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Abstract. Fuzzy constraints are a popular approach to handle preferences and
over-constrained problems in scenarios where one needs to be cautious, such as
in medical or space applications. We consider here fuzzy constraint problems
where some of the preferences may be missing. This models, for example, set-
tings where agents are distributed and have privacy issues,or where there is an
ongoing preference elicitation process. In this setting, we study how to find a
solution which is optimal irrespective of the missing preferences. In the process
of finding such a solution, we may elicit preferences from theuser if necessary.
However, our goal is to ask the user as little as possible. We define a combined
solving and preference elicitation scheme with a large number of different in-
stantiations, each corresponding to a concrete algorithm which we compare ex-
perimentally. We compute both the number of elicited preferences and the ”user
effort”, which may be larger, as it contains all the preference values the user has
to compute to be able to respond to the elicitation requests.While the number of
elicited preferences is important when the concern is to communicate as little in-
formation as possible, the user effort measures also the hidden work the user has
to do to be able to communicate the elicited preferences. Ourexperimental results
show that some of our algorithms are very good at finding a necessarily optimal
solution while asking the user for only a very small fractionof the missing pref-
erences. The user effort is also very small for the best algorithms. Finally, we test
these algorithms on hard constraint problems with possiblymissing constraints,
where the aim is to find feasible solutions irrespective of the missing constraints.

1 Introduction

Constraint programming is a powerful paradigm for solving scheduling, planning, and
resource allocation problems. A problem is represented by aset of variables, each with
a domain of values, and a set of constraints. A solution is an assignment of values to
the variables which satisfies all constraints and which optionally maximizes/minimizes
an objective function. Soft constraints are a way to model optimization problems by
allowing for several levels of satisfiability, modelled by the use of preference or cost
values that represent how much we like an instantiation of the variables of a constraint.



It is usually assumed that the data (variables, domains, (soft) constraints) is com-
pletely known before solving starts. This is often unrealistic. In web applications and
multi-agent systems, the data is frequently only partiallyknown and may be added to
at a later date by, for example, elicitation. Data may also come from different sources
at different times. In multi-agent systems, agents may release data reluctantly due to
privacy concerns.

Incomplete soft constraint problems can model such situations by allowing some
of the preferences to be missing. An algorithm has been proposed and tested to solve
such incomplete problems [7]. The goal is to find a solution that is guaranteed to be
optimal irrespective of the missing preferences, eliciting preferences if necessary until
such a solution exists. Two notions of optimal solution are considered:possibly optimal
solutions are assignments that are optimal inat least one way of revealing the unspec-
ified preferences, whilenecessarily optimal solutions are assignments that are optimal
in all ways that the unspecified preferences can be revealed. The set of possibly optimal
solutions is never empty, while the set of necessarily optimal solutions can be empty.

If there is no necessarily optimal solution, the algorithm proposed in [7] uses branch
and bound to find a ”promising solution” (specifically, a complete assignment in the best
possible completion of the current problem) and elicits themissing preferences related
to this assignment. This process is repeated till there is a necessarily optimal solution.

Although this algorithm behaves reasonably well, it make some specific choices
about solving and preference elicitation that may not be optimal in practice, as we shall
see in this paper. For example, the algorithm only elicits missing preferences after run-
ning branch and bound to exhaustion. As a second example, thealgorithm elicits all
missing preferences related to the candidate solution. Many other strategies are possi-
ble. We might elicit preferences at the end of every completebranch, or even at every
node in the search tree. Also, when choosing the value to assign to a variable, we might
ask the user (who knows the missing preferences) for help. Finally, we might not elicit
all the missing preferences related to the current candidate solution. For example, we
might just ask the user for the worst preference among the missing ones.

