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Abstract. Fuzzy constraints are a popular approach to handle prefesesnd
over-constrained problems in scenarios where one needsdauiious, such as
in medical or space applications. We consider here fuzztcaint problems
where some of the preferences may be missing. This modelsx&mple, set-
tings where agents are distributed and have privacy issmeghere there is an
ongoing preference elicitation process. In this setting,study how to find a
solution which is optimal irrespective of the missing prefeces. In the process
of finding such a solution, we may elicit preferences fromuker if necessary.
However, our goal is to ask the user as little as possible. &fleela combined
solving and preference elicitation scheme with a large remdb different in-
stantiations, each corresponding to a concrete algorithiohwve compare ex-
perimentally. We compute both the number of elicited peiees and the "user
effort”, which may be larger, as it contains all the prefe®ralues the user has
to compute to be able to respond to the elicitation requégisle the number of
elicited preferences is important when the concern is toncamicate as little in-
formation as possible, the user effort measures also tlikehidiork the user has
to do to be able to communicate the elicited preferencesegperimental results
show that some of our algorithms are very good at finding assecdy optimal
solution while asking the user for only a very small fractafrthe missing pref-
erences. The user effort is also very small for the best dlgos. Finally, we test
these algorithms on hard constraint problems with possiti§sing constraints,
where the aim is to find feasible solutions irrespective efrtlissing constraints.

1 Introduction

Constraint programming is a powerful paradigm for solviobeduling, planning, and
resource allocation problems. A problem is representedd®t af variables, each with
a domain of values, and a set of constraints. A solution issaigament of values to
the variables which satisfies all constraints and whichomgatily maximizes/minimizes
an objective function. Soft constraints are a way to modéhapation problems by
allowing for several levels of satisfiability, modelled byetuse of preference or cost
values that represent how much we like an instantiation®f/griables of a constraint.



It is usually assumed that the data (variables, domaing) (@@nstraints) is com-
pletely known before solving starts. This is often unrdilidn web applications and
multi-agent systems, the data is frequently only partikitpwn and may be added to
at a later date by, for example, elicitation. Data may alsmedrom different sources
at different times. In multi-agent systems, agents mayaseladata reluctantly due to
privacy concerns.

Incomplete soft constraint problems can model such sdnatby allowing some
of the preferences to be missing. An algorithm has been gepand tested to solve
such incomplete problems [7]. The goal is to find a soluticat ik guaranteed to be
optimal irrespective of the missing preferences, eligitimeferences if necessary until
such a solution exists. Two notions of optimal solution anesideredpossibly optimal
solutions are assignments that are optimadtireast one way of revealing the unspec-
ified preferences, whilaecessarily optimal solutions are assignments that are optimal
in all waysthat the unspecified preferences can be revealed. The se$sibfy optimal
solutions is never empty, while the set of necessarily ogitBolutions can be empty.

If there is no necessarily optimal solution, the algorithmoggmsed in [7] uses branch
and bound to find a "promising solution” (specifically, a cdetp assignmentin the best
possible completion of the current problem) and elicitsrtiissing preferences related
to this assignment. This process is repeated till there ecassarily optimal solution.

Although this algorithm behaves reasonably well, it makenespecific choices
about solving and preference elicitation that may not bevggitin practice, as we shall
see in this paper. For example, the algorithm only elicitssinig preferences after run-
ning branch and bound to exhaustion. As a second exampl@|dgbethm elicits all
missing preferences related to the candidate solutionyMérer strategies are possi-
ble. We might elicit preferences at the end of every comgdedch, or even at every
node in the search tree. Also, when choosing the value tgragsi variable, we might
ask the user (who knows the missing preferences) for hehalllyi we might not elicit
all the missing preferences related to the current canglisialiition. For example, we
might just ask the user for the worst preference among thsimg®ones.

