
Elicitation Strategies for Soft Constraint
Problems with Missing Preferences: Properties,

Algorithms and Experimental Studies

Mirco Gelain1, Maria Silvia Pini1, Francesca Rossi1, K. Brent Venable1,
and Toby Walsh2

1 Dipartimento di Matematica Pura ed Applicata,
Università di Padova, Italy

E-mail: {mgelain,mpini,frossi,kvenable}@math.unipd.it
2 NICTA and UNSW Sydney, Australia,

Email: Toby.Walsh@nicta.com.au

Abstract

We consider soft constraint problems where some of the preferences may be
unspecified. This models, for example, settings where agents are distributed and
have privacy issues, or where there is an ongoing preferenceelicitation process.
In this context, we study how to find an optimal solution without having to wait
for all the preferences. In particular, we define algorithms, that interleave search
and preference elicitation, to find a solution which is necessarily optimal, that is,
optimal no matter what the missing data will be, with the aim to ask the user to re-
veal as few preferences as possible. We define a combined solving and preference
elicitation scheme with a large number of different instantiations, each correspond-
ing to a concrete algorithm, which we compare experimentally. We compute both
the number of elicited preferences and the user effort, which may be larger, as it
contains all the preference values the user has to compute tobe able to respond
to the elicitation requests. While the number of elicited preferences is important
when the concern is to communicate as little information as possible, the user ef-
fort measures also the hidden work the user has to do to be ableto communicate
the elicited preferences. Our experimental results on classical, fuzzy, weighted
and temporal incomplete CSPs show that some of our algorithms are very good at
finding a necessarily optimal solution while asking the userfor only a very small
fraction of the missing preferences. The user effort is alsovery small for the best
algorithms.

Keywords: preferences, soft constraints, incompleteness, elicitation

1

1 Introduction

Traditionally, tasks such as scheduling, planning, and resource allocation have been
tackled using several techniques, among which constraint reasoning is one of the most
promising. The task is represented by a set of variables, their domains, and a set of
constraints, and a solution of the problem is an assignment to all the variables in their
domains such that all constraints are satisfied. Preferences or objective functions have
been used to extend this formalism and allow for the modelling of constraint optimiza-
tion, rather than satisfaction, problems. In all these approaches, the data (variables, do-
mains, constraints) are completely known before the solving process starts. However,
the increasing use of web services and in general of multi-agent applications demands
for the formalization and handling of data that is only partially known when the solving
process works, and that can be added later, for example via elicitation [23, 24]. In many
web applications, data may come from different sources, which may provide their piece
of information at different times. Also, in multi-agent settings, data provided by some
agents may be voluntarily hidden due to privacy reasons, andonly released if needed
to find a solution to the problem.

Here we consider these issues focusing on constraint optimization problems where
we look for an optimal solution. In particular, we consider problems where constraints
are replaced by soft constraints, in which each assignment to the variables of the con-
straint has an associated preference coming from a preference set [1]. We assume that
variables, domains, and constraint topology are given at the beginning, while the pref-
erences are partially specified and are elicited during the solving process.

There are several application domains where this might be useful. One regards the
fact that quantitative preferences, needed in soft constraints, may be difficult and te-
dious to provide for a user. Another one concerns multi-agent settings, where agents
agree on the structures of the problem but they may provide their preferences on dif-
ferent parts of the problem at different times. Finally, some preferences can be initially
hidden because of privacy reasons.

Formally, we take the soft constraint formalism and we allowfor some preferences
to be left unspecified. In our setting, users may know all the preferences but are willing
to reveal only some of them at the beginning. Although some ofthe preferences can be
missing, it could still be feasible to find an optimal solution. If not, we ask the user to
provide some of the missing preferences and we start again from the new problem. We
consider two notions of optimal solution:possibly optimalsolutions are assignments to
all the variables that are optimal inat least one wayin which the currently unspecified
preferences can be revealed, whilenecessarily optimalsolutions are assignments to all
the variables that are optimal inall waysin which the currently unspecified preferences
can be revealed. This notation comes from multi-agent preference aggregation [17, 20,
21], where, in the context of voting theory, some preferences are missing but still one
would like to declare a winner.

Given an incomplete soft constraint problem (ISCSP), its set of possibly optimal
solutions is never empty, while the set of necessarily optimal solutions can be empty.
Of course what we would like to find is a necessarily optimal solution, to be on the
safe side: such solutions are optimal regardless of how the missing preferences are
specified. Unfortunately, such a set may be empty. In this case there are two choices:

2

either we may be satisfied with a possibly optimal solution, or we can elicit some of the
missing preferences from the user and see if the new ISCSP hasa necessarily optimal
solution.

In this paper we follow this second approach and we repeat theprocess until the
current ISCSP has at least one necessarily optimal solution. In order to do that, we
exploit a modified version of the classical branch and bound scheme and we consider
different elicitation strategies. In particular, we definea general algorithm scheme that
is based on three parameters:whento elicit,whatto elicit, andwhochooses the value to
be assigned to the next variable. For example, we may only elicit missing preferences
after running branch and bound to exhaustion, or at the end ofevery complete branch,
or even at every node in the search tree. Also, we may elicit all missing preferences
related to the candidate solution, or we might just ask the user for the worst preference
among some missing ones. Finally, when choosing the value toassign to a variable, we
might ask the user, who knows or can compute (all or some of) the missing preferences,
for help.

We test all possible instances of the scheme, obtained by selecting different elicita-
tion strategies, on randomly generated soft constraint problems (fuzzy and weighted).
By varying the number of variables, the tightness and density of constraints as well as
the percentage of missing preferences, we produce a diversified and meaningful test
set. The experiments demonstrate that some of the algorithms are very good at finding
necessarily optimal solutions without eliciting too many preferences. We also test some
of the algorithms on problems with hard constraints and on fuzzy temporal constraints.
Our experimental study on randomly generated problems permits us to filter out algo-
rithms with a poor performance and, thus, to identify those that are more promising for
future testing on real-life scenarios.

In our experiments, we compute the elicited preferences, that is, the missing values
that the user has to provide to the system because they are requested by the algorithm.
Providing these values usually has a cost, either in terms ofthe computational effort, or
in terms of a decrease in privacy, or in terms of the communication bandwidth. Whilst
knowinghow many preferences are elicitedis important, we also compute a measure
of theuser’s effort. This may be much larger than the number of elicited preferences,
as it contains all the preference values the user may have to compute to be able to
respond to the elicitation requests. For example, suppose we ask the user for the worst
preference value amongk missing ones. The user will communicate only one value,
but he may have to compute and consider allk of them. Knowing the number of elicited
preferences is important when the concern is to communicateas little information as
possible. The user effort, on the other hand, measures the hidden work the user has to
do to be able to communicate the elicited preferences. This user’s effort is therefore
also an important measure.

As a motivating example, recommender systems give suggestions based on partial
knowledge of the user’s preferences. Our approach could improve performance by
identifying some key questions to ask before giving recommendations. Privacy con-
cerns regarding the percentage of elicited preferences aremotivated by eavesdropping.
User’s effort is instead related to the burden on the user. Our results show that the
choice of the preference elicitation strategy is crucial for the performance of the solver.
While the best algorithms need to elicit as little as 10% of the missing preferences, the

3

worst ones need much more. The user’s effort is also very small for the best algorithms.
The performance of the best algorithms also shows that we only need to ask the user
for a very small amount of additional information to be able to solve problems with
missing data.

The paper is structured as follows. In Section 2 we define softconstraint problems,
known in literature, where all the preferences are given. InSection 3 we introduce soft
constraint problems where some preferences are missing (i.e., ISCSPs), we give new
notions of optimal solutions, i.e., the possibly and the necessarily optimal solutions,
and we characterize them in Section 4. In Section 5 we presenta general algorithmic
scheme for ISCSPs with all its possible instances. In Section 6 we describe the problem
generator used in the experimental studies and we indicate what we measure in the ex-
periments. Next, in Section 7 we summarize and discuss our experimental comparison
of all the algorithms. Finally, in Section 8 we compare our approach to other existing
approaches to deal with incompletely specified constraint optimization problems, and
in Section 9 we summarize the results contained in this paper, and we give some hints
for future work.

Preliminary versions of parts of this paper have appeared in[12, 13].

2 Soft constraints

A soft constraint [1] is just a classical constraint [5] where each instantiation of its
variables has an associated value from a (totally or partially ordered) set. This set has
two operations, which makes it similar to a semiring, and is called a c-semiring. More
precisely, a c-semiring is a tuple〈A, +,×,0,1〉 whereA is a set, called the carrier of
the c-semiring, and0,1 ∈ A; + is commutative, associative, idempotent,0 is its unit
element, and1 is its absorbing element;× is associative, commutative, distributes over
+, 1 is its unit element and0 is its absorbing element. Consider the relation≤S over
A such thata ≤S b iff a + b = b. Then:≤S is a partial order;+ and× are monotone
on≤S ; 0 is its minimum and1 its maximum;〈A,≤S〉 is a lattice and, for alla, b ∈ A,
a + b = lub(a, b). Moreover, if× is idempotent, then〈A,≤S〉 is a distributive lattice
and× is its glb. Informally, the relation≤S gives us a way to compare (some of the)
tuples of values and constraints. In fact, when we havea ≤S b, we will say thatb is
better than a. Thus,0 is the worst value and1 is the best one.

Given a c-semiringS = 〈A, +,×,0,1〉, a finite setD (the domain of the variables),
and an ordered set of variablesV , a constraint is a pair〈def, con〉 wherecon ⊆ V is
the scope of the constraint anddef : D|con| → A is the preference function of the
constraint. Therefore, a constraint specifies a set of variables (the ones incon), and
assigns to each tuple of values ofD of these variables an element of the semiring set
A. A soft constraint satisfaction problem (SCSP) is just a setof soft constraints over a
set of variables.