In this paper we consider a general algorithm scheme which greatly generalizes that
proposed in [7]. It is based on three parameters:what to elicit, when to elicit it, andwho
chooses the value to be assigned to the next variable. We testall 16 possible different
instances of the scheme (among which is the algorithm in [7])on randomly generated
fuzzy constraint problems. We demonstrate that some of the algorithms are very good
at finding necessarily optimal solution without eliciting too many preferences. We also
test the algorithms on problems with hard constraints. Finally, we consider problems
with fuzzy temporal constraints, where problems have more specific structure.

In our experiments, we compute the elicited preferences, that is, the missing values
that the user has to provide to the system because they are requested by the algorithm.
Providing these values usually has a cost, either in terms ofcomputation effort, or in
terms of privacy decrease, or also in terms of communicationbandwidth. Thus know-
ing how many preferences are elicited is important if we careabout any of these issues.
However, we also compute a measure of the user’s effort, which may be larger than the
number of elicited preferences, as it contains all the preference values the user has to
consider to be able to respond to the elicitation requests. For example, we may ask the



user for the worst preference value amongk missing ones: the user will communicate
only one value, but he will have to consider allk of them. While knowing the number
of elicited preferences is important when the concern is to communicate as little infor-
mation as possible, the user effort measures also the hiddenwork the user has to do to
be able to communicate the elicited preferences. This user’s effort is therefore also an
important measure.

As a motivating example, recommender systems give suggestions based on par-
tial knowledge of the user’s preferences. Our approach could improve performance by
identifying some key questions to ask before giving recommendations. Privacy con-
cerns regarding the percentage of elicited preferences aremotivated by eavesdropping.
User’s effort is instead related to the burden on the user.

Our results show that the choice of preference elicitation strategy is crucial for the
performance of the solver. While the best algorithms need toelicit as little as 10% of
the missing preferences, the worst one needs much more. The user’s effort is also very
small for the best algorithms. The performance of the best algorithms shows that we
only need to ask the user a very small amount of additional information to be able to
solve problems with missing data.

Several other approaches have addressed similar issues. For example, open CSPs
[4, 6] and interactive CSPs [9] work with domains that can be partially specified. As a
second example, in dynamic CSPs [2] variables, domains, andconstraints may change
over time. However, the incompleteness considered in [6, 5]is on domain values as well
as on their preferences. Working under this assumption means that the agent that pro-
vides new values/costs for a variable knows all possible costs, since they are capable of
providing the best value first. If the cost computation is expensive or time consuming,
then computing all such costs (in order to give the most preferred value) is not desir-
able. We assume instead, as in [7], that all values are given at the beginning, and that
only some preferences are missing. Because of this assumption, we don’t need to elicit
preference values in order, as in [6].

2 Background

In this section we give a brief overview of the fundamental notions and concepts on
Soft Constraints and Incomplete Soft Constraints.

Incomplete Soft Constraints problems (ISCSPs) [7] extend Soft Constraint Prob-
lems (SCSPs) [1] to deal with partial information. We will focus on a specific instance
of this framework in which the soft constraints are fuzzy.

Given a set of variablesV with finite domainD, anincomplete fuzzy constraint is a
pair 〈idef, con〉 wherecon ⊆ V is the scope of the constraint andidef : D|con| −→
[0, 1] ∪ {?} is the preference function of the constraint associating toeach tuple of
assignments to the variables incon either a preference value ranging between 0 and 1,
or ?. All tuples mapped into? by idef are calledincomplete tuples, meaning that their
preference is unspecified. A fuzzy constraint is an incomplete fuzzy constraint with no
incomplete tuples.

An incomplete fuzzy constraint problem (IFCSP) is a pair〈C, V, D〉 whereC is a set
of incomplete fuzzy constraints over the variables inV with domainD. Given an IFCSP



P , IT (P ) denotes the set of all incomplete tuples inP . When there are no incomplete
tuples, we will denote a fuzzy constraint problem by FSCP.

