
Computational Intelligence, Volume ?, Number ?, 1998ANALYSIS OF HEURISTIC FOR NUMBER PARTITIONINGIan P. Gent and Toby Walshfipg,twg@cs.strath.ac.ukDepartment of Computer Science,University of Strathclyde,Glasgow G1 1XH,Scotland.We illustrate the use of phase transition behaviour in the study of heuristics. Using an \an-nealed" theory, we de�ne a parameter that measures the \constrainedness"of an ensemble of numberpartitioning problems. We identify a phase transition at a critical value of constrainedness. Wethen show that constrainedness can be used to analyse and compare algorithms and heuristicsfor number partitioning in a precise and quantitative manner. For example, we demonstrate thaton uniform random problems both the Karmarkar-Karp and greedy heuristics minimize the con-strainedness, but that the decisions made by the Karmarkar-Karp heristic are superior at reducingconstrainedness. This supports the better performance observed experimentally for the Karmarkar-Karp heuristic. Our results refute a conjecture of Y. Fu that phase transition behaviour does notoccur in number partitioning. In addition, they demonstrate that phase transition behaviour isuseful for more than just simple benchmarking. It can, for instance, be used to analyse heuristics,and to compare the quality of heuristic solutions.Key words: heuristics, number partitioning, phase transitions1. INTRODUCTIONWhere are the hard computational problems? Many instances of NP-completeproblems are surprising easy to solve. One place to �nd hard instances is at a phasetransition (Cheeseman, Kanefsky, & Taylor, 1991; Mitchell, Selman, & Levesque,1992). Problems which are very under-constrained are soluble and it is usually easyto guess one of the many solutions. Problems which are very over-constrained areinsoluble. In the phase transition in between, problems are \critically constrained"and it is typically very hard to determine if they are soluble or insoluble (Cheesemanet al., 1991). Problems from the phase transition are now routinely used to bench-mark algorithms. In this paper, we show how phase transition behaviour can alsobe used in the study of heuristics. We de�ne a parameter that measures the \con-strainedness" of an ensemble of number partitioning problems and identify a phasetransition at a critical value of constrainedness. We then show that constrainednesscan be used to analyse and compare algorithms and heuristics for number partition-ing in a precise and quantitative manner. We conjecture that a similar approach willprove useful in a wide variety of NP-complete problems.The paper is structured as follows. In Section 2 we de�ne number partitioningand outline its practical and theoretical importance. We describe some well knownheuristics and algorithms for number partitioning in Sections 3 and 4. In Section 5,we argue that the performance of algorithms and heuristics on an ensemble of com-binatorial problems depends on their \constrainedness". We then develop a simple\annealed" theory (Section 6) for computing the constrainedness of an ensemble ofnumber partitioning problems. In Section 7 we show that a phase transition occursaround a critical value of constrainedness. Associated with this phase transition,there is a complexity peak in the cost of �nding the optimal partition (Section 8). InSection 9 we demonstrate that constrainedness also predicts the location of a phasetransition for �nding less than perfect partitions. We then show that constrainednessc
 1998 Blackwell Publishers, 238Main Street, Cambridge,MA 02142, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.