Many classes of satisfaction or optimization problem can bedefined in this for-
malism. A classical CSP is just an SCSP where the chosen c-semiring is: SCSP =
〈{false, true}, ∨,∧, false, true〉. On the other hand, fuzzy CSPs [22, 11] can be
modelled in the SCSP framework by choosing the c-semiring:SFCSP = 〈[0, 1],
max, min, 0, 1〉. For weighted CSPs, the semiring isSWCSP = 〈ℜ+, min, +,

4

+∞, 0〉. Here preferences are interpreted as costs from0 to +∞, which are com-
bined with the sum and compared withmin. Thus the optimization criterion is to
minimize the sum of costs. For probabilistic CSPs [10], the semiring isSPCSP =
〈[0, 1], max,×, 0, 1〉. Here preferences are interpreted as probabilities ranging from0
to 1, which are combined using the product and compared usingmax. Thus the aim is
to maximize the joint probability.

Given an assignments to all the variables of an SCSPP , i.e., a solution ofP , we
can compute its preference valuepref(P, s) by combining the preferences associated
by each constraint to the sub-tuples of the assignments referring to the variables of the
constraint. More precisely,pref(P, s) = Π〈def,con〉∈Cdef(s↓con), whereΠ refers to
the× operation of the semiring ands↓con is the projection of tuples on the variables
in con. For example, in fuzzy CSPs, the preference of a complete assignment is the
minimum preference given by the constraints. In weighted constraints, it is instead the
sum of the costs given by the constraints.

Definition 1 (optimal solution) An optimal solution of an SCSPP is a complete as-
signments such that there is no other complete assignments′ with pref(P, s) <S

pref(P, s′). The set of optimal solutions of an SCSPP will be written asOpt(P).

Notice that Opt(P) is always well-defined, since the domain Dis finite, so there can
only be finitely many preference values for an SCSP.

3 Incomplete Soft Constraint Problems (ISCSPs)

Informally, an incomplete SCSP, written ISCSP, is an SCSP where the preferences
of some tuples in the constraints, and/or of some of the values in the domains, are not
specified. In detail, given a set of variablesV with finite domainD, and c-semiringS =
〈A, +,×, 0, 1〉, we extend the SCSP framework to incompleteness by the following
definitions.

Definition 2 (incomplete soft constraint) Given a set of variablesV with finite do-
mainD, and a c-semiring〈A, +,×, 0, 1〉, an incomplete soft constraint is a pair〈idef,
con〉 wherecon ⊆ V is the scope of the constraint andidef : D|con| −→ A ∪ {?} is
the preference function of the constraint. All tuples mapped into ? by idef are called
incomplete tuples.

In an incomplete soft constraint, the preference function can either specify the
preference value of a tuple by assigning a specific element from the carrier of the
c-semiring, or leave such preference unspecified. Formally, in the latter case the asso-
ciated value is?. A soft constraint is a special case of an incomplete soft constraint
where all the tuples have a specified preference.

Definition 3 (incomplete soft constraint problem (ISCSP))An incomplete soft con-
straint problem is a pair〈C, V, D〉 whereC is a set of incomplete soft constraints over
the variables inV with domainD. Given an ISCSPP , we will denote withIT (P) the
set of all incomplete tuples inP .

5

Definition 4 (completion) Given an ISCSPP , a completion ofP is an SCSPP ′ ob-
tained fromP by associating to each incomplete tuple in every constraintan element
of the carrier of the c-semiring. A completion is partial if some preference remains
unspecified. We will denote withC(P) the set of all possible completions ofP and
with PC(P) the set of all its partial completions.

Example 1 A travel agency is planning Alice and Bob’s honeymoon. The candidate
destinations are the Maldive islands and the Caribbean, andthey can decide to go by
ship or by plane. To go to Maldives, they have a high preference to go by plane and a
low preference to go by ship. For the Caribbean, they have a high preference to go by
ship, and they don’t give any preference on going there by plane.

Assume we use the fuzzy c-semiring〈[0, 1], max, min, 0, 1〉. We can model this
problem by using two variablesT (standing forTransport) and D (standing for
Destination) with domainsD(T) = {p, sh} (p stands forplane and sh for ship)
andD(D) = {m, c} (m stands forMaldives, c for Caribbean), and an incomplete
soft constraint〈idef, con〉 with con = {T, D} and preference function as shown in
Figure 1. The only incomplete tuple in this soft constraint is (p, c).

Also, assume that for the considered season the Maldives areslightly preferable
to the Caribbean. Moreover, Alice and Bob have a high preference for plane as a
means of transport, while they don’t give any preference to ship. Moreover, as far as
accommodations, which can be in a standard room, a suite, or abungalow, assume
that a suite in the Maldives is too expensive while a standardroom in the Caribbean
is not special enough for a honeymoon. To model this new information we use a vari-
ableA (standing forAccommodation) with domainD(A) = {r, su, b} (r stands for
room, su for suite andb for bungalow), and three constraints: two unary incomplete
soft constraints,〈idef1, {T }〉, 〈idef2, {D}〉 and a binary incomplete soft constraint
〈idef3, {A, D}〉. The definition of such constraints is shown in Figure 1. The set of in-
complete tuples of the entire problem isIT (P) = {(sh), (p, c), (su, c), (b, c), (r, m),
(su, m)}. 2

idef2(c) = 0.7
idef2(m) = 0.9

idef1(p)=0.8
idef1(sh) = ?

D

idef3(r, c) = 0.3
idef3(su, c) = ?
idef3(b, c) = ?
idef3(r, m) = ?

idef3(b, m) = 0.2
idef3(su, m) = ?

idef(p,m) = 0.7

idef(sh,c) = 0.8

idef(sh,m) = 0.1

idef(p, c) = ?

T

A

Figure 1: An ISCSP.

Definition 5 (preference of an assignment, incomplete tuples) Given an ISCSPP =
〈C, V, D〉 and an assignments to all its variables, we denote withpref(P, s) the pref-

6

erence ofs in P and with DEF(P,s) the set of soft constraints with no s-related miss-
ing preferences, that is,DEF (P, s) = < idef, con >∈ C|idef(s↓con) 6=?. In detail,
pref(P, s) = Π<idef,con>∈DEF (P,s)idef(s↓con). Moreover, we denote byit(s) the
set of all the projections ofs over constraints ofP which have an unspecified prefer-
ence.

The preference of an assignments in an incomplete problem is thus obtained by
combining the known preferences associated with the projections of the assignment,
that is, of the appropriated sub-tuples in the constraints.The projections which have
unspecified preferences, that is, those init(s), are simply ignored.

Example 2 Consider the two assignmentss1 = (p, m, b) ands2 = (p, m, su) for the
problem in Figure 1. We have thatpref(P, s1) = min (0.8, 0.7, 0.9, 0.2) = 0.2, while
pref(P, s2) = min (0.8, 0.7, 0.9) = 0.7. However, while the preference ofs1 is fixed,
since none of its projections is incomplete, the preferenceof s2 may become lower than
0.7 depending on the preference of the incomplete tuple(su, m). 2

As shown by the example, the presence of incompleteness partitions the set of
assignments into two sets: those which have a certain preference which is independent
of how incompleteness is resolved, and those whose preference is only an upper bound,
in the sense that it can be lowered in some completions. Givenan ISCSPP , we will
denote the first set of assignments asFixed(P) and the second withUnfixed(P). In
Example 2,Fixed(P) = {s1}, while all other assignments belong toUnfixed(P).

In SCSPs, an assignment is an optimal solution if its global preference is undom-
inated. This notion can be generalized to the incomplete setting. In particular, when
some preferences are unknown, we will speak of necessarily and possibly optimal so-
lutions, that is, assignments which are undominated in all (resp., some) completions.

Definition 6 (necessarily and possibly optimal solution)Given an ISCSPP = 〈C, V,
D〉, an assignments ∈ D|V | is a necessarily (resp, possibly) optimal solution iff
∀Q ∈ C(P) (resp.,∃Q ∈ C(P)) ∀s′ ∈ D|V |, pref(Q, s′) 6> pref(Q, s).

Given an ISCSPP , we will denote withNOS(P) (resp.,POS(P)) the set of nec-
essarily (resp., possibly) optimal solutions ofP . Notice that, whilePOS(P) is never
empty, in generalNOS(P) may be empty. In particular,NOS(P) is empty when-
ever the available preferences are not sufficient to establish the relationship between an
assignment and all others.

Example 3 In the ISCSPP of Figure 1, we can easily see thatNOS(P) = ∅ since,
given any assignment, it is possible to construct a completion ofP in which it is not an
optimal solution. On the other hand,POS(P) contains all assignments not including
tuple(sh, m). 2

4 Characterizing POS(P) and NOS(P)

In this section we characterize the set of necessarily and possibly optimal solutions
of an ISCSP given the preferences of the optimal solutions oftwo of the completions

7

of P . All the results are given for ISCSPs defined on totally ordered c-semirings. In
particular, given an ISCSPP defined on the c-semiring〈A, +,×,0,1〉, we consider:

• the SCSPP0 ∈ C(P), called the0-completion ofP , obtained fromP by asso-
ciating preference0 to each tuple ofIT (P).

• the SCSPP1 ∈ C(P), called the1-completion ofP , obtained fromP by asso-
ciating preference1 to each tuple ofIT (P).

Let us indicate respectively withpref0 andpref1 the preference of an optimal
solution ofP0 andP1. Due to the monotonicity of×, and since0 ≤ 1, we have that
pref0 ≤ pref1.

Example 4 Consider the problem shown in Figure 1. We have thatpref0 = 0.2 and
pref1 = 0.7. 2

We will now give some lemmas that will be useful to show the following theorems.

Lemma 1 Given an ISCSPP and the completionP1 ∈ C(P) as defined above, we
have thatpref(P, s) = pref(P1, s).

Proof: Follows immediately from the definition ofpref(P, s) and from the fact that
in a c-semiring1 is the unit element. 2

Lemma 2 Given an ISCSPP and the completionP1 ∈ C(P) as defined above, there
always exists an assignments such thatpref(P, s) = pref1.

Proof: Follows from Lemma 1 and choosing anys ∈ Opt(P1). 2

Lemma 3 Given an ISCSPP , the completionsP0, P1 ∈ C(P) as defined above, and
another completionP ′ ∈ C(P), then,∀s ∈ Opt(P ′), pref0 ≤ pref(P ′, s) ≤ pref1.