Given an IFCSPP , a completion of P is an IFCSPP ′ obtained fromP by asso-
ciating to each incomplete tuple in every constraint an element in [0, 1]. A completion
is partial if some preference remains unspecified.C(P ) denotes the set of all possible
completions ofP andPC(P ) denotes the set of all its partial completions.

Given an assignments to all the variables of an IFCSPP , pref(P, s) is the pref-
erence ofs in P , defined aspref(P, s) = min<idef,con>∈C|idef(s↓con) 6=?idef(s↓con).
It is obtained by taking the minimum among the known preferences associated to the
projections of the assignment, that is, of the appropriatedsub-tuples in the constraints.

In the fuzzy context, a complete assignment of values to all the variables is an opti-
mal solution if its preference is maximal. The optimality notion of FCSPs is generalized
to IFCSPs via the notions ofnecessarily and possibly optimal solutions, that is, com-
plete assignments which are maximal in all or some completions. Given an IFCSPP ,
we denote byNOS(P ) (resp.,POS(P )) the set of necessarily (resp., possibly) opti-
mal solutions ofP . Notice thatNOS(P ) ⊆ POS(P ). Moreover, whilePOS(P ) is
never empty,NOS(P ) may be empty. In particular,NOS(P ) is empty whenever the
revealed preferences do not fix the relationship between oneassignment and all others.

In [7] an algorithm is proposed to find a necessarily optimal solution of an IFCSP
based on a characterization ofNOS(P ) andPOS(P ). This characterization uses the
preferences of the optimal solutions of two special completions of P , namely the0-
completion ofP , denoted byP0, obtained fromP by associating preference0 to each
tuple of IT (P ), and the1-completion ofP , denoted byP1, obtained fromP by as-
sociating preference1 to each tuple ofIT (P ). Notice that, by monotonicity ofmin,
we have thatpref0 ≤ pref1. Whenpref0 = pref1, NOS(P ) = Opt(P0); thus, any
optimal solution ofP0 is a necessary optimal solution. Otherwise,NOS(P ) is empty
andPOS(P ) is a set of solutions with preference betweenpref0 andpref1 in P1. The
algorithm proposed in [7] finds a necessarily optimal solution of the given IFCSP by
interleaving the computation ofpref0 andpref1 with preference elicitation steps, until
the two values coincide. Moreover, the preference elicitation is guided by the fact that
only solutions inPOS(P ) can become necessarily optimal. Thus, the algorithm only
elicits preferences related to optimal solutions ofP1.

3 A general solver scheme

We now propose a more general schema for solving IFCSPs basedon interleaving
branch and bound (BB) search with elicitation. This schema generalizes the concrete
solver presented in [7], but has several other instantiations that we will consider and
compare experimentally in this paper. The scheme uses branch and bound. This consid-
ers the variables in some order, choosing a value for each variable, and pruning branches
based on an upper bound (assuming the goal is to maximize) on the preference value
of any completion of the current partial assignment. To dealwith missing preferences,
branch and bound is applied to both the 0-completion and the1-completion of the prob-
lem. If they have the same solution, this is a necessarily optimal solution and we can



stop. If not, we elicit some of the missing preferences and continue branch and bound
on the new1-completion.

Preferences can be elicited after each run of branch and bound (as in [7]) or during
a BB run while preserving the correctness of the approach. For example, we can elicit
preferences at the end of every complete branch (that is, regarding preferences of every
complete assignment considered in the branch and bound algorithm), or at every node in
the search tree (thus considering every partial assignment). Moreover, when choosing
the value for the next variable to be assigned, we can ask the user (who knows the
missing preferences) for help. Finally, rather than eliciting all the missing preferences in
the possibly optimal solution, or the complete or partial assignment under consideration,
we can elicit just one of the missing preferences. For example, with fuzzy constraint
problems, eliciting just the worst preference among the missing ones is sufficient since
only the worst value is important to the computation of the overall preference value.
More precisely, the algorithm schema we propose is based on the following parameters:

1. Who chooses the value of a variable: the algorithm can choose thevalues in de-
creasing order either w.r.t. their preference values in the1-completion (Who=dp)
or in the0-completion (Who=dpi). Otherwise, the user can suggest this choice. To
do this, he can consider all the preferences (revealed or not) for the values of the
current variable (lazy user, Who=lu for short); or he considers also the preference
values in constraints between this variable and the past variables in the search order
(smart user, Who=su for short).