In this paper we consider a general algorithm scheme whightlyrgeneralizes that
proposedin [7]. Itis based on three parametetst to elicit, when to elicit it, andwho
chooses the value to be assigned to the next variable. Waltd& possible different
instances of the scheme (among which is the algorithm indf])andomly generated
fuzzy constraint problems. We demonstrate that some oflweithms are very good
at finding necessarily optimal solution without elicitirgptmany preferences. We also
test the algorithms on problems with hard constraints. I§inae consider problems
with fuzzy temporal constraints, where problems have mpeeific structure.

In our experiments, we compute the elicited preferences jshthe missing values
that the user has to provide to the system because they arested by the algorithm.
Providing these values usually has a cost, either in term®wiputation effort, or in
terms of privacy decrease, or also in terms of communicd@rdwidth. Thus know-
ing how many preferences are elicited is important if we edor@ut any of these issues.
However, we also compute a measure of the user’s effort,iwhiy be larger than the
number of elicited preferences, as it contains all the peefee values the user has to
consider to be able to respond to the elicitation requestse¥ample, we may ask the



user for the worst preference value amangissing ones: the user will communicate
only one value, but he will have to consider albf them. While knowing the number
of elicited preferences is important when the concern iotaraunicate as little infor-
mation as possible, the user effort measures also the hiddgathe user has to do to
be able to communicate the elicited preferences. Thissuséort is therefore also an
important measure.

As a motivating example, recommender systems give suggssbiased on par-
tial knowledge of the user’s preferences. Our approachddouybrove performance by
identifying some key questions to ask before giving recoma¢ions. Privacy con-
cerns regarding the percentage of elicited preferencewatigated by eavesdropping.
User’s effort is instead related to the burden on the user.

Our results show that the choice of preference elicitattomtagy is crucial for the
performance of the solver. While the best algorithms needlitit as little as 10% of
the missing preferences, the worst one needs much more.sens effort is also very
small for the best algorithms. The performance of the begirdhms shows that we
only need to ask the user a very small amount of additionakinétion to be able to
solve problems with missing data.

Several other approaches have addressed similar issuesxdople, open CSPs
[4, 6] and interactive CSPs [9] work with domains that can bdiglly specified. As a
second example, in dynamic CSPs [2] variables, domains¢anstraints may change
over time. However, the incompleteness considered in [8,&} domain values as well
as on their preferences. Working under this assumption st the agent that pro-
vides new values/costs for a variable knows all possiblésgemce they are capable of
providing the best value first. If the cost computation isengive or time consuming,
then computing all such costs (in order to give the most predevalue) is not desir-
able. We assume instead, as in [7], that all values are giveredbeginning, and that
only some preferences are missing. Because of this assaimpi don’t need to elicit
preference values in order, as in [6].

2 Background

In this section we give a brief overview of the fundamentdioms and concepts on
Soft Constraints and Incomplete Soft Constraints.

Incomplete Soft Constraints problems (ISCSPs) [7] exteofl Sonstraint Prob-
lems (SCSPs) [1] to deal with partial information. We wiltfes on a specific instance
of this framework in which the soft constraints are fuzzy.

Given a set of variableg with finite domainD, anincomplete fuzzy constraint is a
pair (idef, con) wherecon C V is the scope of the constraint anttf : D!o"l —
[0,1] U {?} is the preference function of the constraint associatingach tuple of
assignments to the variablesdon either a preference value ranging between 0 and 1,
or 7. All tuples mapped int@ by ide f are calledncomplete tuples, meaning that their
preference is unspecified. A fuzzy constraint is an incoteflezzy constraint with no
incomplete tuples.

An incomplete fuzzy constraint problem (IFCSP) is a paitC, V, D) whereC'is a set
of incomplete fuzzy constraints over the variable¥iwith domainD. Given an IFCSP



P, IT(P) denotes the set of all incomplete tuplesinWhen there are no incomplete
tuples, we will denote a fuzzy constraint problem by FSCP.