Proof: Due to monotonicity, for any solutions we have thatpref(P ′, s) ≤ pref(P1,
s) ≤ pref1, sincepref1 is the optimal preference ofP1. Assume there is a solution
s ∈ Opt(P ′) such thatpref(P ′, s) < pref0. Then, for any solutions0 ∈ Opt(P0), we
have, by monotonicity,pref(P ′, s) < pref0 = pref(P0, s0) ≤ pref(P ′, s0). Thus,
we have a contradiction, sinces is an optimal solution ofP ′. 2

Lemma 4 Given an ISCSPP and the completionP1 ∈ C(P) as defined above, if
pref1 > pref0, thenOpt(P1) ⊆ Unfixed(P).

Proof: Assume there is a fixed solutions such thats ∈ Opt(P1). Then we would
have thatpref(P0, s) = Pref(P1, s) = pref1 and thuspref(P0, s) > pref0 which
is a contradiction, sincepref0 is the optimal preference inP0. 2

Lemma 5 Given an ISCSPP , we have thatNOS(P) = ∩P ′∈C(P)Opt(P ′).

8

Proof: Any solutions ∈ ∩P ′∈C(P)Opt(P ′) satisfies the definition of necessarily opti-
mal. Consider nows ∈ NOS(P) and a completionP ′ of P . Then, by Definition 6,s
cannot be dominated by another solutions′, and thuss ∈ Opt(P ′). 2

In the following theorem we will show that, ifpref0 > 0, there is a necessarily
optimal solution ofP iff pref0 = pref1, and in this caseNOS(P) coincides with the
set of optimal solutions ofP0.

Theorem 1 Given an ISCSPP and the two completionsP0, P1 ∈ C(P) as defined
above, ifpref0 > 0 we have thatNOS(P) 6= ∅ iff pref1 = pref0. Moreover, if
NOS(P) 6= ∅, thenNOS(P) = Opt(P0).

Proof: Since we know thatpref0 ≤ pref1, if pref0 6= pref1 thenpref1 > pref0.
We prove that, ifpref1 > pref0, thenNOS(P) = ∅. Let us consider any assignment
s of P . Due to the monotonicity of×, for all P ′ ∈ C(P), we havepref(P ′, s) ≤
pref(P1, s) ≤ pref1.

• If pref(P1, s) < pref1, thens is not inNOS(P) sinceP1 is a completion ofP
wheres is not optimal.

• If insteadpref(P1, s) = pref1, then,s ∈ Opt(P1) and, by Lemma 4 we have
thats ∈ Unfixed(P). Thus we can consider completionP ′

1 obtained fromP1

by associating preference0 to the incomplete tuples ofs. In P ′
1 the preference of

s is 0 and the preference of an optimal solution ofP ′
1 is, due to the monotonicity

of ×, at least that of an optimal solution ofP0, that ispref0 > 0 Thuss 6∈
NOS(P).

Next we consider whenpref0 = pref1. ¿From Lemma 5 follows thatNOS(P) ⊆
Opt(P0). We will show thatNOS(P) 6= ∅ by showing that anys ∈ Opt(P0) is
in NOS(P). Let us assume, on the contrary, that there iss ∈ Opt(P0) such that
s 6∈ NOS(P). Thus there is a completionP ′ of P with an assignments′ with
pref(P ′, s′) > pref(P ′, s). By construction ofP0, any assignments ∈ Opt(P0) must
be inFixed(P). In fact, if it had some incomplete tuple, its preference inP0 would
be 0, since0 is the absorbing element of×. Sinces ∈ Fixed(P), pref(P ′, s) =
pref(P0, s) = pref0. By construction ofP1 and monotonicity of×, we havepref(P1,
s′) ≥ pref(P ′, s′). Thus the contradictionpref1 ≥ pref(P1, s′) ≥ pref(P ′, s′) >
pref(P ′, s) = pref0. This allows us to conclude thats ∈ NOS(P) = Opt(P0). 2

In the theorem above we have assumed thatpref0 > 0. The case in whichpref0 =
0 needs to be treated separately. We consider it in the following theorem.

Theorem 2 Given ISCSPP = 〈C, V, D〉 and the two completionsP0, P1 ∈ C(P)
as defined above, assumepref0 = 0. Then, ifpref1 = 0, NOS(P) = D|V |. If
pref1 > 0, NOS(P) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s

′) > 0 we have
it(s) ⊆ it(s′)}.

Proof: We prove the two items separately.

9

• If pref0 = pref1 = 0, then, from Lemma 3 follows that the preference level
of the optimal solution of SCSPP ′ is 0. Thus all assignments have always the
same preference equal to0. Thus they are all necessarily optimal solutions.

• Let us now assume that0 = pref0 < pref1. From Lemma 5, only assignments
in Opt(P1) can be inNOS(P) since all other assignments are not optimal in
P1. Let us now considers ∈ Opt(P1). By Lemma 4 we have thatit(s) 6= ∅.
If there existss′ ∈ D|V |, with pref(P1, s

′) > 0, such thatit(s) 6⊆ it(s′)
then we can construct a completion ofP , sayP ′ wheres is not optimal. It
is sufficient to set the preference of the tuples init(s′) to 1 and the tuples in
it(s)\it(s′) to0. We have thatpref(P ′, s) = 0, since0 is the absorbing element
of ×, andpref(P ′, s′) = pref(P1, s

′). Thus, inP ′ we havepref(P ′, s′) =
pref(P1, s

′) > pref(P ′, s) = 0.

We will now show that, if givens ∈ Opt(P1) there is nos′ ∈ D|V | with
pref(P1, s

′) > 0 such thatit(s) 6⊆ it(s′), thens ∈ NOS(P).

First notice that, since1 is the unit element of×, ∀P ′ ∈ C(P) pref(P ′, s) =
pref(P1, s)×it-pref(P ′, s) andpref(P ′, s′) = pref(P1, s

′)×it-pref(P ′, s′)
whereit-pref(P ′, s) (resp. it-pref(P ′, s′)) is the combination of the prefer-
ences associated inP ′ to the incomplete tuples init(s) (resp.it(s′)).

Since for everys′ ∈ D|V | with pref(P1, s
′) > 0 we are assuming thatit(s) ⊆

it(s′), then∀P ′ ∈ C(P), it-pref(P ′, s) ≥ it-pref(P ′, s′), due to the inten-
sive property of×. Moreover, sinces ∈ Opt(P1), pref(P1, s) = pref1 >
pref(P1, s

′). Thus, for everyP ′ ∈ C(P), ∀s′ ∈ D|V | (trivially for those with
pref(P1, s

′) = 0) we have thatpref(P ′, s) ≥ pref(P ′, s′). This allows us to
conclude thats ∈ NOS(P). 2

Intuitively, if the tuples ofs are not a subset of the incomplete tuples of some
assignments′, then we can makes′ dominates in a completion by setting all the
incomplete tuples ofs′ to 1 and all the remaining incomplete tuples ofs to 0. In such
a completions is not optimal. Thuss is not a necessarily optimal solution. However, if
the tuples ofs are a subset of the incomplete tuples of all other assignments, then it is
not possible to lowers without lowering all other tuples even further. This means that
s is a necessarily optimal solution.

We now turn our attention to possible optimal solutions. Given a c-semiring〈A, +,
×, 0,1〉, it has been shown in [2] that idempotency and strict monotonicity of the×
operator are incompatible, that is, at most one of these two properties can hold. In
the following two theorems we show that the presence of one orthe other of such two
properties plays a key role in the characterization ofPOS(P) whereP is an ISCSP. In
particular, if× is idempotent, then the possibly optimal solutions are the assignments
with preference inP betweenpref0 andpref1. If, instead,× is strictly monotonic,
then the possibly optimal solutions have preference inP betweenpref0 andpref1 and
dominate all the assignments which have as set of incompletetuples a subset of their
incomplete tuples.

Theorem 3 Given an ISCSPP defined on a c-semiring with idempotent× and the two
completionsP0, P1 ∈ C(P) as defined above, ifpref0 > 0 we have that:POS(P) =
{s ∈ D|V ||pref0 ≤ pref(P, s) ≤ pref1}.

10

Proof: First we show that anys such thatpref0 ≤ pref(P, s) ≤ pref1 is in
POS(P). Let us consider the completion ofP , P ′, obtained by associating prefer-
encepref(P, s) to all the incomplete tuples ofs and0 to all other incomplete tuples
of P . For any other assignments′ we can show that it never dominatess:

• s′ ∈ Fixed(P) and thuspref(P ′, s′) = pref(P0, s
′) ≤ pref0 ≤ pref(P, s);

• s′ ∈ Unfixed(P) and

– it(s′) 6⊆ it(s), thenpref(P ′, s′) = 0 since inP ′ the incomplete tuples in
it(s′) which are not init(s) have been associated with preference0;

– it(s′) ⊆ it(s). By construction ofP ′ and since× is idempotent and asso-
ciative we have that:pref(P ′, s) = (pref(P, s)×(Π|it(s)|pref(P, s))) =
pref(P, s) andpref(P ′, s′) = (pref(P, s′) × (Π|it(s′)|pref(P, s))) =
pref(P, s′) × pref(P, s). Since× is intensive,pref(P ′, s′) = (pref(P,
s′) ×pref(P, s)) ≤ pref(P, s) = pref(P ′, s).

Thus inP ′ no assignment dominatess. This means thats ∈ POS(P).
We will now show that ifs ∈ POS(P), pref0 ≤ pref(P, s) ≤ pref1. If

s ∈ POS(P), thens ∈ Opt(Q) form someQ ∈ C(P). Thus we can conclude
by Lemma 3. 2

Informally, given a solutions such thatpref0 ≤ pref(P, s) ≤ pref1, it can be shown
that it is an optimal solution of the completion ofP obtained by associating preference
pref(P, s) to all the incomplete tuples ofs, and0 to all other incomplete tuples ofP .
On the other hand, by construction ofP0 and due to the monotonicity of×, any assign-
ment which is not optimal inP0 cannot be optimal in any other completion. Also, by
construction ofP1, there is no assignments with pref(P, s) > pref1.

Theorem 4 Given an ISCSPP defined on a c-semiring with a strictly monotonic×
and the two completionsP0, P1 ∈ C(P) as defined above, ifpref0 > 0 we have that:
s ∈ POS(P) iff pref0 ≤ pref(P, s) ≤ pref1 andpref(P, s) = max{ pref(P, s′)|
it(s′) ⊆ it(s)}.

