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We illustrate the use of phase transition behaviour in the study of heuristics. Using an “an-
nealed” theory, we define a parameter that measures the “constrainedness” of an ensemble of number
partitioning problems. We identify a phase transition at a critical value of constrainedness. We
then show that constrainedness can be used to analyse and compare algorithms and heuristics
for number partitioning in a precise and quantitative manner. For example, we demonstrate that
on uniform random problems both the Karmarkar-Karp and greedy heuristics minimize the con-
strainedness, but that the decisions made by the Karmarkar-Karp heristic are superior at reducing
constrainedness. This supports the better performance observed experimentally for the Karmarkar-
Karp heuristic. Our results refute a conjecture of Y. Fu that phase transition behaviour does not
occur in number partitioning. In addition, they demonstrate that phase transition behaviour is
useful for more than just simple benchmarking. It can, for instance, be used to analyse heuristics,
and to compare the quality of heuristic solutions.
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1. INTRODUCTION

Where are the hard computational problems? Many instances of NP-complete
problems are surprising easy to solve. One place to find hard instances is at a phase
transition (Cheeseman, Kanefsky, & Taylor, 1991; Mitchell, Selman, & Levesque,
1992). Problems which are very under-constrained are soluble and it is usually easy
to guess one of the many solutions. Problems which are very over-constrained are
insoluble. In the phase transition in between, problems are “critically constrained”
and it is typically very hard to determine if they are soluble or insoluble (Cheeseman
et al., 1991). Problems from the phase transition are now routinely used to bench-
mark algorithms. In this paper, we show how phase transition behaviour can also
be used in the study of heuristics. We define a parameter that measures the “con-
strainedness” of an ensemble of number partitioning problems and identify a phase
transition at a critical value of constrainedness. We then show that constrainedness
can be used to analyse and compare algorithms and heuristics for number partition-
ing in a precise and quantitative manner. We conjecture that a similar approach will
prove useful in a wide variety of NP-complete problems.

The paper is structured as follows. In Section 2 we define number partitioning
and outline its practical and theoretical importance. We describe some well known
heuristics and algorithms for number partitioning in Sections 3 and 4. In Section 53,
we argue that the performance of algorithms and heuristics on an ensemble of com-
binatorial problems depends on their “constrainedness”. We then develop a simple
“annealed” theory (Section 6) for computing the constrainedness of an ensemble of
number partitioning problems. In Section 7 we show that a phase transition occurs
around a critical value of constrainedness. Associated with this phase transition,
there is a complexity peak in the cost of finding the optimal partition (Section 8). In
Section 9 we demonstrate that constrainedness also predicts the location of a phase
transition for finding less than perfect partitions. We then show that constrainedness
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can be used to model the size of the optimal partition difference (10), to compare
the quality of heuristic solutions (Section 11), and to analyse heuristics themselves
(Sections 12 and 13). Finally, we mention some related work (Section 14). This
paper greatly extends results that first appeared in (Gent & Walsh, 1996a) and in
one section of (Gent, Maclntyre, Prosser, & Walsh, 1996). In addition, it includes
many new results (for example, much of Sections 8, 10, 11 and 12 and all of Section
13) that have not appeared before in any form.

2. NUMBER PARTITIONING

Let us partition a bag of n positive integers into two disjoint bags. The partition
difference, A is the absolute difference between the sums of the two bags. The number
partition decision problem is to determine if there is a partition such that A < d
for some given d. The number partition optimization problem is to determine the
minimum partition difference, A,,. If A <1 then the partition is perfect otherwise
we call it imperfect. As in (Korf, 1995), we consider n numbers drawn uniformly and
at random from (0,{]. We have, however, seen very similar results with a Poisson
distribution with parameter /.

Number partitioning is of considerable importance, both practically and theor-
etically. Many problems in Al (like scheduling and processor allocation, and the
minimization of VLSI circuit size and delay) involve partitioning bags of numbers.
Number partitioning is also one of Garey and Johnson’s six basic NP-complete prob-
lems (Garey & Johnson, 1979). Phase transition behaviour has been observed in three
out of these six problems: 3-SAT (Mitchell et al., 1992), CLIQUE via the dual inde-
pendent set problem (Gent & Walsh, 1994), and HaMILTONIAN CIRCUIT (Cheeseman
et al., 1991). Here, we show it occurring in a fourth problem, PARTITION. We predict
that the two remaining problems, 3-DIMENSIONAL MATCHING and VERTEX COVER
will also display similar phase transition behaviour.

Number partitioning is the only one of Garey and Johnson’s six basic problem
that deals with numbers. It is often therefore the natural choice for NP-completeness
proofs of other problems involving numbers (e.g. bin packing, multiprocessor schedul-
ing, open-shop scheduling, quadratic programming, and knapsack problems). Whilst
number partitioning is a NP-complete problem, it is not NP-complete in the “strong”
sense since the optimization problem (and hence the decision problem) can be solved
in pseudo-polynomial time using dynamic programming (Garey & Johnson, 1979).
Given n numbers to partition which sum to s, this algorithm runs in time and space
bounded by a low polynomial in n.s. Note, however, that the size of the input need
only be O(n.log(s)). The NP-completeness of the PARTITION problem depends on
the fact that we can supply extremely large integers to partition. For this reason, the
PARTITION problem offers a strong test of the connection between phase transitions
and NP-completeness.

Our results refute a conjecture of Y. Fu that “at least one NP complete problem,
that of random number partitioning, can be solved exactly in statistical mechanics
and no phase transition of any kind is found” (Fu, 1989). Fu later suggests that
“Unless there is a subtle loophole in our argument, then we must accept as a con-
clusion that no connection whatsoever exists between the spin glass transition and
NP-completeness ... the connection between phase transition and computational
complexity, if any, must be of a form very different from what has been imagined”.
By means of an annealed theory, we identify a simple phase transition for the number
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partition decision problem. Number partitioning therefore does not provide evidence
that phase transitions are unconnected with NP-completeness. It remains an open
question if there is any NP-complete problem which lacks a phase transition. We
should note, however, that phase transition behavior has been proven to occur in
polynomial problems. For instance, 2-satisfiability displays a phase transition in
solubility as we vary the ratio of clauses to variables (Chvatal & Reed, 1992).