Given an IFCSPP, a completion of P is an IFCSPP’ obtained fromP by asso-
ciating to each incomplete tuple in every constraint an elgnm [0, 1]. A completion
is partial if some preference remains unspecifi€ P) denotes the set of all possible
completions ofP and PC'(P) denotes the set of all its partial completions.

Given an assignmentto all the variables of an IFCSP, pref(P, s) is the pref-
erence ok in P, defined agre f(P, s) = mincidef,con>eClidef (s, con)#21de f (5 con)-

It is obtained by taking the minimum among the known prefeesmassociated to the
projections of the assignment, that is, of the appropriatédtuples in the constraints.

In the fuzzy context, a complete assignment of values tdnallvariables is an opti-
mal solution if its preference is maximal. The optimalitytioa of FCSPs is generalized
to IFCSPs via the notions afecessarily and possibly optimal solutions, that is, com-
plete assignments which are maximal in all or some complstiGiven an IFCSHP,
we denote byNOS(P) (resp.,POS(P)) the set of necessarily (resp., possibly) opti-
mal solutions ofP. Notice thatNOS(P) C POS(P). Moreover, whilePOS(P) is
never emptyNOS(P) may be empty. In particula?ty O.S(P) is empty whenever the
revealed preferences do not fix the relationship betweermssignment and all others.

In [7] an algorithm is proposed to find a necessarily optinadlison of an IFCSP
based on a characterization 80S(P) and POS(P). This characterization uses the
preferences of the optimal solutions of two special conist of P, namely the0-
completion ofP, denoted byP,, obtained fromP by associating preferen€eto each
tuple of IT(P), and thel-completion of P, denoted byP;, obtained fromP by as-
sociating preference to each tuple of T'(P). Notice that, by monotonicity ofnin,
we have thaprefy < prefi. Whenprefy = prefi, NOS(P) = Opt(Fy); thus, any
optimal solution ofP, is a necessary optimal solution. Otherwi3&D S (P) is empty
andPOS(P) is a set of solutions with preference betweenf, andpref; in P;. The
algorithm proposed in [7] finds a necessarily optimal solutf the given IFCSP by
interleaving the computation gf-¢ fy andpre f; with preference elicitation steps, until
the two values coincide. Moreover, the preference elioitais guided by the fact that
only solutions inPOS(P) can become necessarily optimal. Thus, the algorithm only
elicits preferences related to optimal solutiongf

3 A general solver scheme

We now propose a more general schema for solving IFCSPs lmasauterleaving

branch and bound (BB) search with elicitation. This scheeraegalizes the concrete
solver presented in [7], but has several other instantiattbat we will consider and
compare experimentally in this paper. The scheme usesHearttbound. This consid-
ers the variables in some order, choosing a value for ea@blarand pruning branches
based on an upper bound (assuming the goal is to maximizd)eopreference value
of any completion of the current partial assignment. To detl missing preferences,
branch and bound is applied to both the 0-completion and-tb@mpletion of the prob-

lem. If they have the same solution, this is a necessarilymgbtsolution and we can



stop. If not, we elicit some of the missing preferences andinae branch and bound
on the newl-completion.

Preferences can be elicited after each run of branch anddq@agrin [7]) or during
a BB run while preserving the correctness of the approachekample, we can elicit
preferences at the end of every complete branch (that iardety preferences of every
complete assignment considered in the branch and boundthigd, or at every node in
the search tree (thus considering every partial assignnidonteover, when choosing
the value for the next variable to be assigned, we can askdée (who knows the
missing preferences) for help. Finally, rather than éfigitall the missing preferencesin
the possibly optimal solution, or the complete or partigigigment under consideration,
we can elicit just one of the missing preferences. For examwith fuzzy constraint
problems, eliciting just the worst preference among thesimgsones is sufficient since
only the worst value is important to the computation of therall preference value.
More precisely, the algorithm schema we propose is basduedioliowing parameters:

1. Who chooses the value of a variable: the algorithm can choosealues in de-
creasing order either w.r.t. their preference values initlo@mpletion (Who=dp)
or in the0-completion (Who=dpi). Otherwise, the user can suggestdhoice. To
do this, he can consider all the preferences (revealed drforothe values of the
current variablelézy user, Who=lu for short); or he considers also the preference
values in constraints between this variable and the paisthlas in the search order
(smart user, Who=su for short).