Proof: Let us first show that if assignments is such thatpref0 ≤ pref(P, s) ≤ pref1

andpref(P, s) = max{pref(P, s′)|it(s′) ⊆ it(s)} it is in POS(P). We must show
there is a completion ofP wheres is undominated. Let us consider completionP ′

obtained by associating preference1 to all the tuples init(s) and0 to all the tuples
in IT (P) \ it(s). First we notice thatpref(P ′, s) = pref(P, s), since1 is the unit
element of×. Let us consider any other assignments′. Then we have one of the
following:

• it(s′) = ∅, which means thats′ ∈ Fixed(P) and thuspref(P ′, s′) = pref(P0,
s′) ≤ pref0 ≤ pref(P, s) = pref(P ′, s);

• it(s′) 6⊆ it(s), which means that there is at least one incomplete tuple ofit(s′)
which is associated with0. Since0 is the absorbing element of×, pref(P ′, s′) =
0 and thuspref(P ′, s′) < pref0 ≤ pref(P ′, s);

11

• it(s′) ⊆ it(s), in this casepref(P ′, s′) = pref(P, s′) since all tuples init(s′)
are associated with1 in P ′. However sincepref(P, s) = max{pref(P, s′)|it(s′)
⊆ it(s)}, pref(P ′, s′) ≤ pref(P ′, s).

We can thus conclude thats is not dominated by any assignment inP ′. Hences ∈
POS(P).

Let us now prove the other direction by contradiction. Ifpref(P, s) < pref0 then
we can conclude by Lemma 2. We must prove that ifpref0 ≤ pref(P, s) ≤ pref1

andpref(P, s) < max{pref(P, s′)|it(s′) ⊆ it(s)} thens is not in POS(P). In
any completionP ′ of P we have thatpref(P ′, s) = pref(P, s) × it-pref(P ′, s)
and pref(P ′, s′) = pref(P, s′) × it-pref(P ′, s′) where it-pref(P ′, s) (resp. it-
pref(P ′, s′)) is the combination of the preferences associated to the incomplete tu-
ples in it(s) (resp. it(s′)). Sinceit(s′) ⊆ it(s), for any completionP ′ we have
that it-pref(P ′, s) ≤ it-pref(P ′, s′). Moreover, lets′′ be such thatpref(P, s′′) =
max{pref(P, s′)|it(s′) ⊆ it(s)}. Then we have that for any completionP ′, pref(P ′, s′′) >
pref(P ′, s) sincepref(P, s′′) > pref(P, s) and it-pref(P ′, s′′) ≥ it-pref(P ′, s)
and× is strictly monotonic. Thus, ifpref0 ≤ pref(P, s) ≤ pref1 andpref(P, s) <
max{pref(P, s′)| it(s′) ⊆ it(s)}, thens is not inPOS(P). 2

The intuition behind the statement of this theorem is that, if assignments is such that
pref0 ≤ pref(P, s) ≤ pref1 andpref(P, s) = max{pref(P, s′)|it(s′) ⊆ it(s)},
then it is optimal in the completion obtained associating preference1 to all the tuples
in it(s) and0 to all the tuples inIT (P) \ it(s). On the contrary, ifpref(P, s) <
max{pref(P, s′)|it(s′) ⊆ it(s)}, there must be another assignments′′ such that
pref(P, s′′) = max{pref(P, s′)|it(s′) ⊆ it(s)}. It can then be shown that, in all
completions ofP , s is dominated bys′′.

In constrast toNOS(P), whenpref0 = 0 we can immediately conclude that
POS(P) = D|V |, independently of the nature of×, since all assignments are optimal
in P0.

Corollary 4.1 Given an ISCSPP = 〈C, V, D〉, if pref0 = 0, thenPOS(P) = D|V |.

For ease of clarity, the results shown in this section can be summarized as follows:

• whenpref0 = pref1 = 0

– NOS(P) = D|V | (by Theorem 2);

– POS(P) = D|V | (by Corollary 4.1) ;

• when0 = pref0 < pref1

– NOS(P) = {s ∈ Opt(P1)|∀s′ ∈ D|V | with pref(P1, s
′) > 0 we have

it(s) ⊆ it(s′)} (by Theorem 2);

– POS(P) = D|V | (by Corollary 4.1);

• when0 < pref0 = pref1

– NOS(P) = Opt(P0) (by Theorem 1);

12

– if × is idempotent:POS(P) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤ pref1}
(by Theorem 3);

– if × is strictly monotonic:POS(P) = {s ∈ D|V ||pref0 ≤ pref(P, s) ≤
pref1, pref(P, s) = max{ pref(P, s′)|it(s′) ⊆ it(s)}} (by Theorem 4);

• when0 < pref0 < pref1

– NOS(P) = ∅ (by Theorem 1);

– POS(P) as for the case when0 < pref0 = pref1.

5 Solving ISCSPs

In this section we first describe a general schema for solvingISCSPs based on interleav-
ing a branch and bound search with elicitation. Such a general schema is instantiated
to different elicitation strategies generating several concrete algorithms. A computa-
tional analysis of the algorithms is provided both in terms of the number of elicited
preferences and of the user effort for revealing some of the missing preferences.

5.1 The solver schema and its instances

The solving strategy which we propose for ISCSPs is based on the idea of combining
a branch and bound search (B&B) with elicitation steps in which the user is asked to
provide some type of missing information. In general, B&B proceeds by considering
the variables in some order, by choosing a value for each variable in the order, and
by computing, using some heuristics, an upper bound on the global preference of any
completion of the current partial assignment. B&B also stores the highest preference
(assuming the goal is to maximize) of a complete assignment found so far. If at any
step the upper bound is lower than the preference of the current best solution, the search
backtracks.

When some of the preferences are missing, as in ISCSPs, the agent may be asked
for some preferences or other information regarding the preferences in order to know
the true preference of a partial or complete assignment or inorder to choose the next
value for some variable. Preferences can be elicited after each run of B&B (as in [12])
or during a B&B run while preserving the correctness of the approach. For example, we
can elicit preferences at the end of every complete branch (that is, regarding preferences
of every complete assignment considered in the branch and bound algorithm), or at
every node in the search tree (thus considering every partial assignment). Moreover,
when choosing the value for the next variable to be assigned,we can ask the user (who
knows the missing preferences) for help. Finally, rather than eliciting all the missing
preferences in the possibly optimal solution, or the complete or partial assignment
under consideration, we can elicit just some of the missing preferences.

For example, with incomplete fuzzy constraint problems (IFCSPs), eliciting just
the worst preference among the missing ones is sufficient, since only the worst value is
important to the computation of the overall preference value. Instead, with incomplete
weighted constraint problems (IWCSPs), we need to elicit asmany preference values

13

as needed to decide whether the current assignment is betterthan the best one found so
far.

More precisely, the algorithm schema we propose is based on the following param-
eters:

1. WHO chooses the value of a variable:

(a) the algorithm, using one of the following heuristics:

i. values are picked in decreasing order w.r.t. their preference values in
the 1-completion. The order is maintained dynamically. We denote
this heuristic withdp;

ii. values are picked in decreasing order w.r.t. the preferences in the0-
completion of the initial ISCSP. The order is thus static. Wedenote
this heuristic withdpi.

(b) The user, revealing the value that he prefers according to one of the follow-
ing criteria:

i. the value is the most preferred among those in the domain which
haven’t been considered yet (lazy user, lu for short);

ii. the value is the most preferred among those which haven’tbeen con-
sidered yet given the constraints involving the current variable and the
past variables in the search order (smart user, su for short);

2. WHAT must be elicited:

(a) the preferences of all the incomplete tuples of the current assignment (de-
noted withall);

(b) for IFCSPs, only the preference of the worst tuple of the current assign-
ment, if it is worse than the known ones (denoted withworst);

(c) for IWCSPs:

• the worst missing cost (that is, the highest) until either all the costs are
elicited or the current global cost of the (possibly partial) assignment
is higher than the optimum found so far. This strategy is denoted by
WW.

• the best (i.e. the minimum) cost until either all the costs are elicited
or the current global cost of the (possibly partial) assignment is higher
than t he optimum found so far. This strategy is denoted by BB.

• the best and the worst cost in turn. This strategy is denoted by BW.

3. WHEN elicitation should take place:

(a) at the end of the branch and bound search (attree level).

(b) during the search, when we have a complete assignment to all the variables
(i.e., when we have reached a leaf of the search tree, and thuswhen we are
at the end of abranch). We will refer to such a heuristics, by saying “at
branchlevel”.

14

(c) during search, whenever a new value is assigned to a variable. We will refer
to such a heuristics, by saying “at thenodelevel”.

Summarizing, we have three features which we callwho, whatandwhen. There
are four possible choices forwho: dp, dpi, lu, andsu. If we work with IFCSPs, there
are two possibilities forwhat: all andworst. Instead, with IWCSPs, there are four
options:all, WW, BB, and BW.

It should be noticed that while theworst option is meaningful only for the fuzzy c-
semiring. In fact, in the fuzzy semiring the preference of a possibly partial assignment
corresponds to the worst one associated with one of its subtuples. Finally, there are
three options forwhen: tree, branch, andnode. If when = tree, elicitation takes
place only when the search is completed. This means that the B&B search can be
performed more than once. In contrast, ifwhen = branch or when = node, the B&B
search is performed only once and the elicitation is done either at every node of the
search tree or at every leaf.

By choosing a value for each of the three parameters above in aconsistent way, we
obtain, for IFCSPs, a total of 16 different algorithms, as summarized in Figure 2.

Figure 2: The algorithms for IFCSPs.

If instead we work with IWCSPs, we have a total of 32 algorithms, as can be seen
in Figure 3.

The pseudocode of our general solver, which we call ISCSP-SCHEME, is shown
in Algorithms 1 and 2. Every point in Figure 2 represents an instantiation of ISCSP-
SCHEME to specific values for parameterswho, what andwhen.

ISCSP-SCHEME takes in input an ISCSPP and the values for the three param-
eters:who, what, andwhen. It returns an ISCSPQ, a complete assignments and
a preferencep. In Theorems 5 and 7 we will show thatQ is a partial completion
of P ands is a necessarily optimal solution ofQ with preferencep. As a first step,
ISCSP-SCHEME computes the0-completion ofP , calledP0, and finds one of its op-
timal solutions, saysmax, and its preference, sayprefmax, by applying a standard
branch and bound procedure (denoted byB&B). Next, procedureBBE is called. If
BBE succeeds, it returns a partial completion ofP , one of its necessarily optimal
solutions, and its associated preference. Otherwise, it returns a solution equal tonil.