3. HEURISTICS FOR NUMBER PARTITIONING

A variety of heuristics have been proposed for number partitioning. The greedy
heuristic, for instance, simply places the largest remaining number into the bag with
the smaller sum (Korf, 1995). Consider partitioning the bag {25,17,10,8,7,4} using
the greedy heuristic:

Numbers remaining  Partial partition A
{25,17,10,8,7,4} -
{17,10,8,7,4} {2534}

25
{10,8,7,4} {253{17} 8
{8,7,4} {25}{17,10} 2
{7,4} {25,8}{17,10} 6
{4} {25,8}{17,10,7} 1

- {25,8,4}{17,10,7} 3

The partition constructed by the greedy heuristic thus has a partition difference, A
of 3.

The set differencing method of Karmarkar and Karp replaces two numbers by
their difference (Karmarkar & Karp, 1982). This commits the two numbers to op-
posite bags without deciding into which bag each number goes. For example, consider
again partitioning the bag {25,17,10,8,7,4} into two separate bags. If we put 25
in the first bag and 17 in the second bag, then this is equivalent to placing their
difference, 8 in the first bag. On the other hand, if we put 17 in the first bag and
25 in the second, then this is equivalent to placing 8 in the second bag. Thus, if we
decide that 25 and 17 are to go into opposite bags, we simply need to remove the
two numbers and replace them by their difference, 8. We can then partition the bag
{10,8,8,7,4}.

Karmarkar and Karp give various methods for selecting the numbers to difference.
They first suggest that the numbers should be chosen so that they have a small
difference. However, in algorithm A of (Karmarkar & Karp, 1982) they repeatedly
difference the two largest numbers left in the bag. Following Korf we call this the
KK heuristic (Korf, 1995). Consider partitioning the bag {25,17,10,8,7,4} using
the KK heuristic:

Numbers remaining Partial partitions As
{25,17,10,8,7,4} - -
{10,8,8,7,4} {25H{17} 8
{8,7,4,2} {25}{17,10} 2
{4,2,1} {25}{17,10} and {8}{7} 2.1
{2,1} {25,4}{17,10} and {8}{7} 2.1

- {25,7,4}{17,10, 8} 1

This is a perfect (and therefore optimal) partition. Indeed, when there are four
or less numbers to partition, the KK heuristic is guaranteed to find the optimal
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partition difference (Korf, 1995). Korf states this result without proof, but we take
the opportunity to present the proof since it identifies how larger problems can defeat
the KK heuristic.

Theorem 1. Given a bag of n numbers with n < 4, the KK heuristic returns the
optimal partition difference.

Proof. If n = 2, the KK heuristic puts the two numbers in opposite partitions. This
is trivially optimal.

If n = 3, consider partitioning {a,b,c} with @ > b > ¢. The KK heuristic
differences the largest two numbers, giving the bag {a — b, ¢}. There are two cases to
consider. In the first case, assume that there is an optimal partition with ¢ and b in
opposite partitions. The optimal partition difference is then the same as that of the
bag {a — b, c}. By the n = 2 case, the KK heuristic will construct this difference. In
the second case, assume that all optimal partitions have @ and b in the same partition.
The best such partition has {a,b} in one partition and {¢} in the other. This gives a
partition difference, Ayyp of (a4 b) — c¢. Consider swapping b with ¢ so that ¢ and b
are in opposite partitions. This gives a partition difference, A, of (a +¢) —b. Now
Agyp=(a+bd)—c>(a+b)—c—2(b—c)=(a+c)—b= A,_p. Thus, there exist
partition differences the same size or smaller with a and b in oppositve partitions.
This contradicts the assumption that all optimal partitions have a and b in the same
partition. Hence, there is an optimal partition with a and b in opposite partitions
and the KK heuristic will find it.

If n = 4, consider partitioning {a, b, c,d} with a > b > ¢ > d. The KK heuristic
differences the largest two numbers, giving the bag {a — b, ¢, d}. There are two cases
to consider. In the first case, assume that there is an optimal partition with ¢ and b in
opposite partitions. The optimal partition difference is then the same as that of the
bag {a—b,c,d}. By the n = 3 case, the KK heuristic will construct this difference. In
the second case, assume that all optimal partitions have @ and b in the same partition.
The best such partition has {a, b} in one partition and {c, d} in the other. This gives a
partition difference, A4 of (a+b)—(c+d). Consider swapping b with ¢ so that ¢ and
b are in opposite partitions. This gives a partition difference, A,_j of (a+¢)—(b+d).
Now Ayt = (a+b)—(c+d) > (a+b)—(c+d)—2(b—c) = (a+c)—(b+d) = Ay_p. Thus,
there exist partition differences the same size or smaller with ¢ and b in oppositve
partitions. This contradicts the assumption that all optimal partitions have ¢ and b
in the same partition. Hence, there is an optimal partition with ¢ and b in opposite
partitions and the KK heuristic will find it. |

Note that the largest two numbers always end up in opposite partitions. With 5
or more numbers to partition, the KK heuristic may not return the optimal partition
difference. One obvious method to defeat the KK heuristic is to construct a problem
in which the two largest numbers have to go in the same partition. The example
given in (Korf, 1995) has this property. The bag {8,7,6,5,4} has a perfect partition
with the two largest numbers, {8, 7} in one partition and {6,5,4} in the other. On
this problem, the KK heuristic puts {8, 6} in one partition and {7,5,4} in the other.
This gives a partition difference of 2.

Karmarkar and Karp give other methods for selecting the numbers to difference.
In algorithm B of (Karmarkar & Karp, 1982), they pair the largest two numbers,
then the next largest two and so on. They difference each pair, thereby halving the
number of numbers in the bag. They then re-pair the numbers and repeat. We call
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this the KK2 heuristic. Consider again partitioning the bag {25,17,10,8,7,4} using
the KK2 heuristic:

Numbers remaining Partial partitions As
{25,17,10,8,7,4} - -
{8,2,3} {25}{17} and {10}{8} and {7}{4} 8,2,3
{5,2} {25,4}{17,7} and {10}{8} 5,2
- {25,8,4}{17,10,7} 3

The partition constructed by the KK2 heuristic thus has a partition difference, A of
3.

All three set differencing heuristics run in O(nlogn) time. For a large class of
input distributions on [0, 1], Karmarkar and Karp prove that a simple variant of the
KK?2 heuristic constructs a partition difference of size O(1/n°1°8") for ¢ > 0 with
probability approaching 1 as n — oo. Under similar probabilistic assumptions, the

greedy heuristic cannot be expected to give a partition difference of size less than
O(1/n) (Karmarkar & Karp, 1982).