2. What is elicited: we can elicit the preferences of all the incoeteltuples of the
current assignment (What=all) or only the worst preferandbe current assign-
ment, if it is worse than the known ones (What=worst);

3. When elicitation takes place: we can elicit preferences at the @fnthe branch
and bound search (When=tree), or during the search, whenawe d complete
assignment to all variables (When=branch) or whenever avaéve is assigned to
a variable (When=node).

By choosing a value for each of the three above parametersansistent way, we
obtain in total 16 different algorithms, as summarized igufe 1, where the circled
instance is the concrete solver used in [7].

Figures 2 and 3 show the pseudo-code of the general schermsel¥ang IFCSPs.
There are three algorithms: ISCSP-SCHEME, BBE and BB. ISSSPEME takes
as input an IFCSHP and the values for the three parameters: Who, What and When.
It returns a partial completion aP that has some necessarily optimal solutions, one
of these necessarily optimal solutions, and its prefergatige. It starts by computing
via branch and bound (algorithm BB) an optimal solution/@f say s,,q.., and its
preferencepre fn.... Next, proceduréBBE is called. If BBE succeeds, it returns a
partial completion ofP, say @, one of its necessarily optimal solutions, say and
its associated preferengeef,. Otherwise, it returns a solution equal #@l. In the
first case the output of IFCSP-SCHEME coincides with thatBEBotherwise IFCSP-
SCHEME returng?, one of its optimal solutions, and its preference.

Procedure BBE takes as input the same values as IFCSP-SCIEY) i addition,

a solutionsol and a preferenck representing the current lower bound on the optimal
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Fig. 1. Instances of the general scheme.

IFCSP-SCHEME(P , W ho,W hat,W hen)
QP
Smazs Pre€fmaz «— BB(Po, —)
Q' s1,prefi «— BBE(P,0,Who, W hat, W hen, Smaz, Pre fmaz)
If (s1 # nal)
Smaz < 81, Prefmaz «— prefi, Q «— Q'
Return@, smaz, prefmaz

Fig. 2. Algorithm IFCSP-SCHEME.

preference value. FunctiorextV ariable, applied to thel-completion of the IFCSP,

returns the next variable to be assigned. The algorithm #ssigns a value to this
variable. If the Boolean functionextValue returns true (if there is a value in the
domain), we select a value fourrentV ar according to the value of parametiétho.

FunctionU pper Bound computes an upper bound on the preference of any com-
pletion of the current partial assignment: the minimum dkerpreferences of the con-
straints involving only variables that have already beataintiated.

If When=tree, elicitation is handled by proceduf&cit@tree, and takes place only
at the end of the search over thecompletion. The user is not involved in the value
assignment steps within the search. At the end of the se&aclplution is found, the
user is asked either to reveal all the preferences of thariptete tuples in the solution
(if What=all), or only the worst one among them (if What=wipr& such a preference
is better than the best found so far, BBE is called recungiwith the new best solution
and preference.

If When=branch, BB is performed only once. The user may bedsk choose the
next value for the current variable being instantiatedfé?emce elicitation, which is
handled by functiorElicit@branch, takes place during search, whenever all variables
have been instantiated and the user can be asked eitheetd tiew preferences of all the
incomplete tuples in the assignment (What=all), or the tprsference among those
of the incomplete tuples of the assignment (What=worsthdth cases the information
gathered is sufficient to test such a preference value aghasurrent lower bound.



If When=node, preferences are elicited every time a newevauassigned to a
variable and it is handled by proceduticit@node. The tuples to be considered for
elicitation are those involving the value which has justrbassigned and belonging to
constraints between the current variable and alreadyritiatad variables. If What=all,
the user is asked to provide the preferences of all the intatmpuples involving the
new assignment. Otherwise if What=worst, the user prowtsthe preference of the
worst tuple.