15

Figure 3: The algorithms for IWCSPs.

Algorithm 1 : ISCSP-SCHEME
Input : an ISCSPP , a parameterwho indicating the method of values
instantiation, a parameterwhat indicating the elicitation policy, a parameter
when indicating the level at which the elicitation must be done
Output : an ISCSPQ, an assignment s, a preference p
computeP0

Q← P0

smax, prefmax ← B&B(P0,−)
Q′,s1,pref1 ← BBE(P, 0, who, what, when, smax, prefmax)
if s1 6= nil then

smax ← s1

prefmax ← pref1

Q← Q′

return Q, smax, prefmax

In the first case the output of ISCSP-SCHEME coincides with that of BBE, otherwise
ISCSP-SCHEME returnsP0 and one of its optimal solutions with the corresponding
preference.

Procedure BBE takes as input the same values as ISCSP-SCHEMEand, in addition,
a solutionsol and a preferencelb representing the current lower bound of the optimal
preference level. Solutionsol′ and preferencepref ′ are initialized to such values at the
beginning of BBE. ProcedurenexV ariable applied to the1-completion of the ISCSP
in input (denoted byP [?/1]) allows to assign tocurrentV ariable the next variable
to be assigned. The algorithm then assigns a value to this variable. If the Boolean
functionnextV alue returns true (if there is a value in the domain), we select a value
for currentV ariable according to the value of parameterwho.

The computation of the upper bound for the preference that can be obtained by any
completion of the current partial assignment is performed by procedureUpperBound.
In general, any kind of upper bound can be used. However, we have chosen to estimate

16

Algorithm 2 : BBE
Input : an ISCSPP , the number of currently instantiated variablesnInstV ar, a
parameterwho indicating the method of values instantiation, a parameterwhat
indicating the elicitation policy, a parameterwhen indicating the level at which
the elicitation must be done, a reference to a solutionsol, lb lower bound
Output : an ISCSPP , a solutionsol and its preferencepref
sol′← sol
pref ′← lb
currentV ariable← nextV ariable(P [?/1])
while nextV alue(currentV ariable, who) do

if when = node then
P, pref ← Elicit@Node(what, P, currentV ariable, lb)

ub← UpperBound(P [?/1], currentV ariable)
if ub >S lb then

if nInstvar = number of variables in P then
if when = branch then

P, pref ← Elicit@branch(what, P, lb)

if pref >S lb then
sol← getSolution(P [?/1])
lb← pref(P [?/1], sol)

else
BBE(P, nInstV ar + 1, who, what, when, sol, lb)

if when=tree and nInstV ar = 0 then
if sol = nil then

sol← sol′

pref ← pref ′

else
P, pref ← Elicit@tree(what, P, sol, lb)
if pref >S pref ′ then

BBE(P, 0, who, what, when, sol, pref)
else

BBE(P, 0, who, what, when, sol′, pref ′)

17

it by combining the preferences of the constraints involving only variables that have
already been instantiated. Formally, lett be the current partial assignment to variables
in {v1, . . . , vk} ⊆ V , and letci = 〈defi, coni〉 be a constraint, such thatconi ⊆
{v1, . . . , vk}. Then, the valueub returned byUpperBound is:

ub =
k∏

i=1

defi(t ↓coni
),

where
∏

is the combination operator of the semiring.
We will now describe procedure BBE by considering the various values for param-

eterwhen. This corresponds to consider the algorithms in Figures 2 and 3 divided into
the three horizontal planes obtained fixing the value on thewhen-axis.

• If when = tree, elicitation is handled by procedureElicit@tree and takes place
only at the end of the search over the1-completion. The user is not involved in
the value assignment steps within the search and thus there are only two possible
values for variablewho, i.e. dp anddpi. At the end of the search, if a solution
is found, the user may be asked to reveal all the preferences of the incomplete
tuples in the solution (ifwhat = all). If we work with IFCSPs, we could also
ask for just the worst one among the missing preferences if itis worst than the
known ones (ifwhat = worst). If instead we work with IWCSPs, preferences
can be asked in decreasing (what = BB), increasing (what = WW), or alternating
order (what = BW) until we have enough information. If the preference of this
solution is better than the best found so far, BBE is called recursively with the
new best solution and preference, otherwise the recursive call is done with the
old solution and preference.

• If when = branch, B&B is performed only once and not several times as in the
previous case. The user may be asked to choose the next value for the current
variable being instantiated. Preference elicitation, which is handled by function
Elicit@branch, takes place during search, whenever all variables have been
instantiated. As above, the user can be asked either to reveal the preferences of
all or some of the incomplete tuples depending on the value ofwhat. In all cases
the information gathered is sufficient to compare the preference of the current
assignment against the current lower bound.

• If when = node, preferences are elicited every time a new value is assigned
to a variable, and it is handled by procedureElicit@node. The tuples to be
considered for elicitation are those involving the value which has just been as-
signed and belonging to constraints between the current variable and already
instantiated variables. The value ofwhat determines whether one or all or some
preference values involving the new assignment are asked tothe user. With the
information given by the user, the preference of the currentpartial assignment
is updated in order to determine if the subtree rooted at the current node can be
pruned.

18

5.2 Termination and correctness

We will now prove that algorithm ISCSP-SCHEME, when given anISCSP in input,
always terminates generating a completion of the ISCSP and one of its necessarily
optimal solution.

Theorem 5 Given an ISCSPP andwhen = tree, if

• what = all, or

• what = worst andP is an IFCSP, or

• (what = WW orwhat = BB or what = BW) andP is an IWCSP,

algorithmISCSP-SCHEMEalways terminates and returns an ISCSPQ such thatQ ∈
PC(P), an assignments ∈ NOS(Q), and its preference inQ.

Proof: Clearly ISCSP-SCHEME terminates if and only if BBE terminates. If we
consider the pseudo-code of procedure BBE shown in Algorithm 2, we see that if
when = tree, BBE terminates whensol = nil. This happens only when the search
fails to find a solution of the current problem with a preference strictly greater than
the current lower bound, i.e., when the conditionpref >S lb is never satisfied. Let
us denote withQi andQi+1 respectively the ISCSPs given in input to thei-th and
(i + 1)-th recursive call of BBE. First we notice that only procedure Elicit@tree
modifies the ISCSP in input by possibly adding new elicited preferences. Moreover,
whatever the value of parameterwhat is, the returned ISCSP is either the same as
the one in input or it is a (possibly partial) completion of the one in input. Thus we
haveQi+1 ∈ PC(Qi) and Qi ∈ PC(P). Since the search is always performed
on the1-completion of the current ISCSP, we can conclude that for every solution
s, pref(Qi+1, s) ≤S pref(Qi, s). Let us now denote withlbi and lbi+1 the lower
bounds given in input respectively to thei-th and (i + 1)-th recursive call of BBE. It is
easy to see thatlbi+1 ≥S lbi. Thus, since at every iteration the preferences of solutions
cannot increase and the bound cannot decrease, and since we have a finite number of
solutions, we can conclude that BBE always terminates.

The reasoning that follows relies on the fact that valuepref returned by function
Elicit@tree is the final preference after elicitation of assignmentsol given in input.
This is true since eitherwhat = all and thus all preferences have been elicited and
the overall preference ofsol can be computed, or only theworst preference has been
elicited but in a fuzzy context where the overall preferencecoincide with the worst
one, or we are in a IWCSP and we have elicited enough preferences to discover that
the current solution is worst then the optimum found so far orwe have elicited all its
costs.

If called withwhen = tree ISCSP-SCHEME exits when the last branch and bound
search has ended returningsol = nil. In such a casesol andpref are updated to
contain the best solution and associated preference found so far, i.e. sol′ andpref ′.
Then, the algorithm returns the current ISCSP, sayQ, andsol andpref . Following the
same reasoning as above done forQi, we can conclude thatQ ∈ PC(P).

At the end of a while loop execution of the first call of BBE (thebottom of the call
stack), assignmentsol either contains an optimal solutionsol of the1-completion of

19

the current ISCSP orsol = nil. sol = nil iff there is no assignment with preference
higher thanlb in the 1-completion of the current ISCSP. In this situation,sol′ and
pref ′ are an optimal solution and preference of the1-completion of the current ISCSP.
However, since the preference ofsol′, pref ′ is fixed and since, due to monotonicity, the
optimal preference value of the1-completion is always better than or equal to that of
the0-completion, we have thatsol′ andpref ′ are an optimal solution and preference
of the0-completion of the current ISCSP as well.

By Theorems 1 and 2, we can conclude thatNOS(Q) is not empty. Ifpref = 0,
thenNOS(Q) contains all the assignments and thus alsosol. The algorithm correctly
returns the same ISCSP given in input, assignmentsol and its preferencepref . If
instead0 < pref , again the algorithm is correct, since by Theorem 1 we know that
NOS(Q) = Opt(Q[?/0]), and we have shown thatsol ∈ Opt(Q[?/0]). 2

Moreover, if parameterwhen = tree, then no useless work is done to elicit prefer-
ences related to solutions which cannot be necessarily optimal for any partial comple-
tion of the given problem.

Theorem 6 If ISCSP-SCHEMEis given in inputwhen = tree, then only preferences
of tuples of solutions inPOS(P) are elicited.

Proof: If when = tree then, during the execution of ISCSP-SCHEME, prefer-
ences are elicited only by procedureElicit@tree. A call to such a procedure, such
asElicit@tree (what, P, sol, lb), depending on the value of parameterwhat, elicits
all or a subset of the preferences of the incomplete tuples ofassignmentsol, return-
ing the (eventually) new global preference ofsol, pref and the completion ofP ob-
tained adding the new elicited preferences. During the execution of ISCSP-SCHEME,
Elicit@tree is called on the current partial completion of the ISCSP given in input,P
and on an optimal solution of its1-completion,sol. By Theorems 3 and 4, any optimal
solution of the1-completion of the current partial completion ofP is a possibly opti-
mal solution of such a partial completion. 2

We will now consider other values for parameterwhen.