4. ALGORITHMS FOR NUMBER PARTITIONING

As mentioned in Section 2, there is a simple algorithm for the number parti-
tion optimization problem based upon dynamic programming which runs in pseudo-
polynomial time. This algorithm uses a bit array with [s/2 4 1] elements where s is
the sum of the numbers being partitioned. The jth bit in this array is set if there is
a subset that sums to j. All possible subset sums are enumerated using a simple n
step loop. Initially just the Oth bit in the array is set. On the ¢th step of the loop,
the jth bit is set if k£ is the ith number to be partitioned and the (j — k)th bit was
previously set. The bit array thus represents the sums of all possible subsets of the
first ¢ numbers. If the Ath bit is the highest bit set after the nth iteration then the
optimal partition difference, A,,; is s — 2h. A perfect partition exists iff the top bit
in the array is set during one of the iterations. Unfortunately, this procedure requires
space of size O(nl) where [ is the size of the numbers being partitioned, and this is
exponential in the size of the input which is just O(nlog(/)). One modification is to
represent just the non-zero bits in the partial sums. On certain problems, this may
allow dynamic programming to be competitive with the other algorithms presented
here.

Ruml et al. have performed a comprehensive study of stochastic approximation
algorithms for number partitioning (Ruml, Ngo, Marks, & Shieber, 1994). They used
several different search procedures including simulated annealing, hill climbing and
a genetic algorithm, with a variety of different encodings of the number partitioning
problem. They found that the choice of encoding was more important than the choice
of search engine. A naive encoding with a bit for each number representing the bag
into which it is put gave poor performance. However, more complex encodings based
upon relaxing the greedy and KK heuristics gave good performance. With a small
amount of search, they were able to find solutions several orders of magnitude better
than that returned without search by the KK heuristic.

Korf has proposed a simple backtracking algorithm for finding the optimal par-
tition difference based upon the greedy heuristic (Korf, 1995). This algorithm uses
the greedy heuristic to branch, placing the largest remaining number into the bag
with the smaller sum. On backtracking, we place the largest remaining number into
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FiGure 1. The use of dynamic programming to partition the bag {25,17,10,8,7,4}. The
sum of the numbers in the bag is 71 so we need a bit array with 36 elements. Initially just the 0th bit
of the array is set. On the 1st iteration, we set the 25th bit as 25 is the 1st number to be partitioned
and the Oth bit was set previously. On the 2nd iteration, we set the 17th bit as 17 is the 2nd number
to be partitioned and the Oth bit were set previously. As the 25th bit was set in the first iteration,
we add 17 to 25 but this takes us to the 42nd bit which is off the end of array. On the 3rd iteration,
we set the 10th, 27th and 35th bits as 10 is the 3rd number to be partitioned and the 0th, 17th and
25th bits were set previously. Setting the 35th and top bit reflects the fact that the subset, {25,10}
sums to 35. There is therefore a perfect partition, {2510} and {17,8,7,4} with A,y = 1.

the bag with the larger sum. We terminate search if we discover a perfect partition
or if the binary search tree is exhausted. The largest number is arbitrarily placed in
the first bag. Similarly, if the bags have the same sum, we do not need to backtrack
at this node. Finally, if the sum of the remaining numbers is ever less than or equal
to the difference between the sum of the bags, the optimal solution to the current
subproblem assigns all the remaining numbers to the smaller bag.

(290
(25) (17)

(25) (17,10)

(25,8) (17,10) (25) (17,10,8)

N

(25,8) (17,10,7) (25,8,7) (17,10) (25,7) (17,10,8)

/\ (25,8,7) (17,10,4) /

(25,8,4) (17,10,7) (25,8) (17,10,7,4) (25,7,4) (17,10,8)

FiGure 2. The search tree explored in a depth-first manner by Korf’s greedy backtracking
algorithm when finding the optimal partition difference for the bag {25,17,10,8,7,4}.
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Korf has also proposed the CKK algorithm for finding the optimal partition dif-
ference (Korf, 1995). This is similar to the greedy algorithm but uses the KK set
differencing heuristic to branch. Initially we replace the largest two numbers by their
difference. This commits to those subproblems in which the two largest numbers
go into opposite bags. On backtracking, the only other choice is to replace the two
largest numbers by their sum. This commits to those subproblems in which the two
largest numbers go into the same bag. When there are four numbers left, we commit
to the KK solution since this is optimal. We again terminate search if we discover
a perfect partition or if the binary search tree is exhausted. Finally, if the largest
remaining number is greater than or equal to the sum of the rest, the optimal solution
to the current subproblem places the largest number in one bag and the rest of the
numbers in the other bag.

Korf has shown that the CKK algorithm can give orders of magnitude better per-
formance than the greedy backtracking algorithm. He claims that CKK outperforms
all other algorithms in the literature, including the incomplete stochastic procedures
described in (Ruml et al., 1994). The CkK algorithm can, for instance, partition
arbitrarily large bags of integers with up to 12 decimal digits.

5. CONSTRAINEDNESS

The performance of an algorithm or a heuristic on an ensemble of combinatorial
problems depends on the constrainedness of the problems. Problems that are “crit-
tcally constrained” are on the knife-edge between solubility and insolubility. Such
problems tend to be hard to solve as a lot of search is usually needed to determ-
ine if they have a solution or not. In collaboration with Patrick Prosser and Ewan
Maclntyre, we have defined a constrainedness parameter, x for an ensemble of com-
binatorial problems (Gent et al., 1996). If we have a state space of size 2N in which
(Sol) of the states are expected to be solutions then,

e =def 1 _ 10g2(]<v‘901>) (1)

The “1 -” simply rescales s so that it lies in the interval [0, 00). If k is small then
problems in the ensemble are under-constrained and are likely to have a large number
of solutions compared to the problem size. They therefore tend to be relatively easy
to solve. If x is large then problems in the ensemble are over-constrained and are
likely to have very few or no solutions. The excess of constraints tends to make it
relatively easy to show that such problems are insoluble. We predict that a phase
transition will occur when £ & 1 and problems are on the “knife-edge” between
solubility and insolubility. A lot of search is usually needed either to find a solution
or to show that none exists. Note that if K = 1 then (Sol) = 1. Earlier studies
have predicted a phase transition for constraint satisfaction problems at (Sol) =~ 1
(Williams & Hogg, 1994; Smith & Dyer, 1996).