BBE (P,nInstVar, Who, What, W hen, sol, lb)
sol' « sol, pref’ < Ib
currentVar «— nextVariable(Pr)
While (nextV alue(currentVar, W ho))
If (W hen = node)
P,pref «— ElicitQNode(W hat, P, currentV ar,1b)
ub «— Upper Bound(Py, currentVar)
If (ub > Ib)
If (nInstvar = number of variables in P)
If (W hen = branch)
P, pref «— Elicit@Qbranch(W hat, P, 1b)
If (pref > 1b)
sol — getSolution(Py)
b — pref(P1, sol)
else
BBE(P,nInstVar + 1, Who, W hat, W hen, sol, Ib)
If (W hen=tree and nInstVar = 0)
If(sol = nil)
sol « sol’, pref « pref’
else
P, pref « Elicit@tree(W hat, P, sol, Ib)
If(pref > pref’)
BBE(P,0, Who, W hat, W hen, sol, pref)
elseBBE(P,0, Who, W hat, W hen, sol’, pref")

Fig. 3. Algorithm BBE.

Theorem 1. Given an IFCSP P and a consistent set of values for parameters When,
What and Who, Algorithm IFCSP-SCHEMEalways terminates, and returns an IFCSP
Q € PC(P),anassignment s € NOS(Q), and its preferencein Q.

Proof. Let us first notice that, as far as correctness and termimatacern, the value
of parameter Who is irrelevant.
We consider two separate cases, i.e., When=tree and and3ttagrch or node.
Case 1: When =tree.
Clearly IFCSP-SCHEME terminates if and only if BBE termemstIf we consider the
pseudocode of procedure BBE shown in Algorithm 3, we sedfthidhen = tree, BBE



terminates wherol = nil. This happens only when the search fails to find a solution
of the current problem with a preference strictly greatantthe current lower bound.
Let us denote with)? and@Q’*! respectively the IFCSPs given in input to thth and
i+1-threcursive call of BBE. First we notice that only proceglBiicitQtree modifies
the IFCSP in input by possibly adding new elicited prefeemnéloreover, whatever the
value of parameter What is, the returned IFCSP is eitheraimess the one in input or it
is a (possibly partial) completion of the one in input. ThieshaveQ+! € PC(Q?) and
Q' € PC(P). Since the search is always performed ontteompletion of the current
IFCSP, we can conclude that for every solutiopre f(Q11, s) < pref(Q¢, s). Letus
now denote withb? andibt! the lower bounds given in input respectively to thia
andi + 1-th recursive call of BBE. Itis easy to see th&t ! > [b’. Thus, since at every
iteration we have that the preferences of solutions can getyower, and the bound
can only get higher, and since we have a finite number of swistiwe can conclude
that BBE always terminates.

The reasoning that follows relies on the fact that valuef returned by function
ElicitQtree is the final preference after elicitation of assignmesitgiven in input.
This is true since either What = all and thus all preferen@® tbeen elicited and the
overall preference ofol can be computed or only the worst preference has been dlicite
but in a fuzzy context where the overall preference coinwiitle the worst one. If called
with When = tree IFCSP-SCHEME exits when the last branch anth8 search has
ended returningol = nil. In such a caseol andpre f are updated to contain the best
solution and associated preference found so farsk&.andpre f’. Then, the algorithm
returns the current IFCSP, s&¥ andsol andpref. Following the same reasoning as
above done fo€)’ we can conclude thap € PC(P).

At the end of every while loop execution, assignmeuit either contains an opti-
mal solutionsol of the 1-completion of the current IFCSP ool = nil. sol = nil iff
there is no assignment with preference higher tthan the 1-completion of the current
IFCSP. In this situationsol’ andpref’ are an optimal solution and preference of the
1-completion of the current IFCSP. However, since the pegfee ofsol’, pref’ is inde-
pendent of unknown preferences and since due to monotptheitoptimal preference
value of thel-completion is always greater than or equal to that ofGkmmpletion
we have thatol’ andpref’ are an optimal solution and preference of heompletion
of the current IFCSP as well.