2. What is elicited: we can elicit the preferences of all the incomplete tuples of the
current assignment (What=all) or only the worst preferencein the current assign-
ment, if it is worse than the known ones (What=worst);

3. When elicitation takes place: we can elicit preferences at the end of the branch
and bound search (When=tree), or during the search, when we have a complete
assignment to all variables (When=branch) or whenever a newvalue is assigned to
a variable (When=node).

By choosing a value for each of the three above parameters in aconsistent way, we
obtain in total 16 different algorithms, as summarized in Figure 1, where the circled
instance is the concrete solver used in [7].

Figures 2 and 3 show the pseudo-code of the general scheme forsolving IFCSPs.
There are three algorithms: ISCSP-SCHEME, BBE and BB. ISCSP-SCHEME takes
as input an IFCSPP and the values for the three parameters: Who, What and When.
It returns a partial completion ofP that has some necessarily optimal solutions, one
of these necessarily optimal solutions, and its preferencevalue. It starts by computing
via branch and bound (algorithm BB) an optimal solution ofP0, saysmax, and its
preferenceprefmax. Next, procedureBBE is called. IfBBE succeeds, it returns a
partial completion ofP , sayQ, one of its necessarily optimal solutions, says1, and
its associated preferencepref1. Otherwise, it returns a solution equal tonil. In the
first case the output of IFCSP-SCHEME coincides with that of BBE, otherwise IFCSP-
SCHEME returnsP0, one of its optimal solutions, and its preference.

Procedure BBE takes as input the same values as IFCSP-SCHEMEand, in addition,
a solutionsol and a preferencelb representing the current lower bound on the optimal



Fig. 1. Instances of the general scheme.

IFCSP-SCHEME(P ,Who,What,When)
Q← P0

smax, prefmax← BB(P0,−)
Q′,s1,pref1← BBE(P, 0, Who, What,When, smax, prefmax)
If (s1 6= nil)

smax ← s1, prefmax ← pref1, Q← Q′

ReturnQ, smax, prefmax

Fig. 2.Algorithm IFCSP-SCHEME.

preference value. FunctionnextV ariable, applied to the1-completion of the IFCSP,
returns the next variable to be assigned. The algorithm thenassigns a value to this
variable. If the Boolean functionnextV alue returns true (if there is a value in the
domain), we select a value forcurrentV ar according to the value of parameterWho.

FunctionUpperBound computes an upper bound on the preference of any com-
pletion of the current partial assignment: the minimum overthe preferences of the con-
straints involving only variables that have already been instantiated.

If When=tree, elicitation is handled by procedureElicit@tree, and takes place only
at the end of the search over the1-completion. The user is not involved in the value
assignment steps within the search. At the end of the search,if a solution is found, the
user is asked either to reveal all the preferences of the incomplete tuples in the solution
(if What=all), or only the worst one among them (if What=worst). If such a preference
is better than the best found so far, BBE is called recursively with the new best solution
and preference.

If When=branch, BB is performed only once. The user may be asked to choose the
next value for the current variable being instantiated. Preference elicitation, which is
handled by functionElicit@branch, takes place during search, whenever all variables
have been instantiated and the user can be asked either to reveal the preferences of all the
incomplete tuples in the assignment (What=all), or the worst preference among those
of the incomplete tuples of the assignment (What=worst). Inboth cases the information
gathered is sufficient to test such a preference value against the current lower bound.