Although « ignores specific features of the problem structure like clustering of
solutions, it is surprisingly useful for a wide variety of problems. For example, for
number partitioning the prediction of a phase transition at k & 1 is accurate to within
about 4% (Section 7). More refined predictions for the location of the phase boundary
take account of the variance in the number of solutions at the phase boundary (Wil-
liams & Hogg, 1994; Smith & Dyer, 1996). There is a small but significant difference
between the prediction of a phase transition at k = 1 and the prediction of a phase
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transition at (Sol) ~ 1. At the phase boundary, (Sol) can grow exponentially with
problem size, whilst k tends to vary very little. For example, at the phase transition
for 3-satisfiability, (Sol) grows as approximately 208N where N is the number of
variables whilst x, which is proportional to the ratio of clauses to variables, remains
relatively constant (Gent et al., 1996). What variation there is in x at the phase
transition can be modelled by the technique of finite size scaling described in Section
7. As a parameter, k is therefore very useful for comparing problems of different
sizes. Indeed, x has been used to study phase transition behaviour in a wide variety
of domains including constraint satisfaction, satisfiability, graph colouring, traveling
salesperson and number partitioning problems (Gent et al., 1996).

6. ANNEALED THEORY

To compute the constrainedness of an ensemble of number partitioning problems
drawn from a uniform distribution, we need to know the expected number of solu-
tions. We approximate this by means of an annealed theory. In the next section,
we show that this annealed theory gives good results in practice. Consider finding a
perfect partition for a bag of n numbers drawn uniformly and at random from (0, !].
We restrict attention to bags with an even sum. A similar analysis can be given for
bags with an odd sum. We want to partition the bag into two bags that add up to
the same target sum (that is, half the sum of the bag being partitioned). We take the
binary representation of the n numbers and average probabilities independently over
the different digit positions. We call this an “annealed theory” by analogy with an
annealed theory of materials which averages independently over sources of disorder.
It provides a good approximation as n tends to infinity.

The least significant bits in each of the two bags must add up to a number with
the same parity as the target. On average, we expect just 1/2 the possible partitions
to give the same parity for the least significant bit as the target. We can apply the
same argument to the bits and carries at each binary digit position, of which there
are logy(1). If we assume independence between bit positions, a partition is perfect

in a fraction, (1/2)10&)(1) (that is, 1/1) of the 2" possible partitions. The expected
number of perfect partitions, (Sol) is therefore simply,

on

The choice of representing numbers in base 2 does not affect this result. In number
base b, we expect each digit position to match modulo b with probability 1/b, and
there are log, (1) digits base b. The expected number of perfect partitions therefore
remains unchanged. Substituting n for N and the annealed estimate for (Sol) in
Equation 1 and simplifying gives,

I l
. = ng( )
n

In the next section, we use this parameter to identify a phase transition. As in other
problem classes, problems from the phase transition are useful for benchmarking
algorithms and heuristics.
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7. PHASE TRANSITION

In Figure 3 we plot the probability that a bag with an even sum has a perfect
partition against x for n from 6 to 30, and logy(/) from 0 to 2n. In this and all
subsequent experiments, 1000 problems were generated at each value of [ and n.
Almost identical results are seen with bags with an odd sum, and with bags with
both odd and even sums. As predicted in the last section, a phase transition occurs
around kK &~ 1. In addition, the transition sharpens as n increases. This refutes Fu’s
conjecture that number partitioning lacks a phase transition (Fu, 1989).
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FIGURE 3.  Probability of a perfect partition existing (y-axis) against x (x-axis). Each problem
has n numbers drawn uniformly and at random from (0,[] with » from 6 to 30, and log,({) varied
from 0 to 2n.

We next applied finite size scaling methods (Barber, 1983) to determine how the
probability scales with problem size. Around some critical point, we predict that
problems of all sizes will be indistinguishable except for a change of scale given by a
simple “power law”. This suggests,

Prob(perfect partition) = f((w

) - ') (2)

Ke

where f is some fixed function, k. is the critical point, and n'/* is the power law

that provides the change of scale. The fraction, (k — k.)/k. plays the réle of the
reduced temperature, (1T'—T,)/T. in physical systems. The size dependency is given
by a simple power law, n'/¥. In physical systems, the exponent 1/v can often be
calculated exactly. Equation 2 has a fixed point where k equals k. and for all n, the
probability is the constant value f(0). To estimate k., we take the fixed point to be
the point with the minimum spread in probabilities. This gives k. = 0.96 £ 0.02,
where the errors indicate the range giving less than 9% spread. To compute v, we
assume that Equation 2 holds at the point of 50% probability, and calculate the
median estimate for v. This gives v = 1 & 0.3 where errors represent the upper and
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lower quartiles of estimates of v. This error may appear large, but the quality of the
fit is relatively insensitive to the exact value of v. We define a rescaled parameter,

def K — ke . nl/u‘
Ke

’}/:

In Figure 4, we plot the probability of a perfect partition existing against v with

0.8

0.6

0.4 -

!
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FIGURE 4.  Probability of a perfect partition existing (y-axis) against v (x-axis) with k. = 0.96
and v = 1. Each problem has n numbers drawn uniformly and at random from (0,{] with n from 6
to 30, and log, (!) varied from 0 to 2n.

ke = 0.96 and v = 1. This graph suggest that finite size scaling provides both
a simple and accurate model for the scaling of probability with problem size. A
similar rescaling describes the finite size scaling of the phase transition in satisfiability
(Kirkpatrick & Selman, 1994), constraint satisfaction (Gent, Maclntyre, Prosser, &
Walsh, 1995) and traveling salesperson problems (Gent & Walsh, 1996b).

8. OPTIMIZATION COST

Like many other combinatorial problems, a peak in the cost to find the optimal
solution is associated with the phase transition in solubility. The phase transition is
thus a useful source of benchmark problems. In Figure 5, we plot the average number
of nodes searched by the CKK algorithm to find the optimal partition difference
against the rescaled parameter, v with k. = 0.96 and v = 1, n fixed at values between
6 and 30 and log, (/) varying from 0 to 2n. We have observed a similar result for Korf’s
greedy backtracking algorithm. As in satisfiability (Selman & Kirkpatrick, 1996),
constraint satisfaction (Gent et al., 1995), and the traveling salesperson problem
(Gent & Walsh, 1996b) finite size rescaling offers a clear and consistent view of how
search cost varies through the phase transition.
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In the soluble phase problems are, on average, easy. Problem hardness increases
as we approach the phase boundary. The cost of finding the optimal partition differ-
ence remains uniformly hard in the insoluble phase away from the phase boundary.
Experiments out to larger [ do not show problems becoming significantly easier (or
harder) well away from the phase transition. This reflects the fact that, for fixed n,
a lot of search is needed by the CKK algorithm to prove that the optimal solution is
optimal even for very over-constrained problems that have a large optimal partition
difference.
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FIGURE 5.  Average nodes searched by CKK to find the optimal partition difference (y-axis)
against v (x-axis) for fixed n with k. = 0.96 and v = 1. Each problem has n numbers drawn
uniformly and at random from (0, !] with n from 6 to 30, and log,(I) varied from 0 to 2n.

