them also to guide the searcigrasin [25] for hard CSPs.
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