If When=node, preferences are elicited every time a new value is assigned to a
variable and it is handled by procedureElicit@node. The tuples to be considered for
elicitation are those involving the value which has just been assigned and belonging to
constraints between the current variable and already instantiated variables. If What=all,
the user is asked to provide the preferences of all the incomplete tuples involving the
new assignment. Otherwise if What=worst, the user providesonly the preference of the
worst tuple.

BBE (P ,nInstV ar, Who, What, When, sol, lb)
sol′← sol, pref ′← lb

currentV ar ← nextV ariable(P1)
While (nextV alue(currentV ar, Who))

If (When = node)
P, pref ← Elicit@Node(What,P, currentV ar, lb)

ub← UpperBound(P1, currentV ar)
If (ub > lb)

If (nInstvar = number of variables in P )
If (When = branch)

P, pref ← Elicit@branch(What,P, lb)
If (pref > lb)

sol← getSolution(P1)
lb← pref(P1, sol)

else
BBE(P,nInstV ar + 1, Who,What,When, sol, lb)

If (When=tree and nInstV ar = 0)
If(sol = nil)

sol← sol′, pref ← pref ′

else
P, pref ← Elicit@tree(What,P, sol, lb)
If(pref > pref ′)

BBE(P, 0, Who,What,When, sol, pref)
elseBBE(P, 0, Who, What,When, sol′, pref ′)

Fig. 3.Algorithm BBE.

Theorem 1. Given an IFCSP P and a consistent set of values for parameters When,
What and Who, Algorithm IFCSP-SCHEMEalways terminates, and returns an IFCSP
Q ∈ PC(P ), an assignment s ∈ NOS(Q), and its preference in Q.

Proof. Let us first notice that, as far as correctness and termination concern, the value
of parameter Who is irrelevant.

We consider two separate cases, i.e., When=tree and and When=branch or node.
Case 1: When =tree.

Clearly IFCSP-SCHEME terminates if and only if BBE terminates. If we consider the
pseudocode of procedure BBE shown in Algorithm 3, we see thatif When = tree, BBE



terminates whensol = nil. This happens only when the search fails to find a solution
of the current problem with a preference strictly greater than the current lower bound.
Let us denote withQi andQi+1 respectively the IFCSPs given in input to thei-th and
i+1-th recursive call of BBE. First we notice that only procedureElicit@tree modifies
the IFCSP in input by possibly adding new elicited preferences. Moreover, whatever the
value of parameter What is, the returned IFCSP is either the same as the one in input or it
is a (possibly partial) completion of the one in input. Thus we haveQi+1 ∈ PC(Qi) and
Qi ∈ PC(P ). Since the search is always performed on the1-completion of the current
IFCSP, we can conclude that for every solutions, pref(Qi+1, s) ≤ pref(Qi, s). Let us
now denote withlbi andlbi+1 the lower bounds given in input respectively to thei-th
andi+1-th recursive call of BBE. It is easy to see thatlbi+1 ≥ lbi. Thus, since at every
iteration we have that the preferences of solutions can onlyget lower, and the bound
can only get higher, and since we have a finite number of solutions, we can conclude
that BBE always terminates.

The reasoning that follows relies on the fact that valuepref returned by function
Elicit@tree is the final preference after elicitation of assignmentsol given in input.
This is true since either What = all and thus all preferences have been elicited and the
overall preference ofsol can be computed or only the worst preference has been elicited
but in a fuzzy context where the overall preference coincidewith the worst one. If called
with When = tree IFCSP-SCHEME exits when the last branch and bound search has
ended returningsol = nil. In such a casesol andpref are updated to contain the best
solution and associated preference found so far, i.e.,sol′ andpref ′. Then, the algorithm
returns the current IFCSP, sayQ, andsol andpref . Following the same reasoning as
above done forQi we can conclude thatQ ∈ PC(P ).