Another view of the phase transition comes from fixing [ and varying n. We now
observe an easy-hard-easy pattern (see, for example, Figure 5 in (Korf, 1995)). In the
insoluble region, problems become easier away from the phase boundary since n, and
thus the total number of partitions, is decreasing. If we fix [ and vary n or fix n and
vary [, the size of the input problem (the number of bits needed to specify a problem)
varies. A third view of the phase transition is thus to vary the constrainedness, k
but keep the input problem size, nlog,(l) constant. In Figure 6, we plot the average
number of nodes searched by the CkK algorithm to find the optimal partition against
the rescaled parameter, v with k. = 0.96 and v = 1, and nlogy(!) fixed at 6%, 122
182 and 242. In each case, we varied n in steps of 1 from 36 downwards. As expected,
the phase transition in solubility occurs around v = 0. In addition, we now see an
easy-hard-easy pattern. Problems in the insoluble region again become easier as we
move away from the phase boundary since n, the size of the bags being partitioned
decreases.

In Figure 7 we plot the maximum value of the mean search cost when we fix n
and vary [ for both the CKkK and the greedy backtracking algorithms (Korf, 1995).
From the gradient of these graphs, we estimate that the worst average search costs
grow as approximately 29857 for the CKK algorithm and approximately 2°-9°" for the
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Fi1GURE 6. Average nodes searched by CKK to find the optimal partition (y-axis) against ¥
(x-axis) with k. = 0.96 and v = 1, and the problem input size, nlog,(l) fixed at 62, 12%, 18 and
242, Each problem has n numbers drawn uniformly and at random from (0,1] with n varied from 1
to 36.

greedy backtracking algorithm. Note that simply computing all possible partitions
would give a maximum search costs that grows as 2". This confirms quantitatively
Korf’s claim that “CKK is asymptotically more efficient than the standard [greedy
backtracking] algorithm” (Korf, 1995).

9. IMPERFECT PARTITIONS

Phase transition behaviour is not restricted to the decision problem of finding a
perfect partition. Constrainedness can also be used to identify a phase transition for
the decision problem of finding an imperfect partition. We repeat our construction
of an annealed theory to identify a constrainedness parameter for partitioning into
imperfect partitions. Consider finding a partition difference of size d or less for a bag
of n numbers drawn uniformly and at random from (0,{]. For simplicity, we assume
that d is a power of 2. Since we want to find a partition difference of size d or less,
we can simply ignore the bottom log,(d) bits in each bag. We do, however, insist
that the top log,(1) — log,(d) bits in each bag add up to a particular parity. Using a
similar annealed argument to Section 6, we get (Sol) = 2" /(I — d). Substituting this
value into Equation (1) gives,

log,(1/d)

Note that, as required, when d = 1 this reduces to logy(1)/n, the constrainedness of
perfect number partitioning problems.
A phase transition again occurs around the value kK &~ 1. This phase transition

rescales identically to that for perfect partitioning. In Figure 8, we plot the probab-
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FiGure 7. Maximum value over all ! for the mean number of nodes searched to find the
optimal partition difference (y-axis) against n (x-axis). Each problem has n numbers drawn uniformly
and at random from (0, ] with n from 6 to 30, and log,(!) varied from 0 to 2n.

ility that a bag has an imperfect partition against x for n = 24, log,(d) from 1 to 5
and 10, and log,(!) from 0 to 2n.
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FIGURE 8.  Probability of an imperfect partition of size d or less (y-axis) against & (x-axis).

Each problem has 24 numbers drawn uniformly and at random from (0, ], with log,(d) varied from
1 to 5 and 10, and log, () varied from 0 to 2n.

Search cost again peaks at the phase transition. In Figure 9, we plot the average
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number of nodes searched by the CKK algorithm against x, again for n = 24, log,(d)
from 1 to 5 and 10, and log,(!) from 0 to 2n. We modify the CKK algorithm so that
it runs as a decision procedure, terminating search immediately a partition less than
or equal to d is found. Note that all problems in this graph are the same size, n so
that we do not need to rescale.

1le+06 T T

"log2(k)=1" <—
"log2(k)=2" ~+-
“log2(k)=3" -B-
“log2(k)=4" -

"log2(K)=5" -4~
100000 F "log2(k)Z10" -

10000

1000

100

3
10 &

FIGURE 9.  Average number of nodes searched by CKK finding an imperfect partition of size
d or less (y-axis) against x (x-axis). Each problem has 24 numbers drawn uniformly and at random
from (0, 1], with log,(d) varied from 1 to 5 and 10, and log,({) varied from 0 to 2n.

10. OPTIMAL PARTITIONS

Finite size scaling is also a good method for modelling the size of the optimal
partition difference. In Figure 10, we plot the mean optimal partition difference
against the rescaled parameter, v. For v <« 0, all problems have a perfect partition;
as half the problems have an even sum and half have an odd sum, (A ptima) =
1/2. (Karmarkar, Karp, Lueker, & Odlyzko, 1986) gives a simple heuristic argument
for partitioning real numbers in [0, 1] which we can adapt to estimate the optimal
partition difference for integers drawn uniformly from (0,/]. By considering a random
walk with steps of size [, we expect the sum of each partition to lie within an interval
of size O(ly/n). We divide this into 2" sub-intervals, each of size O(l\/n/2"). By a
pigeonhole argument, we can expect to find two bags in the same sub-interval. That
is, within O(ly/n/2") of each other. Hence, the mean optimal partition difference
is of size O(l\/n/2™). Assume that (A,,) o« [{/n/2". In addition, assume that

logy(1) > %logy(n), ke &~ 1 and v = 1. Then logy({Ayy)) x logy(Iy/n/2") =
logy(1) + $logy(n) — n ~ logy(l) — n = (logy(l)/n—1)n = (5)n = 5. Hence
logy({Agpe)) is approximately proportional to the rescaled parameter, v. This agrees

with the data in Figure 10 since logy({A,p¢)) plotted against v gives a straight line
with a gradient of +1.
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FIGURE 10.  Mean optimal partition difference, (Aope) (y-axis) against v (x-axis) with &, =
0.96 and v = 1. Each problem has n numbers drawn uniformly and at random from (0,!], with n
varied from 6 to 24 and log,(I) varied from 0 to 2n.