2 Computational Intelligencecan be used to model the size of the optimal partition di�erence (10), to comparethe quality of heuristic solutions (Section 11), and to analyse heuristics themselves(Sections 12 and 13). Finally, we mention some related work (Section 14). Thispaper greatly extends results that �rst appeared in (Gent & Walsh, 1996a) and inone section of (Gent, MacIntyre, Prosser, & Walsh, 1996). In addition, it includesmany new results (for example, much of Sections 8, 10, 11 and 12 and all of Section13) that have not appeared before in any form.2. NUMBER PARTITIONINGLet us partition a bag of n positive integers into two disjoint bags. The partitiondi�erence, � is the absolute di�erence between the sums of the two bags. The numberpartition decision problem is to determine if there is a partition such that � � dfor some given d. The number partition optimization problem is to determine theminimum partition di�erence, �opt. If � � 1 then the partition is perfect otherwisewe call it imperfect. As in (Korf, 1995), we consider n numbers drawn uniformly andat random from (0; l]. We have, however, seen very similar results with a Poissondistribution with parameter l.Number partitioning is of considerable importance, both practically and theor-etically. Many problems in AI (like scheduling and processor allocation, and theminimization of VLSI circuit size and delay) involve partitioning bags of numbers.Number partitioning is also one of Garey and Johnson's six basic NP-complete prob-lems (Garey & Johnson, 1979). Phase transition behaviour has been observed in threeout of these six problems: 3-Sat (Mitchell et al., 1992), Clique via the dual inde-pendent set problem (Gent & Walsh, 1994), andHamiltonian Circuit (Cheesemanet al., 1991). Here, we show it occurring in a fourth problem, Partition. We predictthat the two remaining problems, 3-Dimensional Matching and Vertex Coverwill also display similar phase transition behaviour.Number partitioning is the only one of Garey and Johnson's six basic problemthat deals with numbers. It is often therefore the natural choice for NP-completenessproofs of other problems involving numbers (e.g. bin packing, multiprocessor schedul-ing, open-shop scheduling, quadratic programming, and knapsack problems). Whilstnumber partitioning is a NP-complete problem, it is not NP-complete in the \strong"sense since the optimization problem (and hence the decision problem) can be solvedin pseudo-polynomial time using dynamic programming (Garey & Johnson, 1979).Given n numbers to partition which sum to s, this algorithm runs in time and spacebounded by a low polynomial in n:s. Note, however, that the size of the input needonly be O(n: log(s)). The NP-completeness of the Partition problem depends onthe fact that we can supply extremely large integers to partition. For this reason, thePartition problem o�ers a strong test of the connection between phase transitionsand NP-completeness.Our results refute a conjecture of Y. Fu that \at least one NP complete problem,that of random number partitioning, can be solved exactly in statistical mechanicsand no phase transition of any kind is found" (Fu, 1989). Fu later suggests that\Unless there is a subtle loophole in our argument, then we must accept as a con-clusion that no connection whatsoever exists between the spin glass transition andNP-completeness ... the connection between phase transition and computationalcomplexity, if any, must be of a form very di�erent from what has been imagined".By means of an annealed theory, we identify a simple phase transition for the number

Analysis of Heuristic for Number Partitioning 3partition decision problem. Number partitioning therefore does not provide evidencethat phase transitions are unconnected with NP-completeness. It remains an openquestion if there is any NP-complete problem which lacks a phase transition. Weshould note, however, that phase transition behavior has been proven to occur inpolynomial problems. For instance, 2-satis�ability displays a phase transition insolubility as we vary the ratio of clauses to variables (Chvatal & Reed, 1992).3. HEURISTICS FOR NUMBER PARTITIONINGA variety of heuristics have been proposed for number partitioning. The greedyheuristic, for instance, simply places the largest remaining number into the bag withthe smaller sum (Korf, 1995). Consider partitioning the bag f25; 17; 10; 8; 7; 4g usingthe greedy heuristic:Numbers remaining Partial partition �f25; 17; 10; 8; 7; 4g { {f17; 10; 8; 7; 4g f25gfg 25f10; 8; 7; 4g f25gf17g 8f8; 7; 4g f25gf17; 10g 2f7; 4g f25; 8gf17; 10g 6f4g f25; 8gf17; 10; 7g 1{ f25; 8; 4gf17; 10; 7g 3The partition constructed by the greedy heuristic thus has a partition di�erence, �of 3.The set di�erencing method of Karmarkar and Karp replaces two numbers bytheir di�erence (Karmarkar & Karp, 1982). This commits the two numbers to op-posite bags without deciding into which bag each number goes. For example, consideragain partitioning the bag f25; 17; 10; 8; 7; 4g into two separate bags. If we put 25in the �rst bag and 17 in the second bag, then this is equivalent to placing theirdi�erence, 8 in the �rst bag. On the other hand, if we put 17 in the �rst bag and25 in the second, then this is equivalent to placing 8 in the second bag. Thus, if wedecide that 25 and 17 are to go into opposite bags, we simply need to remove thetwo numbers and replace them by their di�erence, 8. We can then partition the bagf10; 8; 8; 7; 4g.Karmarkar and Karp give various methods for selecting the numbers to di�erence.They �rst suggest that the numbers should be chosen so that they have a smalldi�erence. However, in algorithm A of (Karmarkar & Karp, 1982) they repeatedlydi�erence the two largest numbers left in the bag. Following Korf we call this theKK heuristic (Korf, 1995). Consider partitioning the bag f25; 17; 10; 8; 7; 4g usingthe KK heuristic:Numbers remaining Partial partitions �sf25; 17; 10; 8; 7; 4g { {f10; 8; 8; 7; 4g f25gf17g 8f8; 7; 4; 2g f25gf17; 10g 2f4; 2; 1g f25gf17; 10g and f8gf7g 2,1f2; 1g f25; 4gf17; 10g and f8gf7g 2,1{ f25; 7; 4gf17; 10; 8g 1This is a perfect (and therefore optimal) partition. Indeed, when there are fouror less numbers to partition, the KK heuristic is guaranteed to �nd the optimal