At the end of every while loop execution, assignmentsol either contains an opti-
mal solutionsol of the1-completion of the current IFCSP orsol = nil. sol = nil iff
there is no assignment with preference higher thanlb in the1-completion of the current
IFCSP. In this situation,sol′ andpref ′ are an optimal solution and preference of the
1-completion of the current IFCSP. However, since the preference ofsol′, pref ′ is inde-
pendent of unknown preferences and since due to monotonicity the optimal preference
value of the1-completion is always greater than or equal to that of the0-completion
we have thatsol′ andpref ′ are an optimal solution and preference of the0-completion
of the current IFCSP as well.

By Theorems 1 and 2 of [7] we can conclude thatNOS(Q) is not empty. Ifpref =
0, thenNOS(Q) contains all the assignments and thus alsosol. The algorithm cor-
rectly returns the same IFCSP given in input, assignmentsol and its preferencepref .
If instead0 < pref , again the algorithm is correct, since by Theorem 1 of [7] we know
thatNOS(Q) = Opt(Q0), and we have shown thatsol ∈ Opt(Q0).

Case 2: When=branch or node.
In order to prove that the algorithm terminates, it is sufficient to show thatBBE ter-
minates. Since the domains are finite, the labeling phase produces a number of finite
choices at every level of the search tree. Moreover, since the number of variables is
limited, then, we have also a finite number of levels in the tree. Hence,BBE considers
at most all the possible assignments, that are a finite number. At the end of the exe-



cution of IFCSP-SCHEME,sol, with preferencepref is one of the optimal solutions
of the currentP1Thus, for every assignments′, pref(P1, s

′) ≤ pref(P1, sol). More-
over, for every completionQ′ ∈ C(P ) and for every assignments′, pref(Q′, s′) ≤
pref(P1, s

′). Hence, for every assignments′ and for everyQ′ ∈ C(P ), we have that
pref(Q′, s′) ≤ pref(P1, sol). In order to prove thatsol ∈ NOS(P ), now it is suffi-
cient to prove that for everyQ′ ∈ C(P ), pref(P1, sol) = pref(Q′, sol). This is true,
sincesol has a preference that is independent from the missing preferences ofP , both
when eliciting all the missing preferences, and when eliciting only the worst one either
at branch or node level. In fact, in both cases, the preference ofsol is the same in every
completion. Q.E.D.

If When=tree, then we elicit after each BB run, and it is proven in [7] that IFCSP-
SCHEME never elicits preferences involved in solutions which are not possibly op-
timal. This is a desirable property, since only possibly optimal solutions can become
necessarily optimal. However, the experiments will show that solvers satisfying such a
desirable property are often out-performed in practice.

4 Problem generator and experimental design

To test the performance of these different algorithms, we created IFCSPs using a gen-
erator which is a simple extension of the standard random model for hard constraints to
soft and incomplete constraints. The generator has the following parameters:

– n: number of variables;
– m: cardinality of the variable domains;
– d: density, that is, the percentage of binary constraints present in the problem w.r.t.

the total number of possible binary constraints that can be defined onn variables;
– t: tightness, that is, the percentage of tuples with preference0 in each constraint

and in each domain w.r.t. the total number of tuples (m2 for the constraints, since
we have only binary constraints, andm in the domains);

– i: incompleteness, that is, the percentage of incomplete tuples (that is, tuples with
preference?) in each constraint and in each domain.

Given values for these parameters, we generate IFCSPs as follows. We first generaten
variables and thend% of then(n − 1)/2 possible constraints. Then, for every domain
and for every constraint, we generate a random preference value in(0, 1] for each of the
tuples (that arem for the domains, andm2 for the constraints); we randomly sett% of
these preferences to0; and we randomly seti% of the preferences as incomplete.

Our experiments measure thepercentage of elicited preferences (over all the missing
preferences) as the generation parameters vary. Since someof the algorithm instances
require the user to suggest the value for the next variable, we also show theuser’s effort
in the various solvers, formally defined as the number of missing preferences the user
has to consider to give the required help.