11. HEURISTIC PARTITIONS

The constrainedness parameter, s also provides a quantitative method for com-
paring heuristics. Indeed, we can even use the finite size scaling of x to compare
heuristics. However, we need to substitute different values of x. into the definition of
~ for different heuristics. These new values for k. reflect the quality of the heuristics
as they are the minimum value of constrainedness for which the heuristic fails to
find an optimal solution. In Figure 11, we plot the mean size of the KK partition
difference (that is, the possibly sub-optimal partition difference found by the KK
heuristic) against v for n = 6 to 24 and log,(l) from 0 to 2n. To estimate x., we
again found the point with the minimum spread in probabilities. This gives x. = 0.40
and not 0.96 as previously. However, we continue to obtain a good fit with the same
power-law coefficient, v = 1.

Recall that k. is the fixed point for the rescaling. It gives the value of the
constrainedness parameter at which we move between different phases. For £ < 0.40,
the KK heuristic almost always returns the optimal partition difference. For x >
0.40, the quality of the solution returned decreases as n increases. In the region
0.40 < k < 1, the KK heuristic performs poorly as n increases. This is despite the
fact that these problems usually have perfect partitions.

Performance guarantees for optimization procedures are often given as a ratio of
the optimal value. Since the optimal partition difference can be zero, such a ratio can
be undefined for perfect partitions. Asin (Williams & Hogg, 1994), we make a “mean-

(Ax k)
{Aopt)

(Agpt) is at least 1/2 so the performance ratio is always defined. Another approach
used in the literature is to add a small constant to the partition difference to prevent
division by zero. For instance, we could measure the ratio, (1 + Agx)/(1+ Agpt).

field” approximation that, <AAI”:'> R~ . The mean optimal partition difference,
op
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FIGURE 11.  Mean size of the KK partition difference, (Axx) (y-axis) against v (x-axis) with
ke = 0.40 and v = 1. Each problem has n numbers drawn uniformly and at random from (0, {], with
n varied from 6 to 24 and log,({) varied from 0 to 2n.

This gives similar results to the mean-field approximation.

In Figure 12, we plot the average performance ratio for the KK heuristic against
v again with k. = 0.40 and v = 1, n = 6 to 24 and logy(/) from 0 to 2n. The
maximum performance ratio grows approximately as a simple exponential in n. We
see very similar behaviour with the KK2 and greedy heuristics. However, for both
heuristics, we need to rescale around k. =~ 0.15. Finite size scaling therefore provides
us with a very simple and quantitative method for comparing heuristics. In the
region x < 0.15 all the heuristics return the optimal partition difference. In the
region 0.15 < k < 0.40, the greedy and KK2 heuristics (but not the KK heuristic)
perform poorly as n increases. This is despite the fact that these problems have
perfect partitions that are usually found by the KK heuristic. And in the region
0.40 < k < 1, all the heuristics perform poorly as n increases, again despite the fact
that these problems have perfect partitions that CKK can usually find with little
search.

In addition to determining the range of constrainedness over which a heuristic
returns the optimal partition difference, we can also plot how much worse it does than
the optimal. That is, we can plot the constrainedness of the problems we wanted to
solve (namely, finding a perfect partition with A < 1) against the constrainedness of
the problems the heuristic typically managed to solve (namely, finding an imperfect
partition with A < d where d is the mean heuristic partition difference). In Figure 13,
we plot the constrainedness of finding a perfect partition against the constrainedness
of the heuristic partition found for three different heuristics: greedy, KK and KK2.
In each experiment, 1000 bags of 24 numbers were generated at random from (0, /]
for each point from log,(/) = 1 to 48 in steps of 1. For comparison, we also plot the
constrainedness of the best decision problem that is soluble, i.e. the value of x when
d is set to A,,, the optimal partition difference.
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FiGURE 12. Average performance ratio for the KK heuristic, Agx/Agye (y-axis) against v
(x-axis) with k. = 0.40 and v = 1. Each problem has n numbers drawn uniformly and at random
from (0,1] with n varied from 6 to 24 and log,({) varied from 0 to 2n.
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FiGure 13. Average & of the number partitioning problem achieved by a heuristic (y-axis)
against « of the desired perfect number partitioning problem (x-axis) for three heuristics and for the
optimal partition difference. Each problem has 24 numbers drawn uniformly and at random from
(0,1], with log, (1) varied from 1 to 48.

As before, for k < 0.40, the KK heuristic almost always returns the optimal and
perfect partition. For x > 0.40, the quality of the solution returned decreases as
log,(1) increases, until x ~ 1 where KK is consistently able to achieve a value of x
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about 0.5 less than the optimal. By comparison, the KK2 heuristic only performs
well for ¥ < 0.2 and in the worst case does about 0.7 less than the optimal and about
0.2 worse than KIK. The greedy heuristic performs just a little worse than KIK2.
The KK heuristic thus returns partition differences that are, in the worst case, a
factor 2°-5" larger than the optimum, whilst the KK2 and greedy heuristics return
partition differences approximately 297" larger than the optimal. This graph clearly
shows that KK is the best heuristic throughout the phase space, followed by the
KK2 heuristic with the greedy heuristic very slightly behind.

12. CONSTRAINEDNESS AS A HEURISTIC

In the last section, we showed that s provides a good method for comparing
heuristics. Constrainedness can also be used to analyse heuristics. Gent, MacIntyre,
Prosser and Walsh have recently suggested that many heuristics branch into the
subproblem that minimizes the constrainedness, k (Gent et al., 1996). The intuition
is that we try to branch on the most constrained variable giving the most under-
constrained and soluble subproblem. This viewpoint is useful for understanding the
design of heuristics in constraint satisfaction (Gent, Maclntyre, Prosser, B.M.Smith,
& Walsh, 1996) and, as we show here, in number partitioning.

Consider, for example, the KK heuristic. Recall that this heuristic takes a bag
S of n numbers to partition and reduces it to a new bag R by removing the largest
two numbers x and y, and replacing them by = — y (we assume without loss of
generality that > y). This commits us to those solutions in which z and y are in
opposite bags. Let s = . g4 and r = ) ;. p4. To compute « for the subproblems
generated by the KK heuristic, we again use an annealed theory. We assume that
the size of the numbers, [ is approximated by twice the mean. Experiments with non-
uniform distributions of numbers suggest that x for a wide class of distributions can
be approximated by log,(l)/n, where [ is the size of the numbers being partitioned.