4 Computational Intelligencepartition di�erence (Korf, 1995). Korf states this result without proof, but we takethe opportunity to present the proof since it identi�es how larger problems can defeatthe KK heuristic.Theorem 1. Given a bag of n numbers with n � 4, the KK heuristic returns theoptimal partition di�erence.Proof. If n = 2, the KK heuristic puts the two numbers in opposite partitions. Thisis trivially optimal.If n = 3, consider partitioning fa; b; cg with a � b � c. The KK heuristicdi�erences the largest two numbers, giving the bag fa� b; cg. There are two cases toconsider. In the �rst case, assume that there is an optimal partition with a and b inopposite partitions. The optimal partition di�erence is then the same as that of thebag fa� b; cg. By the n = 2 case, the KK heuristic will construct this di�erence. Inthe second case, assume that all optimal partitions have a and b in the same partition.The best such partition has fa; bg in one partition and fcg in the other. This gives apartition di�erence, �a+b of (a+ b)� c. Consider swapping b with c so that a and bare in opposite partitions. This gives a partition di�erence, �a�b of (a+ c)� b. Now�a+b = (a+ b)� c � (a+ b)� c � 2(b� c) = (a+ c)� b = �a�b. Thus, there existpartition di�erences the same size or smaller with a and b in oppositve partitions.This contradicts the assumption that all optimal partitions have a and b in the samepartition. Hence, there is an optimal partition with a and b in opposite partitionsand the KK heuristic will �nd it.If n = 4, consider partitioning fa; b; c; dg with a � b � c � d. The KK heuristicdi�erences the largest two numbers, giving the bag fa� b; c; dg. There are two casesto consider. In the �rst case, assume that there is an optimal partition with a and b inopposite partitions. The optimal partition di�erence is then the same as that of thebag fa�b; c; dg. By the n = 3 case, the KK heuristic will construct this di�erence. Inthe second case, assume that all optimal partitions have a and b in the same partition.The best such partition has fa; bg in one partition and fc; dg in the other. This gives apartition di�erence, �a+b of (a+b)�(c+d). Consider swapping b with c so that a andb are in opposite partitions. This gives a partition di�erence, �a�b of (a+c)�(b+d).Now �a+b = (a+b)�(c+d) � (a+b)�(c+d)�2(b�c) = (a+c)�(b+d) = �a�b. Thus,there exist partition di�erences the same size or smaller with a and b in oppositvepartitions. This contradicts the assumption that all optimal partitions have a and bin the same partition. Hence, there is an optimal partition with a and b in oppositepartitions and the KK heuristic will �nd it.Note that the largest two numbers always end up in opposite partitions. With 5or more numbers to partition, the KK heuristic may not return the optimal partitiondi�erence. One obvious method to defeat the KK heuristic is to construct a problemin which the two largest numbers have to go in the same partition. The examplegiven in (Korf, 1995) has this property. The bag f8; 7; 6; 5; 4g has a perfect partitionwith the two largest numbers, f8; 7g in one partition and f6; 5; 4g in the other. Onthis problem, the KK heuristic puts f8; 6g in one partition and f7; 5; 4g in the other.This gives a partition di�erence of 2.Karmarkar and Karp give other methods for selecting the numbers to di�erence.In algorithm B of (Karmarkar & Karp, 1982), they pair the largest two numbers,then the next largest two and so on. They di�erence each pair, thereby halving thenumber of numbers in the bag. They then re-pair the numbers and repeat. We call