Besides the 16 instances of the scheme described above, we also considered a ”base-
line” algorithm that elicits preferences of randomly chosen tuples every time branch



and bound ends. All algorithms are named by means of the threeparameters. For ex-
ample, algorithm DPI.WORST.BRANCH has parameters Who=dpi, What=worst, and
When=branch. For the baseline algorithm, we use the name DPI.RANDOM.TREE.

For every choice of parameter values, 100 problem instancesare generated. The
results shown are the average over the 100 instances. Also, when it is not specified
otherwise, we setn = 10 andm = 5. However, we have similar results (although
not shown in this paper for lack of space) forn = 5, 8, 11, 14, 17, and 20. All our
experiments have been performed on an AMD Athlon 64x2 2800+,with 1 Gb RAM,
Linux operating system, and using JVM 6.0.1.

5 Results

In this section we summarize and discuss our experimental comparison of the different
algorithms. We first focus on incomplete fuzzy CSPs. We then consider two special
cases: incomplete CSPs where all constraints are hard, and incomplete fuzzy temporal
problems. In all the experimental results, the associationbetween an algorithm name
and a line symbol is shown below.

5.1 Incomplete fuzzy CSPs

Figure 4 shows the percentage of elicited preferences when we vary the incompleteness,
the density, and the tightness respectively. For reasons ofspace, we show only the results
for specific values of the parameters. However, the trends observed here hold in general.
It is easy to see that the best algorithms are those that elicit at the branch level. In
particular, algorithm SU.WORST.BRANCH elicits a very small percentage of missing
preferences (less than 5%), no matter the amount of incompleteness in the problem,
and also independently of the density and the tightness. This algorithm outperforms all
others, but relies on help from the user. The best algorithm that does not need such
help is DPI.WORST.BRANCH. This never elicits more than about 10% of the missing
preferences. Notice that the baseline algorithm is always the worst one, and needs nearly
all the missing preferences before it finds a necessarily optimal solution. Notice also that
the algorithms with What=worst are almost always better than those with What=all, and
that When=branch is almost always better than When=node or When=tree.

Figure 5 (a) shows the user’s effort as incompleteness varies. As could be pre-
dicted, the effort grows slightly with the incompleteness level, and it is equal to the
percentage of elicited preferences only when What=all and Who=dp or dpi. For exam-
ple, when What=worst, even if Who=dp or dpi, the user has to consider more prefer-
ences than those elicited, since to identify the worst preference value the user needs
to check all of them (that is, those involved in a partial or complete assignment).
DPI.WORST.BRANCH requires the user to look at 60% of the missing preferences
at most, even when incompleteness is 100%.



Figure 5 (b) shows the user’s effort as density varies. Also in this case, as expected,
the effort grows slightly with the density level. In this case DPI.WORST.BRANCH
requires the user to look at most 40% of the missing preferences, even when the density
is 80%.

All these algorithms have a useful anytime property, since they can be stopped even
before their termination obtaining a possibly optimal solution with preference value
equal to the best solution considered up to that point. Figure 6 shows how fast the var-
ious algorithms reach optimality. They axis represents the solution quality during exe-
cution, normalized to allow for comparison among differentproblems. The algorithms
that perform best in terms of elicited preferences, such as DPI.WORST.BRANCH, are
also those that approach optimality fastest. We can therefore stop such algorithms early
and still obtain a solution of good quality in all completions.

Figure 7 (a) shows the percentage of elicited preferences over all the preferences
(white bars) and the user’s effort (black bars), as well as the percentage of preferences
present at the beginning (grey bars) for DPI.WORST.BRANCH.Even with high levels
of incompleteness, this algorithm elicits only a very smallfraction of the preferences,
while asking the user to consider at most half of the missing preferences.