Theorem 7 Given a fuzzy or weighted ISCSPP and (when = branch or when =
node), AlgorithmISCSP-SCHEMEalways terminates, and it returns an ISCSPQ such
thatQ ∈ PC(P), an assignments ∈ NOS(Q), and its preference inQ.

Proof: In order to prove that the algorithm terminates, it is sufficient to show that
BBE terminates. Since the domains are finite, the labelling phase produces a number
of finite choices at every level of the search tree. Moreover,since the number of vari-
ables is limited, then, we have also a finite number of levels in the tree. Hence,BBE
considers at most all the possible assignments, that are a finite number. At the end
of the execution of ISCSP-SCHEME,sol, with preferencepref is one of the optimal
solutions of the currentP [?/1]. Thus, for every assignments′, pref(P [?/1], s′) ≤S

pref(P [?/1], sol). Moreover, for every completionQ′ ∈ C(P) and for every as-
signments′, pref(Q′, s′) ≤S pref(P [?/1], s′). Hence, for every assignments′ and
for everyQ′ ∈ C(P), we have thatpref(Q′, s′) ≤S pref(P [?/1], sol). In order to

20

prove thatsol ∈ NOS(P), now it is sufficient to prove that for everyQ′ ∈ C(P),
pref(P [?/1], sol) = pref(Q′, sol). This is true, sincesol ∈ Fixed(P) both when
eliciting all the missing preferences, and when eliciting only the worst one for fuzzy
ISCSPs, and when eliciting via BB, BW, or WW in weighted ISCSPs. In fact, in both
cases, the preference ofsol is the same in every completion. To show that the final
problemQ returned by BBE is inPC(P), it is sufficient to note that only the proce-
duresElicit@node andElicit@branch modify the ISCSP in input by possibly adding
some missing preferences. Thus, the returned ISCSP is inPC(P). 2

6 Problem generator and experimental design

To test the performance of these different algorithms, we created Fuzzy ISCSPs (also
denoted by IFCSPs) using a generator which is a simple extension of the standard
random model for hard constraints to soft and incomplete constraints. The generator
has the following parameters:

• n: number of variables;

• m: cardinality of the variable domains;

• d: density, that is, the percentage of binary constraints present in the problem
w.r.t. the total number of possible binary constraints thatcan be defined onn
variables;

• t: tightness, that is, the percentage of tuples with preference0 in each constraint
and in each domain w.r.t. the total number of tuples (m2 for the constraints, since
we have only binary constraints, andm in the domains);

• i: incompleteness, that is, the percentage of incomplete tuples (that is, tuples
with preference?) in each constraint and in each domain.

Given values for these parameters, we generate IFCSPs as follows. We first generaten
variables and thend% of then(n− 1)/2 possible constraints. Then, for every domain
and for every constraint, we generate a random preference value in (0, 1] for each of
the tuples (that arem for the domains, andm2 for the constraints); we randomly sett%
of these preferences to0; and we randomly seti% of the preferences as incomplete.

For example, if the generator is given in inputn = 10, m = 5, d = 50, t = 10,
andi = 30, it generates a binary IFCSP with10 variables, each with5 elements in the
domain,22 constraints (that is50% of 45 = 10(10− 1)/2), 2 tuples with preference0
(that is,10% of 25 = 5 × 5) and7 incomplete tuples (that is,30% of 25 = 5 × 5) in
each constraint, and1 missing preference (that is,30% of 5) in each domain. Notice
that we use a model B generator: density and tightness are interpreted as percentages,
and not as probabilities [14].

We also generate random IWSCSPs using the same parameters asfor IFCSPs, with
costs in[0, 10] ∪ {+∞}.

Our experiments measure thepercentage of elicited preferences(over all the miss-
ing preferences) as the generation parameters vary. Since some of the algorithm in-
stances require the user to suggest the value for the next variable, or ask for the worst

21

value among several, we also show theuser’s effortin the various solvers, formally
defined as the percentage of missing preferences the user hasto consider to give the
required help.

Besides the 16 instances of the scheme for IFCSPs described above, we also con-
sidered a ”baseline” algorithm that elicits preferences ofrandomly chosen tuples every
time branch and bound ends. All algorithms are named by meansof the three param-
eters. For example, algorithm DPI.WORST.BRANCH has parameterswho = dpi,
what = worst, andwhen = branch. For the baseline algorithm, we use the name
DPI.RANDOM.TREE.

For every choice of parameter values, 100 problem instancesare generated. The
results shown are the average over the 100 instances. Also, when it is not specified
otherwise, we setn = 10 andm = 5. However, we have similar results forn = 5, 8,
11, 14, 17, and 20. All our experiments have been performed onan AMD Athlon 64x2
2800+, with 1 Gb RAM, Linux operating system, and using JVM 6.0.1.

7 Results

In this section we summarize and discuss our experimental comparison of the differ-
ent algorithms. We first focus on Fuzzy ISCSPs. We then consider two special cases:
incomplete CSPs where all constraints are hard, and incomplete fuzzy temporal prob-
lems. Finally, we consider incomplete weighted CSPs. In allthe experimental results,
the association between an algorithm name and a line symbol is shown in Figure 4.

Figure 4: Algorithm names and corresponding line symbols.

7.1 Incomplete fuzzy CSPs

Figure 5 shows the percentage of elicited preferences when we vary the incomplete-
ness, the density, and the tightness, respectively. We showonly the results for specific
values of the parameters. However, the trends observed herehold in general. It is
easy to see that the best algorithms are those that elicit at the branch level. In par-
ticular, algorithm SU.WORST.BRANCH elicits a very small percentage of missing
preferences (less than 5%), no matter the amount of incompleteness in the problem,
and also independently of the density and the tightness. This algorithm outperforms
all others, but relies on help from the user. The best algorithm that does not need such
help is DPI.WORST.BRANCH. This never elicits more than about 10% of the miss-
ing preferences. Notice that the baseline algorithm is always the worst one, and needs
nearly all the missing preferences before it finds a necessarily optimal solution. Notice
also that the algorithms withwhat = worst are almost always better than those with

22

what = all, and thatwhen = branch is almost always better thanwhen = node or
when = tree.

Figure 6 (a) shows the user’s effort as incompleteness varies. As could be pre-
dicted, the effort grows slightly with the incompleteness level, and it is equal to the
percentage of elicited preferences only whenwhat = all andwho = dp or dpi. For
example, whenwhat = worst, even if who = dp or dpi, the user has to consider
more preferences than those elicited, since to identify theworst preference value the
user needs to check all of them (that is, those involved in a partial or complete as-
signment). DPI.WORST.BRANCH requires the user to look at 60% of the missing
preferences at most, even when incompleteness is 100%.

Figure 6 (b) shows the user’s effort as density varies. Also in this case, as expected,
the effort grows slightly with the density level. In this case DPI.WORST.BRANCH
requires the user to look at most 40% of the missing preferences, even when the density
is 80%.

All these algorithms have a useful anytime property, since they can be stopped even
before their end obtaining a possibly optimal solution withpreference value higher than
the solutions considered up to that moment. Figure 7 shows how fast the various al-
gorithms reach optimality. They axis represents the solution quality during execution,
normalized to allow for comparison among different problems. The algorithms that
perform best in terms of elicited preferences, such as DPI.WORST.BRANCH, are also
those that approach optimality fastest. We can therefore stop such algorithms early and
still obtain a solution of good quality in all completions.

Figure 8 (a) shows the percentage of elicited preferences (white part of the bar)
over all the preferences (white + grey part), as well as the user’s effort (black part)
for DPI.WORST.BRANCH. Even with high levels of incompleteness, this algorithm
elicits only a very small fraction of the preferences, whileasking the user to consider
at most half of the missing preferences. For example, with incompleteness at60%, the
user effort is at less than30% and the elicited preferences are at less than10%

Figure 8 (b) shows results for LU.WORST.BRANCH, where the user is involved
in the choice of the value for the next variable. Compared to DPI.WORST.BRANCH,
this algorithm is better both in terms of elicited preferences and user’s effort (while
SU.WORST.BRANCH is better only for the elicited preferences). We conjecture that
the help the user gives in choosing the next value guides the search towards better
solutions, thus resulting in an overall decrease of the number of elicited preferences.

Although we are mainly interested in the amount of elicitation, we also computed
the time to run the 16 algorithms. Ignoring the time taken to ask the user for missing
preferences, the best algorithms need about 200 ms to find thenecessarily optimal
solution for problems with 10 variables and 5 elements in thedomains, no matter the
amount of incompleteness. Most of the algorithms need less than 500 ms.

7.2 Incomplete CSPs

We also tested these algorithms on incomplete hard CSPs. In this case, preferences
are only 0 and 1, and necessarily optimal solutions are complete assignments which
are feasible in all completions. The problem generator is adapted accordingly. The
parameterwhat now has a specific meaning:what = worst means asking if there is

23

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

incompleteness

(a) d=50%, t=10%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

density

(b) t=35%, i=30%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

tightness

(c) d=50%, i=30%
Figure 5: Percentage of elicited preferences in incompletefuzzy CSPs.

24

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

us
er

’s
 e

ffo
rt

incompleteness
(a) d=50%, t=10%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

us
er

’s
 e

ffo
rt

density
(b) t=10%, i=30%

Figure 6: Incomplete fuzzy CSPs: user’s effort

25

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

so
lu

tio
n

qu
al

ity

elicited preferences

Figure 7: Incomplete fuzzy CSPs: solution quality.

a 0 among the considered missing preferences. If there is no 0, we can infer that all the
considered missing preferences are 1s.

Figure 9 shows the percentage of elicited preferences in terms of amount of incom-
pleteness, density, and tightness. Notice that the scale onthey axis varies to include the
highest values. The best algorithms are those withwhat = worst, where the inference
explained above about missing preferences can be performed. It is easy to see a phase
transition at tightness about 35% , which is when problems pass from being solvable
to having no solutions. However, the percentage of elicitedpreferences is below 20%
for all algorithms even at the peak.

Figure 10 shows the user’s effort in terms of amount of incompleteness and in
terms of density. Overall, the best algorithm is again DPI.WORST.BRANCH, whose
percentage of elicited preferences and users effort are shown in Figure 11 in detail. In
this figure we also show the percentage of 1s that are inferredby the system (light grey
area). It is possible to note that also with the 100% of missing preferences the user’s
effort is below 22%.