Analysis of Heuristic for Number Partitioning 5this the KK2 heuristic. Consider again partitioning the bag f25; 17; 10; 8; 7; 4g usingthe KK2 heuristic:Numbers remaining Partial partitions �sf25; 17; 10; 8; 7; 4g { {f8; 2; 3g f25gf17g and f10gf8g and f7gf4g 8, 2, 3f5; 2g f25; 4gf17; 7g and f10gf8g 5, 2{ f25; 8; 4gf17; 10; 7g 3The partition constructed by the KK2 heuristic thus has a partition di�erence, � of3. All three set di�erencing heuristics run in O(n logn) time. For a large class ofinput distributions on [0; 1], Karmarkar and Karp prove that a simple variant of theKK2 heuristic constructs a partition di�erence of size O(1=nc logn) for c > 0 withprobability approaching 1 as n 7! 1. Under similar probabilistic assumptions, thegreedy heuristic cannot be expected to give a partition di�erence of size less thanO(1=n) (Karmarkar & Karp, 1982).4. ALGORITHMS FOR NUMBER PARTITIONINGAs mentioned in Section 2, there is a simple algorithm for the number parti-tion optimization problem based upon dynamic programming which runs in pseudo-polynomial time. This algorithm uses a bit array with ds=2 + 1e elements where s isthe sum of the numbers being partitioned. The jth bit in this array is set if there isa subset that sums to j. All possible subset sums are enumerated using a simple nstep loop. Initially just the 0th bit in the array is set. On the ith step of the loop,the jth bit is set if k is the ith number to be partitioned and the (j � k)th bit waspreviously set. The bit array thus represents the sums of all possible subsets of the�rst i numbers. If the hth bit is the highest bit set after the nth iteration then theoptimal partition di�erence, �opt is s � 2h. A perfect partition exists i� the top bitin the array is set during one of the iterations. Unfortunately, this procedure requiresspace of size O(n l) where l is the size of the numbers being partitioned, and this isexponential in the size of the input which is just O(n log(l)). One modi�cation is torepresent just the non-zero bits in the partial sums. On certain problems, this mayallow dynamic programming to be competitive with the other algorithms presentedhere.Ruml et al. have performed a comprehensive study of stochastic approximationalgorithms for number partitioning (Ruml, Ngo, Marks, & Shieber, 1994). They usedseveral di�erent search procedures including simulated annealing, hill climbing anda genetic algorithm, with a variety of di�erent encodings of the number partitioningproblem. They found that the choice of encoding was more important than the choiceof search engine. A naive encoding with a bit for each number representing the baginto which it is put gave poor performance. However, more complex encodings basedupon relaxing the greedy and KK heuristics gave good performance. With a smallamount of search, they were able to �nd solutions several orders of magnitude betterthan that returned without search by the KK heuristic.Korf has proposed a simple backtracking algorithm for �nding the optimal par-tition di�erence based upon the greedy heuristic (Korf, 1995). This algorithm usesthe greedy heuristic to branch, placing the largest remaining number into the bagwith the smaller sum. On backtracking, we place the largest remaining number into

6 Computational Intelligence
0 5 10 15 20 25 30 35

0th iteration

1st iteration

2nd iteration

3rd iterationFigure 1. The use of dynamic programming to partition the bag f25; 17; 10; 8; 7; 4g. Thesum of the numbers in the bag is 71 so we need a bit array with 36 elements. Initially just the 0th bitof the array is set. On the 1st iteration, we set the 25th bit as 25 is the 1st number to be partitionedand the 0th bit was set previously. On the 2nd iteration, we set the 17th bit as 17 is the 2nd numberto be partitioned and the 0th bit were set previously. As the 25th bit was set in the �rst iteration,we add 17 to 25 but this takes us to the 42nd bit which is o� the end of array. On the 3rd iteration,we set the 10th, 27th and 35th bits as 10 is the 3rd number to be partitioned and the 0th, 17th and25th bits were set previously. Setting the 35th and top bit re
ects the fact that the subset, f25; 10gsums to 35. There is therefore a perfect partition, f25; 10g and f17; 8; 7; 4g with �opt = 1.the bag with the larger sum. We terminate search if we discover a perfect partitionor if the binary search tree is exhausted. The largest number is arbitrarily placed inthe �rst bag. Similarly, if the bags have the same sum, we do not need to backtrackat this node. Finally, if the sum of the remaining numbers is ever less than or equalto the di�erence between the sum of the bags, the optimal solution to the currentsubproblem assigns all the remaining numbers to the smaller bag.
(25) (17,10)

(25,8) (17,10) (25) (17,10,8)

(25,8) (17,10,7) (25,7) (17,10,8)

(25,8,4) (17,10,7) (25,8) (17,10,7,4) (25,7,4) (17,10,8)

(25,8,7) (17,10)
(25,8,7) (17,10,4)

(25) (17)

(25) ()

Figure 2. The search tree explored in a depth-�rst manner by Korf's greedy backtrackingalgorithm when �nding the optimal partition di�erence for the bag f25; 17; 10; 8; 7; 4g.