Figure 7 (b) shows results for LU.WORST.BRANCH, where the user is involved
in the choice of the value for the next variable. Compared to DPI.WORST.BRANCH,
this algorithm is better both in terms of elicited preferences and user’s effort (while
SU.WORST.BRANCH is better only for the elicited preferences). We conjecture that
the help the user gives in choosing the next value guides the search towards better
solutions, thus resulting in an overall decrease of the number of elicited preferences.

Although we are mainly interested in the amount of elicitation, we also computed
the time to run the 16 algorithms. Ignoring the time taken to ask the user for miss-
ing preferences, the best algorithms need about 200 ms to findthe necessarily optimal
solution for problems with 10 variables and 5 elements in thedomains, no matter the
amount of incompleteness. Most of the algorithms need less than 500 ms.

5.2 Incomplete hard CSPs

We also tested these algorithms on hard CSPs. In this case, preferences are only 0 and
1, and necessarily optimal solutions are complete assignments which are feasible in
all completions. The problem generator is adapted accordingly. The parameter What
now has a specific meaning: What=worst means asking if there is a 0 in the missing
preferences. If there is no 0, we can infer that all the missing preferences are 1s.

Figure 8 shows the percentage of elicited preferences for hard CSPs in terms of
amount of incompleteness, density, and tightness. Notice that the scale on they axis
varies to include only the highest values. The best algorithms are those with What=worst,
where the inference explained above about missing preferences can be performed. It is
easy to see a phase transition at about 35% tightness, which is when problems pass from
being solvable to having no solutions. However, the percentage of elicited preferences
is below 20% for all algorithms even at the peak.

Figure 9 (a) shows the user’s effort in terms of amount of incompleteness and Figure
9 (b) shows the user’s effort in terms of density for the case of hard CSPs. Overall, the
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Fig. 4.Percentage of elicited preferences in incomplete fuzzy CSPs.
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(a) d=50%, t=10% (b) d=50%, t=10%
Fig. 7. Incomplete fuzzy CSPs: best algorithms.
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Fig. 8. Elicited preferences in incomplete CSPs.
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(a) d=50%, t=10%
Fig. 10. Incomplete CSPs: best algorithm.

best algorithm is again DPI.WORST.BRANCH. Figure 10 gives the elicited preferences
and user effort for this algorithm.

5.3 Incomplete temporal fuzzy CSPs

We also performed some experiments on fuzzy simple temporalproblems [8]. These
problems have constraints of the forma ≤ x − y ≤ b modelling allowed time intervals
for durations and distances of events, and fuzzy preferences associated to each element
of an interval. We have generated classes of such problems following the approach in
[8], adapted to consider incompleteness. While the class ofproblems generated in [8]
is tractable, the presence of incompleteness makes them intractable in general. Figure
11 shows that in this specialized domain it is also possible to find a necessarily optimal
solution by asking about 10% of the missing preferences, forexample via algorithm
DPI.WORST.BRANCH.
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6 Future work

In the problems considered in this papers, we have no information about the missing
preferences. We are currently considering settings in which each missing preference is



associated to a range of possible values, that may be smallerthan the whole range of
preference values. For such problems, we intend to define several notions of optimality,
among which necessarily and possibly optimal solutions arejust two examples, and
to develop specific elicitation strategies for each of them.We are also studying soft
constraint problems when no preference is missing, but someof them are unstable, and
have associated a range of possible alternative values.

To model fuzzy CSPs, we have not used traditional fuzzy set theory [3], but soft
CSPs [1], since we intend to apply our work also to non-fuzzy CSPs. In fact, we plan
to consider incomplete weighted constraint problems as well as different heuristics for
choosing the next variable during the search. All algorithms with What=all are not tied
to fuzzy CSPs and are reasonably efficient. Moreover, we intend to build solvers based
on local search and variable elimination methods. Finally,we want to add elicitation
costs and to use them also to guide the search, as done in [10] for hard CSPs.
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