7.3 Incomplete temporal fuzzy CSPs

We also performed some experiments on fuzzy simple temporalproblems [15]. In such
problems variables represent instantaneous events and constraints model time intervals
for durations and distances of such events. Moreover, it is possible to associate a fuzzy
preference to each possible duration or distance. Thus, a fuzzy temporal constraint on
variablesX andY has the form〈[a, b], f〉 where[a, b] is an interval such thata ≤
Y − X ≤ b andf is a preference function associating a preference in [0,1] to each
value in[a, b].

Fast consistency-based solvers have been developed for a tractable sub-class of

26

(a) d=50%, t=10%

(b) d=50%, t=10%
Figure 8: Incomplete fuzzy CSPs: best algorithms.

27

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

incompleteness

(a) d=50%, t=10%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

density

(b) t=10%, i=30%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

tightness

(c) d=50%, i=30%

Figure 9: Elicited preferences in incomplete CSPs.

28

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

us
er

’s
 e

ffo
rt

incompleteness
(a) d=50%, t=10%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

us
er

’s
 e

ffo
rt

density
(b) t=10%, i=30%

Figure 10: Incomplete CSPs: user’s effort.

29

(a) d=50%, t=10%
Figure 11: Incomplete CSPs: best algorithm.

such problems, where all the preference functions are semi-convex[15]. Such solvers
are however unable to deal with missing preferences since they make the problems
intractable in general. We have thus decided to experiment on this class of problems
our branch-and-bound-based techniques. In fact, in addition to the value of testing on
problems with such a specific structure, the large amount of information required by
the specification of such problems makes missing preferences very likely to appear in
practice.

We have generated classes of such problems following the approach in [15], adapted
to consider incompleteness. Figure 12 shows that even in this domain it is possible to
find a necessarily optimal solution by asking about 10% of themissing preferences, for
example via algorithm DPI.WORST.BRANCH.

7.4 Incomplete weighted CSPs

We considered incompleteness also on weighted CSPs (WCSPs). WCSPs model opti-
mization problems where the goal is to minimize the total cost (time, space, number of
resources, etc...) of the proposed solution. To handle these problems, we instantiated
our general framework using the〈A, min, +, +∞, 0〉 c-semiring. In a similar way as
in IFCSPs, in Incomplete Weighted CSPs (IWCSPs) some costs,associated with each
tuple, are missing. In this case the multiplicative operator is not idempotent (as in the
fuzzy setting) and thus, we have to know all the missing costsassociated with a given
assignment to obtain its global cost.

To adapt our algorithms to deal with IWCSPs, it is necessary to develop new elicita-
tion strategies optimized for this new environment. We defined three different ways to
ask the user for the missing costs. The resulting strategies, as already defined in Section
5, are identified with the following values for theWhat parameter: WW, BB, and BW.

30

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

el
ic

ite
d

pr
ef

er
en

ce
s

incompleteness

Figure 12: Percentage of elicited preferences in incomplete fuzzy temporal CSPs.

Figure 13: Algorithms for IWCSPs.

Notice that, with WW, we elicit the worst missing cost (that is, the highest) until either
all the costs are elicited or the current global cost of the (possibly partial) assignment is
higher than the optimum found so far. By doing this, we know ifthe global cost exceeds
the optimum as early as possible. With BB, we elicit the best (i.e. the minimum) cost
until either all the costs are elicited or the current globalcost of the (possibly partial)
assignment is higher than the optimum found so far. Knowing the best cost of a given
assignment allows the system to infer that all the other missing costs are at least as high
as the last one elicited. This inference allows us to update the1-completion during the
search by lowering the upper bound of the missing costs. In this way, we overesti-
mate the real value of the unknown costs. LetP 1

∗ the1-completion updated with the
inferred costs. Given an assignments, pref(P1, s) ≥S pref(P 1

∗, s) ≥S pref(P ′, s)
whereP ′ is P in which all the incomplete tuples ofs are elicited. With BW, we elicit
in turn the best and the worst cost. In this case we want to testempirically if the
combination of the previous two strategies is better in practice.

In all the experimental results, the association between analgorithm name and a
line symbol is shown in Figure 13.

We tested our algorithms on randomly generated IWCSPs, and we used theWhat =
ALL method as a baseline because it is the most general elicitation strategy that can
be applied in every possible setting: Hard CSPs, Fuzzy ISCSPs, etc.

The randomly generated IWCSPs have the same default parameter values as in the
IFCSPs experiments, except for the tightness that has a default value of 25%. We

31

choose this value because it is near the middle from 0 and 40%,where we will see a
phase transition in the percentage of elicited tuples (Figure 14(c)). We recall that each
cost has a value in[0, 10] ∪ {+∞}.

Figure 14 shows the percentage of elicited preferences as wevary density, incom-
pleteness and tightness. As expected, the number of elicited tuples increases with the
incompleteness of the problem (see Figure 14(a)). As we varythe tightness (Figure
14(c)), we can observe a phase transition at t=40%. At that point, most of the prob-
lems have an optimal solution with infinite cost, thus the algorithms do not need more
information to find that extreme solution.

When the density increases (Figure 14(b)), the percentage of elicited costs tends
to decrease slightly. This may be surprising, since, increasing the number of con-
straints, the number of incomplete tuples increases, thus the percentage of elicited costs
should increase. However, the number of infinite costs increases together with the in-
completeness. In this particular case, using t=25% and i=30%, the number of infinite
cost values increases enough to make the problem easier to solve, thus it requires less
elicitation. We performed other experiments decreasing the default tightness value to
t=10%. In this case the percentage of elicited values increases slightly, because there
are not enough infinite costs to make the problem easier to solve. On the other hand,
the number of incomplete tuples increases with density, making the problem harder
to solve (thus requiring more elicitation). Summarizing, increasing density, both in-
completeness and tightness increase. When t=25% the contribution of the tightness is
more important than incompleteness and the problems becomeeasier to solve. On the
contrary, when t=10%, the contribution of the incompleteness is greater and thus the
problems becomes harder.

It easy to see that the best algorithms are those withwhen = branch andwho =
su. These algorithms ask for only around 30% of the costs neededto solve a totally
incomplete problem. The parameterwho = su forces the user to select the value to
instantiate, which implies an additional effort by the user. This behavior is depicted in
Figure 16(b) where the algorithm elicits a very small numberof tuples but the user has
to check almost all the incomplete tuples every time.

Among the algorithms where the user does not help the system in the value instan-
tiation, the algorithm that elicits less values is DPI.BW.TREE (see Figure 15(a)).

DPI.BW.TREE elicits less that half of the unknown costs on 100% of incomplete-
ness, requiring the user to look at 70% of incomplete tuples to answer the system’s
query. All our experiments shown that, iteratively asking the user for the best and the
worst preference of a given assignment is the best compromise when the value instan-
tiation is totally done by the system. On the other hand, it forces the user to consider
more than 70% of the incomplete tuples.

If we want to minimize the user effort, the best choice is the LU.ALL.BRANCH
algorithm (see Figure 15(b)). As shown in Figure 17(a), the user does less work with
LU.ALL.BRANCH than with the other algorithms when the incompleteness is vary-
ing. We obtain the same result when the density or the tightness is varying (see Fig-
ures 17(b), 17(c)). If we want a balance between the percentage of elicited costs and
the user effort, the best compromise is LU.BB.BRANCH. Figure 16(a) shows that,
on IWCSPs with no initial costs, it elicits 40% of incompletetuples with a user ef-
fort of about 60%. Summarizing, SU.WW.BRANCH (Figure 16(b)) is the algorithm

32

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

incompleteness

(a) d=50%, t=25%

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

density

(b) t=25%, i=30%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

el
ic

ite
d

pr
ef

er
en

ce
s

(%
)

tightness

(c) d=50%, i=30%
Figure 14: Percentage of elicited preferences in incomplete weighted CSPs.

33

(a) t=25% and d=50%

(b) t=25% and d=50%

Figure 15: Best algorithms for incomplete weighted CSPs.

34

(a) t=25% and d=50%

(b) t=25% and d=50%

Figure 16: Best algorithms for incomplete weighted CSPs.

35

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

us
er

’s
 e

ffo
rt

 (
%

)

incompleteness

(a) d=50%, t=25%

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

us
er

’s
 e

ffo
rt

 (
%

)

density

(b) t=25%, i=30%

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

us
er

’s
 e

ffo
rt

 (
%

)

tightness

(c) d=50%, i=30%
Figure 17: User effort in incomplete weighted CSPs.

36

which elicits less tuples but, if we want the user to just answer the elicitation queries,
the best is DPI.BW.TREE. The algorithm that minimizes the user effort is instead
LU.ALL.BRANCH, whereas the best compromise between user effort and elicitation
is LU.BB.BRANCH.

8 Related work

Recently, some lines of work have addressed issues similar to those considered in this
paper by allowing for open settings in CSPs: both open CSPs [7, 9] and interactive
CSPs [16] work with domains that can be partially specified, and in dynamic CSPs [6]
variables, domains, and constraints may change over time. It has been shown that these
approaches are closely related. In fact, interactive CSPs can be seen as a special case
of both dynamic and open CSPs [18].

While the main goal of the work on interactive CSPs is to minimize the run time of
the solver, we emphasize the minimization of the number of queries to the user and/or
of the user effort. The work closest to ours is the one on open CSPs. An open CSP
is a possibly unbounded, partially ordered set{CSP (0), CSP (1), ...} of constraint
satisfaction problems, each of which contains at least one more domain values than its
predecessor. Thus, in [9] the approach is to solve larger andlarger problems until a
solution is found, while minimizing the number of variable values asked to the user.
To compare it to our setting, we assume all the variable values are known from the
beginning, while some of the preferences may be missing, andour algorithms work on
different completions of the given problem. Also, open CSPsexploit aMonotonicity
Assumptionthat each agent provides variable values in strictly non-decreasing order of
preference. Even when there are no preferences, each agent gives only variable values
that are feasible. Working under this assumption means thatthe agent that provides
new values/costs for a variable must know the bounds on the remaining possible costs,
since they are provided best value first. If the bound computation is expensive or time
consuming, then this is not desirable. This is not needed in our setting, where single
preferences are elicited.