Asr=s—a2—y+ (z —y) =s— 2y, the constrainedness k goes from logy (2s/n) 35/” to

log, (2(5—2y)/n—1 . D
08 ( (Sn_ly)/n ). As we have no control over the denominator, & is minimized by

maximizing y. Given that x > y, the maximum y is the second largest element of 5.
And thus the KK heuristic minimizes x by picking the two largest elements of .5 for
x and y.

Karmarkar and Karp suggest that the motivation behind set differencing is to
pick @ and y so that z — y is small (Karmarkar & Karp, 1982). We therefore ran
experiments with a third set differencing heuristic, KIK3 which choses 2 and y so that
x—y is minimal. This gave much poorer performance than the KK, KK2 and greedy
heuristics. Minimizing constrainedness provides an explanation for the superiority of
the KK heuristic over the KIK2 heuristic, and of the KK2 heuristic over the KK3
heuristic. Unlike the KK heuristic, by working in phases the KK2 heuristic may
not difference the two largest numbers. Consider, for instance, when the difference
between the two largest numbers is larger than the smallest number (this occurs in
the example in Section 3). The KK2 heuristic therefore reduces & less than the KK
heuristic. Whilst the KK2 often differences large numbers, the KK3 heuristic will
frequently difference small numbers as such numbers are usually closer together. On
average, the KK3 heuristic tends to reduce x the least.

The greedy heuristic can also be seen as making decisions that minimizes &.
Although both the greedy and KK heuristics minimize x, the decisions made by
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the greedy heuristic — assigning numbers to particular partitions — tend to be more
constraining than the decisions made by the KK heuristic. We suggest that this helps
to explain the superior performance of the KK heuristic over the greedy heristic. The
analysis of the effect of the greedy heuristic on & is a little more complex that that of
set differencing heuristics like KK since the greedy heuristic builds a partial partition.
We can factor this into our analysis by observing that if we have partitioned numbers
into two bags, R and T with sums r and ¢ and have a bag 5 of numbers remaining
to be partitioned then this is equivalent to partitioning the bag S U {r —t} (without
loss of generality we assume that r > ¢). The greedy heuristic picks an element z of
S and adds it to R or T'. We minimize £ by maximizing the reduction in o, the sum
of S U {r—t}. If we add 2 to the bigger bag, R, then o is unchanged. If, however, we
add z to the smaller bag, T then ¢ decreases. This is what we therefore do. There
are two cases to consider. These depend on whether z > r—torae <r—t. If 2 > r—t
then adding z to T makes it the partition with the larger sum, and ¢ reduces by
r+r—t—((z+1t)—r)=2(r—1). If, however, < r—t, then adding z to T leaves it
the bag with the smaller sum, and o reduces by a+r—t—(r—(z+1)) = 22 < 2(r—1).
The first difference is always the larger and is therefore preferred. This suggests the
heuristic of picking an « in S such that > r — ¢, or failing that picking the largest
2 in 5. The greedy heuristic does just this by picking the largest z in S and putting
it in the smaller bag.

To test this hypothesis, we implemented a cautious heuristic which puts the
smallest number left into the smaller bag. This compares to the greedy heuristic
which puts the largest number left into the smaller bag. The intuition behind the
cautious heuristic is to leave as much space as possible in two bags. We generated
1000 bags of 24 numbers at random from (0, ] for each point from log,(l) = 1 to 48
in steps of 1. The cautious heuristic performed poorly on these problems. In almost
every case, it failed to find the optimal partition difference. In the worst case, it
returned partition differences that are a factor 2°%5" larger than the optimum, and
20-157 Jarger than those returned by the greedy heuristic.

13. COMPARING HEURISTICS

We can compare analytically how good the greedy and KK heuristics are at re-
ducing constrainedness. To do this, we contruct an “adaptive” heuristic that chooses
between greedy and KK decompositions according to which reduces x most. As
shown by the following argument, such a heuristic is no better at reducing con-
strainedness than the KI heuristic. Let the target difference be the difference
between the sums of the two bags. Simple analysis show that if the target differ-
ence is greater than the second largest number left to partition, then x is decreased
most if a greedy decomposition is performed, placing the largest number in the bag
with the smaller sum. If not, k is decreased most by a KK decomposition. If the
target difference starts out zero, the adaptive heuristic will always apply the KK
decomposition rule since the target difference will remain zero and this is always less
than the second largest number left. We can, however, start by committing one num-
ber arbitrarily to the first bag. Such a commitment leaves x unaffected but creates
a target difference. It also reduces search since we do not consider isomorphic par-
titions in which the first number is placed in the second bag. We will maximize the
decrease in k at the second step if we begin by committing the largest number to the
first bag. Although the adaptive heuristic will perform some greedy decompositions,
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it ultimately finds the same partition difference as the KK heuristic.

Theorem 2. The partition difference found by the adaptive heuristic given an initial
target difference At and a bag 5 is identical to that found by the KK heuristic on
the bag S U{At}.

Proof. By induction on the size of 5. In the base case, 5" is empty and both heuristics
return empty partitions. In the step case, let S be a bag containing n+1 numbers. We
do a case split on the first decomposition step performed by the adaptive heuristic.

If the first step is a KK decomposition then the adaptive heuristic reduces the
problem to one with S — {z,y} U {|@ — y|} where 2,y are the largest elements of
S. We can now appeal to the induction hypothesis as the new bag contains just n
numbers. The adaptive heuristic constructs the same partition difference as KK on
this smaller bag. And thus, as the first step is a KK decomposition for both the
adaptive and KK heuristics, the same partition differences are constructed from 5
by both the adaptive and KK heuristics.

If the first step is a greedy decomposition then the adaptive heuristic reduces
the problem to partitioning S — {2} where z is the largest element of S with a
new target difference of | — A¢|. Since the adaptive heuristic performed a greedy
decomposition, the second largest element of ' is smaller than A¢. Given the initial
bag, S U {At}, the KK heuristic takes the two largest elements, which must be x
and At and replaces them by their difference |2 — At|. But this corresponds to the
same decomposition as the adaptive heuristic. We can now appeal to the induction
hypothesis as the new bag, S — {«} contains n numbers. The adaptive heuristic
constructs the same partition difference as the KI heuristic on this smaller bag.
Hence the same partitions are constructed from S by both the adaptive and KK
heuristics. |

This result can be summarized by the slogan,
KK + GrEEDY = KK.