By Theorems 1 and 2 of [7] we can conclude thaD.S(Q) is not empty. lfpref =
0, then NOS(Q) contains all the assignments and thus alsb The algorithm cor-
rectly returns the same IFCSP given in input, assignmehand its preferencgref.
Ifinstead0 < pref, again the algorithm is correct, since by Theorem 1 of [7] wevk
that NOS(Q) = Opt(Qo), and we have shown thabl € Opt(Qy).

Case 2: When=branch or node.
In order to prove that the algorithm terminates, it is suéfitito show thal3 BE ter-
minates. Since the domains are finite, the labeling phasgupes a number of finite
choices at every level of the search tree. Moreover, sineentimber of variables is
limited, then, we have also a finite number of levels in the.tiéence BBE considers
at most all the possible assignments, that are a finite nurAbéine end of the exe-



cution of IFCSP-SCHEMEsol, with preferenceref is one of the optimal solutions
of the currentP, Thus, for every assignmest, pref (P, s") < pref(P, sol). More-
over, for every completio)’ € C(P) and for every assignmenst, pref(Q’,s") <
pref(Py,s'). Hence, for every assignmesitand for every@’ € C(P), we have that
pref(Q',s") < pref(P1,sol). In order to prove thatol € NOS(P), now it is suffi-
cient to prove that for ever§)’ € C(P), pref(P1, sol) = pref(Q’, sol). This is true,
sincesol has a preference that is independent from the missing jrafes ofP, both
when eliciting all the missing preferences, and when @tigionly the worst one either
at branch or node level. In fact, in both cases, the preferefiew! is the same in every
completion. Q.E.D.

If When=tree, then we elicit after each BB run, and it is proire[7] that IFCSP-
SCHEME never elicits preferences involved in solutionsalhére not possibly op-
timal. This is a desirable property, since only possiblyipt solutions can become
necessarily optimal. However, the experiments will shoat #olvers satisfying such a
desirable property are often out-performed in practice.

4 Problem generator and experimental design

To test the performance of these different algorithms, veaterd IFCSPs using a gen-
erator which is a simple extension of the standard randonefrfodhard constraints to
soft and incomplete constraints. The generator has the/firl parameters:

— n: number of variables;

— m: cardinality of the variable domains;

— d: density, that is, the percentage of binary constraintsguein the problem w.r.t.
the total number of possible binary constraints that candfieed onn variables;

— t: tightness, that is, the percentage of tuples with prefarérin each constraint
and in each domain w.r.t. the total number of tupleg for the constraints, since
we have only binary constraints, andin the domains);

— 4: incompleteness, that is, the percentage of incompletesyghat is, tuples with
preference) in each constraint and in each domain.

Given values for these parameters, we generate IFCSPd@sdolVe first generate
variables and theti% of then(n — 1)/2 possible constraints. Then, for every domain
and for every constraint, we generate a random prefereree we(0, 1] for each of the
tuples (that aren for the domains, angh? for the constraints); we randomly 66 of
these preferences € and we randomly s&®o of the preferences as incomplete.

Our experiments measure thercentage of elicited preferences (over all the missing
preferences) as the generation parameters vary. Sincecfdime algorithm instances
require the user to suggest the value for the next varialde|so show theser’s effort
in the various solvers, formally defined as the number of imispreferences the user
has to consider to give the required help.

Besides the 16 instances of the scheme described abovesmepalsidered a "base-
line” algorithm that elicits preferences of randomly choseples every time branch



and bound ends. All algorithms are named by means of the gaeameters. For ex-
ample, algorithm DPI.WORST.BRANCH has parameters Who/dfliat=worst, and
When=branch. For the baseline algorithm, we use the namé&kRBRIDOM.TREE.