¿From the algorithmic point of view, in [7, 9, 8] the authors develop specific al-
gorithms for open CSPs, and then generalize it to fuzzy and weighted open CSPs.
Our approach instead went from the general to the specific level: we defined a gen-
eral framework for incomplete soft constraint problems, and then we instantiated it to
specific classes, such as classical CSPs, fuzzy CSPs, and weighted CSPs. Thus, the
general framework is maintained in all these classes, and itcan be augmented by the
definition of specific optimized elicitation strategies, which may exploit the properties
of the c-semiring used.

Besides the theoretical differences between our approach and the one in [9], we
also made an experimental comparison on the same classes of problems considered in
[9]. We randomly generated coloring problems with 5-14 variables and 3-11 values
per variable, and inequality constraints between randomlychosen variable pairs so that
the constraint graph is at least connected and at most complete. We used algorithm
LU.WORST.BRANCH on a test set generated in the following way: we randomly
generated 1000 coloring problems each with 5-14 variables with 11 values per vari-

37

Figure 18: Average number of values used in incomplete coloring problems with 11
values per variable.

able. Then we set the cost of 0 to 8 values per variable to+∞ (in order to have 3-11
feasible values). We also ensured that the constraint graphwas at least connected and at
most complete. To simulate the totally unknown domains in [9] at the beginning of the
search process, we generated variables with no known costs.Finally, we grouped these
problems in classes with the same average number of values per domain. In [9] the au-
thors measure the average number of queries per variable. Tocompare their algorithm
with LU.WORST.BRANCH, we measured the average number of different values per
variable our algorithm needs to solve the problem (counting1 every time a value is
instantiated for the first time). In Figure 18 we can see that our algorithm needs about
2 values per variable to solve problems with 4 to 9 values per domain. This is the same
result as the best algorithm in [9], which is pleasing as our algorithm is general purpose
and not specifically designed for this purpose.

An example of another approach to explicit elicitation in incomplete CSPs is the
one presented in [4], where the user provides a classical CSPand a partially unknown
utility function over its solutions. The system then performs elicitation queries to se-
lect a specific utility function by a regret-based technique, where the elicitation is used
to ease the computation of the minimax regret function. In particular, the elicitation
concerns bounds on the parameters of the utility function. Moreover, quasi-optimal
decisions may be obtained, since often they require much less effort than finding op-
timal ones. This approach is very interesting but rather farfrom ours. In particular,
our approach does not work with bounds, since we ask for specific preference values.
Moreover, our preference functions are based on the preferences in the constraints, and
not on the variable values. Also, we want to obtain an optimalsolution, although we
experimentally analyzed all our algorithms to see whether agood solution is obtained
early (see Figure 7).

38

9 Conclusion and future work

We have considered incomplete soft constraint problems where some preferences are
missing. We have defined a formalism, that extends the soft constraint one, to model
such an incompleteness. Two new notions of optimal solutions have been considered:
the possibly optimal solutions, that are optimal in at leastone way of revealing miss-
ing preferences, and the necessarily optimal solutions, that are optimal in all ways of
revealing missing preferences, and we have given characterizations of these two sets
of optimal solutions. To find necessarily optimal solutionsof these problems, we have
defined a general solver schema, that interleaves branch andbound (B&B) search with
elicitation steps. This solver schema can be instantiated in 16 ways, that depend on
when to elicit (at the end of the B&B search, at a branch, or at anode of a B&B
search), what to elicit (all the missing preferences or onlythe worst one), and who elic-
its (the algorithm or the user). We have tested and compared these 16 instances of the
general solver on randomly generated Fuzzy ISCSPs, by measuring the percentage of
the elicited preferences and the user’s effort, that is, thenumber of missing preferences
that the user has to consider in order to give his elicitationanswers. Experimental re-
sults have shown that the best algorithms are those that elicit at the branch level and,
among those, the ones that perform better are those that elicit only the worst preference
if it is necessary. Such algorithms are also very helpful since they reach optimality
very quickly. This fact allows one to stop elicitation anytime, being sure to have a
possibly optimal solution with a higher level of preference. The percentage of elicited
preferences for these best algorithms is below10% and the user’s effort does not ex-
ceed30%. In addition, we have considered incomplete CSPs where the soft constraints
have been replaced by hard constraints. Experimental results have shown a trend which
is similar to the one registered for Fuzzy ISCSPs. We have also considered problems
with a precise structure. These are, the fuzzy simple temporal problems where the con-
straints allow constraints time intervals for durations and distances of events, and fuzzy
preferences associated with each element of an interval. Also in this context, to find a
necessarily optimal solution with the best algorithm, thatelicits at the branch level only
the worst preference if it is necessary, it is sufficient to ask about 10% of the missing
preferences.

In the problems considered in this paper, we have no information about the missing
preferences. We are currently considering settings in which each missing preference is
associated with a range of possible values, that may be smaller than the whole range
of preference values. For such problems, we intend to define several notions of opti-
mality, among which necessarily and possibly optimal solutions are just two examples,
and to develop specific elicitation strategies for each of them. We are also studying soft
constraint problems where no preference is missing, but some preferences are unstable,
and are associated with a perturbation range of possible alternative values. Moreover,
we will consider other approaches to preference elicitation and measures of the in-
formation elicited from the user, such as those in [3, 4, 19].We also intend to build
solvers based on local search or variable elimination methods. Finally, we want to add
elicitation costs and to use them also to guide the search, asdone in [25] for hard CSPs.

39

Acknowledgments

This work has been partially supported by Italian MIUR PRIN project “Constraints
and Preferences” (n.2005015491). The last author is funded by the Department of
Broadband, Communications and the Digital Economy, and theAustralian Research
Council.

References

[1] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and
optimization.JACM, 44(2):201–236, 1997.

[2] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-based CSPs and valued CSPs: Frameworks, properties, and compari-
son.Constraints, 4(3):199–240, 1999.

[3] C. Boutilier. A POMDP Formulation of Preference Elicitation Problems. In Proc.
AAAI 2002, pages 239–246, 2002.

[4] C. Boutilier, R. Patrascu, P. Prosser, P. Poupart, and D.Schuurmans. Constraint-
based Optimization and Utility Elicitation using the Minimax Decision Criterion.
In Artificial Intelligence, Volume 170, Number 8, pages 686–713. Elsevier, 2006.

[5] R. Dechter.Constraint processing. Morgan Kaufmann, 2003.

[6] R. Dechter and A. Dechter. Belief maintenance in dynamicconstraint networks.
In Proc.AAAI 1998, pages 37–42, 1988.

[7] B. Faltings and S. Macho-Gonzalez. Open constraint satisfaction. In Proc.CP
2002, volume 2470 ofLNCS, pages 356–370. Springer, 2002.

[8] B. Faltings and S. Macho-Gonzalez. Open constraint optimization. In Proc.CP
2003, volume 2833 ofLNCS, pages 303–317. Springer, 2003.

[9] B. Faltings and S. Macho-Gonzalez. Open constraint programming.AI Journal,
161(1-2):181–208, 2005.

[10] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a proba-
bilistic approach. In Proc.ECSQARU 1993, volume 747 ofLNCS, pages 97–104.
Springer, 1993.

[11] H. Fargier, T. Schiex, and G. Verfaille. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc.IJCAI 1995, pages 631–637. Morgan Kauf-
mann, 1995.

[12] M. Gelain, M. S. Pini, F. Rossi, and K. B. Venable. Dealing with incomplete
preferences in soft constraint problems. In Proc.CP 2007, volume 4741 ofLNCS,
pages 286–300. Springer, 2007.

40

[13] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and Toby Walsh. Elicitation
strategies for fuzzy constraint problems with missing preferences: properties, al-
gorithms and experimental studies. In Proc.CP 2008, volume 5202 ofLNCS,
pages 402–417. Springer, 2008.

[14] I.P. Gent, E. Macintyre, P. Prosser, B.M. Smith, and T. Walsh. Random Constraint
Satisfaction: Flaws and Structure. InConstraints, Volume 6, Number 4, pages
345–372. Springer, 2001.

[15] L. Khatib, P. Morris, R. Morris, F. Rossi, A. Sperduti, and K. Brent Venable.
Solving and learning a tractable class of soft temporal problems: theoretical and
experimental results.AI Communications, 20(3):181–209, 2007.

[16] E. Lamma, P. Mello, M. Milano, R. Cucchiara, M. Gavanelli, and M. Piccardi.
Constraint propagation and value acquisition: Why we should do it interactively.
In Proc.IJCAI 1999, pages 468–477, 1999.

[17] J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh.Winner determination
in sequential majority voting. In Proc.IJCAI 2007, pages 1372–1377, 2007.

[18] S. Macho González, C. Ansótegui, and P. Meseguer. On the relation among open,
interactive and dynamic CSP. In Proc.Fifth Workshop on Modelling and Solving
Problems with Constraints (IJCAI), 2005.

[19] R. T. Maheswaran, J. P. Pearce, E. Bowring, P. Varakantham, M. Tambe. Privacy
Loss in Distributed Constraint Reasoning: A Quantitative Framework for Analy-
sis and its Applications.Journal of Autonomous Agents and Multiagent Systems
(JAAMAS), 2006.

[20] M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Incompleteness and Incompa-
rability in Preference Aggregation. In Proc.IJCAI 2007, pages 1464-1469, 2007.

[21] M. S. Pini, F. Rossi, K. B. Venable and T. Walsh. Computing possible and neces-
sary winners from incomplete partially-ordered preferences. In Proc.ECAI 2006,
pages 767-768, 2006.

[22] Z. Ruttkay. Fuzzy constraint satisfaction. InProc. 1st IEEE Conference on Evo-
lutionary Computing, pages 542–547, Orlando, 1994.

[23] Toby Walsh. Uncertainty in preference elicitation andaggregation. In Proc.AAAI
2007, pages 3-8, 2007.

[24] T. Walsh. Complexity of Terminating Preference Elicitation. In Proc.AAMAS
2008, 2008.

[25] N. Wilson, D. Grimes, and E. C. Freuder. A cost-based model and algorithms for
interleaving solving and elicitation of csps. In Proc.CP 2007, volume 4741 of
LNCS, pages 666–680. Springer, 2007.

41