Analysis of Heuristic for Number Partitioning 7Korf has also proposed the Ckk algorithm for �nding the optimal partition dif-ference (Korf, 1995). This is similar to the greedy algorithm but uses the KK setdi�erencing heuristic to branch. Initially we replace the largest two numbers by theirdi�erence. This commits to those subproblems in which the two largest numbersgo into opposite bags. On backtracking, the only other choice is to replace the twolargest numbers by their sum. This commits to those subproblems in which the twolargest numbers go into the same bag. When there are four numbers left, we committo the KK solution since this is optimal. We again terminate search if we discovera perfect partition or if the binary search tree is exhausted. Finally, if the largestremaining number is greater than or equal to the sum of the rest, the optimal solutionto the current subproblem places the largest number in one bag and the rest of thenumbers in the other bag.Korf has shown that the Ckk algorithm can give orders of magnitude better per-formance than the greedy backtracking algorithm. He claims that Ckk outperformsall other algorithms in the literature, including the incomplete stochastic proceduresdescribed in (Ruml et al., 1994). The Ckk algorithm can, for instance, partitionarbitrarily large bags of integers with up to 12 decimal digits.5. CONSTRAINEDNESSThe performance of an algorithm or a heuristic on an ensemble of combinatorialproblems depends on the constrainedness of the problems. Problems that are \crit-ically constrained" are on the knife-edge between solubility and insolubility. Suchproblems tend to be hard to solve as a lot of search is usually needed to determ-ine if they have a solution or not. In collaboration with Patrick Prosser and EwanMacIntyre, we have de�ned a constrainedness parameter, � for an ensemble of com-binatorial problems (Gent et al., 1996). If we have a state space of size 2N in whichhSoli of the states are expected to be solutions then,� =def 1� log2(hSoli)N : (1)The \1 -" simply rescales � so that it lies in the interval [0;1). If � is small thenproblems in the ensemble are under-constrained and are likely to have a large numberof solutions compared to the problem size. They therefore tend to be relatively easyto solve. If � is large then problems in the ensemble are over-constrained and arelikely to have very few or no solutions. The excess of constraints tends to make itrelatively easy to show that such problems are insoluble. We predict that a phasetransition will occur when � � 1 and problems are on the \knife-edge" betweensolubility and insolubility. A lot of search is usually needed either to �nd a solutionor to show that none exists. Note that if � = 1 then hSoli = 1. Earlier studieshave predicted a phase transition for constraint satisfaction problems at hSoli � 1(Williams & Hogg, 1994; Smith & Dyer, 1996).Although � ignores speci�c features of the problem structure like clustering ofsolutions, it is surprisingly useful for a wide variety of problems. For example, fornumber partitioning the prediction of a phase transition at � � 1 is accurate to withinabout 4% (Section 7). More re�ned predictions for the location of the phase boundarytake account of the variance in the number of solutions at the phase boundary (Wil-liams & Hogg, 1994; Smith & Dyer, 1996). There is a small but signi�cant di�erencebetween the prediction of a phase transition at � � 1 and the prediction of a phase