For every choice of parameter values, 100 problem instaacegenerated. The
results shown are the average over the 100 instances. Alsen W is not specified
otherwise, we set = 10 andm = 5. However, we have similar results (although
not shown in this paper for lack of space) for= 5, 8, 11, 14, 17, and 20. All our
experiments have been performed on an AMD Athlon 64x2 28@0th, 1 Gb RAM,
Linux operating system, and using JVM 6.0.1.

5 Results

In this section we summarize and discuss our experimentapaason of the different

algorithms. We first focus on incomplete fuzzy CSPs. We thamsitler two special

cases: incomplete CSPs where all constraints are hardnaathplete fuzzy temporal
problems. In all the experimental results, the associdietween an algorithm name
and a line symbol is shown below.

DP.ALL.TREE -~ DPLLWORST.NODE --4A-- SU.ALL.BRANCH —&—
DP.WORST.TREE -~ DPL.WORST.TREE -~ SU.ALL.NODE --#--
DPILALL.BRANCH —&— LU.ALL.BRANCH —+— SU.WORST.BRANCH —&—

DPI.ALL.NODE --m- LU.ALLNODE --v--- SU.WORST.NODE --&--

DPI.ALL.TREE ---©-- LU.WORST.BRANCH —&— DPI.RANDOM.TREE
DPL.WORST.BRANCH —@—  LU.WORST.NODE --&--

5.1 Incomplete fuzzy CSPs

Figure 4 shows the percentage of elicited preferences wkeravy the incompleteness,
the density, and the tightness respectively. For reasaspsaake, we show only the results
for specific values of the parameters. However, the trendsrobd here hold in general.
It is easy to see that the best algorithms are those that atithe branch level. In
particular, algorithm SU.WORST.BRANCH elicits a very shpa@rcentage of missing
preferences (less than 5%), no matter the amount of incdemgss in the problem,
and also independently of the density and the tightness.algorithm outperforms all
others, but relies on help from the user. The best algorittah does not need such
help is DP.LWORST.BRANCH. This never elicits more than atid?s of the missing
preferences. Notice that the baseline algorithm is alwagsvorst one, and needs nearly
all the missing preferences before it finds a necessarilynabsolution. Notice also that
the algorithms with What=worst are almost always betten thase with What=all, and
that When=branch is almost always better than When=nodeham#tree.

Figure 5 (a) shows the user’s effort as incompleteness stafis could be pre-
dicted, the effort grows slightly with the incompletenesegdl, and it is equal to the
percentage of elicited preferences only when What=all ahd¥dp or dpi. For exam-
ple, when What=worst, even if Who=dp or dpi, the user has twsicter more prefer-
ences than those elicited, since to identify the worst pegige value the user needs
to check all of them (that is, those involved in a partial omgbete assignment).
DPI.WORST.BRANCH requires the user to look at 60% of the mgpreferences
at most, even when incompleteness is 100%.



Figure 5 (b) shows the user’s effort as density varies. Alghis case, as expected,
the effort grows slightly with the density level. In this eaBPI.WORST.BRANCH
requires the user to look at most 40% of the missing prefergreven when the density
is 80%.

All these algorithms have a useful anytime property, sihey tan be stopped even
before their termination obtaining a possibly optimal ol with preference value
equal to the best solution considered up to that point. Eigushows how fast the var-
ious algorithms reach optimality. Theaxis represents the solution quality during exe-
cution, normalized to allow for comparison among differprdblems. The algorithms
that perform best in terms of elicited preferences, suchRISVMORST.BRANCH, are
also those that approach optimality fastest. We can thexstop such algorithms early
and still obtain a solution of good quality in all completfon

Figure 7 (a) shows the percentage of elicited preferencesall/the preferences
(white bars) and the user’s effort (black bars), as well aspercentage of preferences
present at the beginning (grey bars) for DPI.WORST.BRANE##EN with high levels
of incompleteness, this algorithm elicits only a very snfi@ttion of the preferences,
while asking the user to consider at most half of the missnefgpences.