Together with our earlier results that demonstrated the inferiority of the greedy
heuristic compared to the KK heuristic, this shows that, for numbers drawn from a
uniform distribution, the KK heuristic dominates the greedy heuristic. Of course, it
is possible to construct individual problems or ensembles of problems on which the
greedy heuristic outperforms the KK heuristic.

A slightly more complex argument shows that using the adaptive heuristic within
a backtracking procedure gives an algorithm which finds partition differences in the
same order as the CKK algorithm. The adaptive algorithm commits the largest
number, x to the first bag. This creates a target difference, At of 2. We then
chose between greedy and KK decompositions according to which reduces & most.
A greedy split is applied if the target difference is greater than the second largest
number left to partition, otherwise a KK split is performed. On backtracking, we
perform the dual split. For example, a greedy split places the largest number in the
bag with smallest sum. On backtracking, we place the largest number in the bag
with largest sum. Search is pruned (as in CKK algorithm) if the largest number left
including the target difference is greater than the sum of the remaining numbers.

Let S be the numbers remaining to be partitioned at a given node in the search
tree of the adaptive algorithm, and At be the target difference at this point. If it
is possible to follow the same path in the search tree of the CkK algorithm and R
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is the set of numbers remaining to be partitioned by CKK at this point then we say
that the nodes in the two trees are equivalent iff R = 5 U {At}.

Theorem 3. The nodes of the search tree of the adaptive algorithm are equivalent
to those of the CKK algorithm.

Proof. Let 5 be the bag being partitioned. The proof uses induction on 5. The
base case is trivial. In the step case, let S be a bag containing n + 1 numbers. We
now do a case split on whether the first step along the path to a given node is to the
left (i.e. with the heuristic) or right (i.e. against the heuristic).

If the first step is agreement with the heuristic, then we do a case split on whether
the adaptive algorithm applies a greedy or a KK reduction. If it is a KK reduction
then we reduce the problem to one of size n and appeal to the induction hypothesis.
CKK trivially performs the same reduction. If the first step is a greedy reduction
then the problem reduces to S —{x} where 2 is the largest element of .5, giving a new
target difference of |At — z|. Since the greedy heuristic is applied, the second largest
element of S is smaller than At. Given the initial bag, S U {At¢}, the CKK algorithm
takes the two largest elements (which must be # and At) and replaces them by their
difference. But this is the same reduction as the adaptive algorithm. We then appeal
to the induction hypothesis on the reduced problem contains just » numbers.

If the first step is against the heuristic, then we do a case split on whether the
adaptive algorithm applies the dual of a greedy or a KK reduction. If it is the dual of
a KK reduction then we reduce the problem to one containing » numbers and appeal
to the induction hypothesis. CKK trivially performs the same reduction. If the first
step is the dual of a greedy reduction then the problem reduces to S — {z} where z
is the largest element of 5, giving a new target difference of 2 + At. Since the dual
of the greedy heuristic is applied, the second largest element of 5 is smaller than At.
Given the initial bag, S U {At}, the CKkk algorithm takes the two largest elements
(which must be z and At) and replaces them by their sum. But this is the same
reduction as the adaptive algorithm. We then appeal to the induction hypothesis on
the reduced problem contains just n numbers.

Note that the pruning rules for the CkK and adaptive algorithms are equivalent
and act on equivalent nodes. The search trees are therefore an identical shape. Hence,
the two algorithms enumerate partitions in the same order. |

This result can be summarized by the slogan,
CKK + GREEDY = CKK.

Together with our earlier results that demonstrated the inferiority of the greedy
backtracking algorithm compared to the CKK algorithm, this shows that, for num-
bers drawn from a uniform distribution, the CKK algorithm dominates the greedy
backtracking algorithm.

14. RELATED WORK

Unlike the simple annealed theory presented here, the exact analysis of number
partitioning problems has proved difficult. Karmarkar, Karp, Lueker and Odlyzko
have determined bounds on the probability distribution for the size of the optimal
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partition difference for a bag of real numbers drawn from the interval [0,1] (Kar-
markar et al., 1986). Using some complicated analysis based on second moments,
they proved that the median optimal partition difference is of size ©(y/n/2"). When
partitions are restricted to those of equal cardinality, the median optimal partition
difference is of size ©(n/2").

Karmarkar et al. admit that they were unable to derive the mean optimal parti-
tion difference. In addition, their results only apply to probability distributions that
have a bounded density (for example, real numbers drawn uniformly from [0, 1]).
They fail to hold for probability distributions in which there are values with non-
zero probabilities (for example, integers drawn uniformly and at random from (0, ]).
Korf (personal communication) has predicted that a phase transition occurs when
the median optimal partition difference is 1, and observed that this coincides with
a peak in search cost. Using the asymptotic value for the median optimal partition
difference, Korf suggested that the phase transition occurs when y/nl/2" = 1. This
agrees asymptotically with k = 1.

We have extended the annealed theory presented in Section 6 to multi-way par-
titioning (Gent & Walsh, 1996a). For m-way partitioning problem, we show that
the constrainedness x is (m — 1)log,,(1)/n. As required, this reduces to log,(l)/n for
2-way number partitioning. We have observed a phase transition for 3-way number
partitioning around s = 1. Search cost to find the optimal partition difference again
peaks at the phase boundary.

Tad Hogg has used phase transition behaviour to inform the design of value
ordering heuristics for graph colouring (Hogg, 1995). He applies the Brelaz heuristic
to select the most constrained variable. An estimate of position with respect to
the phase transition is then used to order values for this variable. He shows that
this approach gives good performance on under-constrained and over-constrained
problems but is less good at the phase transition.

Joseph Pemberton and Weixiong Zhang have exploited phase transition behaviour
to solve combinatorial optimization problems approximately (Pemberton & Zhang,
1996). On a random tree model, their e-transformation method runs in expected
polynomial time, returning a solution with constant relative error. They also report
good performance for approximating the asymmetric traveling salesperson problem
and the maximum satisfiability problem.

15. CONCLUSIONS

We have illustrated how phase transition behaviour can be used to study heur-
istics. By means of an annealed theory, we defined a parameter, x that measures
the “constrainedness” of an ensemble of number partitioning problems. Contrary
to a conjecture of Y. Fu (Fu, 1989), a phase transition occurs at a critical value of
this parameter. Finite size scaling methods describe the shape of this phase trans-
ition. We demonstrated that constrainedness and finite size scaling offer a precise
and quantitative means for comparing the performance of algorithms and heuristics
for number partitioning. In addition, constrainedness can be used to analyse the
heuristics themselves. We predict that a similar methodology will be useful in a wide
variety of NP-complete problems.
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