8 Computational Intelligencetransition at hSoli � 1. At the phase boundary, hSoli can grow exponentially withproblem size, whilst � tends to vary very little. For example, at the phase transitionfor 3-satis�ability, hSoli grows as approximately 20:18N where N is the number ofvariables whilst �, which is proportional to the ratio of clauses to variables, remainsrelatively constant (Gent et al., 1996). What variation there is in � at the phasetransition can be modelled by the technique of �nite size scaling described in Section7. As a parameter, � is therefore very useful for comparing problems of di�erentsizes. Indeed, � has been used to study phase transition behaviour in a wide varietyof domains including constraint satisfaction, satis�ability, graph colouring, travelingsalesperson and number partitioning problems (Gent et al., 1996).6. ANNEALED THEORYTo compute the constrainedness of an ensemble of number partitioning problemsdrawn from a uniform distribution, we need to know the expected number of solu-tions. We approximate this by means of an annealed theory. In the next section,we show that this annealed theory gives good results in practice. Consider �nding aperfect partition for a bag of n numbers drawn uniformly and at random from (0; l].We restrict attention to bags with an even sum. A similar analysis can be given forbags with an odd sum. We want to partition the bag into two bags that add up tothe same target sum (that is, half the sum of the bag being partitioned). We take thebinary representation of the n numbers and average probabilities independently overthe di�erent digit positions. We call this an \annealed theory" by analogy with anannealed theory of materials which averages independently over sources of disorder.It provides a good approximation as n tends to in�nity.The least signi�cant bits in each of the two bags must add up to a number withthe same parity as the target. On average, we expect just 1/2 the possible partitionsto give the same parity for the least signi�cant bit as the target. We can apply thesame argument to the bits and carries at each binary digit position, of which thereare log2(l). If we assume independence between bit positions, a partition is perfectin a fraction, (1=2)log2(l) (that is, 1=l) of the 2n possible partitions. The expectednumber of perfect partitions, hSoli is therefore simply,hSoli = 2nl :The choice of representing numbers in base 2 does not a�ect this result. In numberbase b, we expect each digit position to match modulo b with probability 1=b, andthere are logb(l) digits base b. The expected number of perfect partitions thereforeremains unchanged. Substituting n for N and the annealed estimate for hSoli inEquation 1 and simplifying gives, � = log2(l)n :In the next section, we use this parameter to identify a phase transition. As in otherproblem classes, problems from the phase transition are useful for benchmarkingalgorithms and heuristics.

Analysis of Heuristic for Number Partitioning 97. PHASE TRANSITIONIn Figure 3 we plot the probability that a bag with an even sum has a perfectpartition against � for n from 6 to 30, and log2(l) from 0 to 2n. In this and allsubsequent experiments, 1000 problems were generated at each value of l and n.Almost identical results are seen with bags with an odd sum, and with bags withboth odd and even sums. As predicted in the last section, a phase transition occursaround � � 1. In addition, the transition sharpens as n increases. This refutes Fu'sconjecture that number partitioning lacks a phase transition (Fu, 1989).
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

"n=6"
"n=12"
"n=18"
"n=24"
"n=30"

Figure 3. Probability of a perfect partition existing (y-axis) against � (x-axis). Each problemhas n numbers drawn uniformly and at random from (0; l] with n from 6 to 30, and log2(l) variedfrom 0 to 2n.We next applied �nite size scaling methods (Barber, 1983) to determine how theprobability scales with problem size. Around some critical point, we predict thatproblems of all sizes will be indistinguishable except for a change of scale given by asimple \power law". This suggests,Prob(perfect partition) = f((�� �c�c) � n1=�) (2)where f is some �xed function, �c is the critical point, and n1=� is the power lawthat provides the change of scale. The fraction, (� � �c)=�c plays the rôle of thereduced temperature, (T � Tc)=Tc in physical systems. The size dependency is givenby a simple power law, n1=� . In physical systems, the exponent 1=� can often becalculated exactly. Equation 2 has a �xed point where � equals �c and for all n, theprobability is the constant value f(0). To estimate �c, we take the �xed point to bethe point with the minimum spread in probabilities. This gives �c = 0:96 � 0:02,where the errors indicate the range giving less than 9% spread. To compute �, weassume that Equation 2 holds at the point of 50% probability, and calculate themedian estimate for �. This gives � = 1 � 0:3 where errors represent the upper and

10 Computational Intelligencelower quartiles of estimates of �. This error may appear large, but the quality of the�t is relatively insensitive to the exact value of �. We de�ne a rescaled parameter,
 =def � � �c�c � n1=� :In Figure 4, we plot the probability of a perfect partition existing against
 with
0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

"N=6"
"N=12"
"N=18"
"N=24"
"N=30"

Figure 4. Probability of a perfect partition existing (y-axis) against
 (x-axis) with �c = 0:96and � = 1. Each problem has n numbers drawn uniformly and at random from (0; l] with n from 6to 30, and log2(l) varied from 0 to 2n.�c = 0:96 and � = 1. This graph suggest that �nite size scaling provides botha simple and accurate model for the scaling of probability with problem size. Asimilar rescaling describes the �nite size scaling of the phase transition in satis�ability(Kirkpatrick & Selman, 1994), constraint satisfaction (Gent, MacIntyre, Prosser, &Walsh, 1995) and traveling salesperson problems (Gent & Walsh, 1996b).8. OPTIMIZATION COSTLike many other combinatorial problems, a peak in the cost to �nd the optimalsolution is associated with the phase transition in solubility. The phase transition isthus a useful source of benchmark problems. In Figure 5, we plot the average numberof nodes searched by the Ckk algorithm to �nd the optimal partition di�erenceagainst the rescaled parameter,
 with �c = 0:96 and � = 1, n �xed at values between6 and 30 and log2(l) varying from 0 to 2n. We have observed a similar result for Korf'sgreedy backtracking algorithm. As in satis�ability (Selman & Kirkpatrick, 1996),constraint satisfaction (Gent et al., 1995), and the traveling salesperson problem(Gent & Walsh, 1996b) �nite size rescaling o�ers a clear and consistent view of howsearch cost varies through the phase transition.