Figure 7 (b) shows results for LU.WORST.BRANCH, where therus involved
in the choice of the value for the next variable. Compared Bd.lWORST.BRANCH,
this algorithm is better both in terms of elicited preferem@and user’s effort (while
SU.WORST.BRANCH is better only for the elicited preferesicéVe conjecture that
the help the user gives in choosing the next value guidesehecls towards better
solutions, thus resulting in an overall decrease of the rermabelicited preferences.

Although we are mainly interested in the amount of elicitatiwe also computed
the time to run the 16 algorithms. Ignoring the time taken gk #he user for miss-
ing preferences, the best algorithms need about 200 ms tthiéndecessarily optimal
solution for problems with 10 variables and 5 elements indbmains, no matter the
amount of incompleteness. Most of the algorithms need kess 500 ms.

5.2 Incomplete hard CSPs

We also tested these algorithms on hard CSPs. In this caferg@mces are only 0 and
1, and necessarily optimal solutions are complete assigtenwehich are feasible in
all completions. The problem generator is adapted accghdifhe parameter What
now has a specific meaning: What=worst means asking if tlseae0 in the missing
preferences. If there is no 0, we can infer that all the migpireferences are 1s.

Figure 8 shows the percentage of elicited preferences fiar 88Ps in terms of
amount of incompleteness, density, and tightness. Ndtiaethe scale on thg axis
varies to include only the highest values. The best algmstare those with What=worst,
where the inference explained above about missing prefesstan be performed. It is
easy to see a phase transition at about 35% tightness, vehidiein problems pass from
being solvable to having no solutions. However, the peaggbdf elicited preferences
is below 20% for all algorithms even at the peak.

Figure 9 (a) shows the user’s effort in terms of amount of mpteteness and Figure
9 (b) shows the user’s effort in terms of density for the cddwaod CSPs. Overall, the
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best algorithm is again DPI.WORST.BRANCH. Figure 10 gitesdlicited preferences
and user effort for this algorithm.

5.3 Incomplete temporal fuzzy CSPs

We also performed some experiments on fuzzy simple tempoadllems [8]. These
problems have constraints of the fornX = — y < b modelling allowed time intervals
for durations and distances of events, and fuzzy prefesgsociated to each element
of an interval. We have generated classes of such probldig/iiog the approach in
[8], adapted to consider incompleteness. While the claggalflems generated in [8]
is tractable, the presence of incompleteness makes theactizble in general. Figure
11 shows that in this specialized domain it is also possibfatl a necessarily optimal
solution by asking about 10% of the missing preferencesefample via algorithm
DPIL.WORST.BRANCH.

elicited preferences
3
»
L 8
L

10 20 30 ~ 40 50 60 70 80 90 100
. .. in%ompleteness_ .
Fig. 11.Percentage of elicited preferences in incomplete fuzzyteal CSPs.

6 Future work

In the problems considered in this papers, we have no infiomabout the missing
preferences. We are currently considering settings in vbach missing preference is



associated to a range of possible values, that may be sntadlerthe whole range of
preference values. For such problems, we intend to defireealewtions of optimality,
among which necessarily and possibly optimal solutionsjestetwo examples, and
to develop specific elicitation strategies for each of th&ve. are also studying soft
constraint problems when no preference is missing, but sirteem are unstable, and
have associated a range of possible alternative values.

To model fuzzy CSPs, we have not used traditional fuzzy ssirth[3], but soft
CSPs [1], since we intend to apply our work also to non-fuzaps€. In fact, we plan
to consider incomplete weighted constraint problems akasedifferent heuristics for
choosing the next variable during the search. All algorighmith What=all are not tied
to fuzzy CSPs and are reasonably efficient. Moreover, wadhte build solvers based
on local search and variable elimination methods. Finally,want to add elicitation
costs and to use them also to guide the search, as done irofit§fd CSPs.
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