Analysis of Heuristic for Number Partitioning 11In the soluble phase problems are, on average, easy. Problem hardness increasesas we approach the phase boundary. The cost of �nding the optimal partition di�er-ence remains uniformly hard in the insoluble phase away from the phase boundary.Experiments out to larger l do not show problems becoming signi�cantly easier (orharder) well away from the phase transition. This re
ects the fact that, for �xed n,a lot of search is needed by the Ckk algorithm to prove that the optimal solution isoptimal even for very over-constrained problems that have a large optimal partitiondi�erence.
1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

-30 -25 -20 -15 -10 -5 0 5 10 15 20

"n=6"
"n=12"
"n=18"
"n=24"
"n=30"

Figure 5. Average nodes searched by Ckk to �nd the optimal partition di�erence (y-axis)against
 (x-axis) for �xed n with �c = 0:96 and � = 1. Each problem has n numbers drawnuniformly and at random from (0; l] with n from 6 to 30, and log2(l) varied from 0 to 2n.Another view of the phase transition comes from �xing l and varying n. We nowobserve an easy-hard-easy pattern (see, for example, Figure 5 in (Korf, 1995)). In theinsoluble region, problems become easier away from the phase boundary since n, andthus the total number of partitions, is decreasing. If we �x l and vary n or �x n andvary l, the size of the input problem (the number of bits needed to specify a problem)varies. A third view of the phase transition is thus to vary the constrainedness, �but keep the input problem size, n log2(l) constant. In Figure 6, we plot the averagenumber of nodes searched by the Ckk algorithm to �nd the optimal partition againstthe rescaled parameter,
 with �c = 0:96 and � = 1, and n log2(l) �xed at 62, 122,182 and 242. In each case, we varied n in steps of 1 from 36 downwards. As expected,the phase transition in solubility occurs around
 = 0. In addition, we now see aneasy-hard-easy pattern. Problems in the insoluble region again become easier as wemove away from the phase boundary since n, the size of the bags being partitioneddecreases.In Figure 7 we plot the maximum value of the mean search cost when we �x nand vary l for both the Ckk and the greedy backtracking algorithms (Korf, 1995).From the gradient of these graphs, we estimate that the worst average search costsgrow as approximately 20:85n for the Ckk algorithm and approximately 20:90n for the

12 Computational Intelligence
1

10

100

1000

10000

100000

1e+06

-40 -30 -20 -10 0 10 20 30 40

"nlog(l)=24.24"
"nlog(l)=18.18"
"nlog(l)=12.12"

"nlog(l)=6.6"

Figure 6. Average nodes searched by Ckk to �nd the optimal partition (y-axis) against
(x-axis) with �c = 0:96 and � = 1, and the problem input size, n log2(l) �xed at 62, 122, 182 and242. Each problem has n numbers drawn uniformly and at random from (0; l] with n varied from 1to 36.greedy backtracking algorithm. Note that simply computing all possible partitionswould give a maximum search costs that grows as 2n. This con�rms quantitativelyKorf's claim that \Ckk is asymptotically more e�cient than the standard [greedybacktracking] algorithm" (Korf, 1995).9. IMPERFECT PARTITIONSPhase transition behaviour is not restricted to the decision problem of �nding aperfect partition. Constrainedness can also be used to identify a phase transition forthe decision problem of �nding an imperfect partition. We repeat our constructionof an annealed theory to identify a constrainedness parameter for partitioning intoimperfect partitions. Consider �nding a partition di�erence of size d or less for a bagof n numbers drawn uniformly and at random from (0; l]. For simplicity, we assumethat d is a power of 2. Since we want to �nd a partition di�erence of size d or less,we can simply ignore the bottom log2(d) bits in each bag. We do, however, insistthat the top log2(l)� log2(d) bits in each bag add up to a particular parity. Using asimilar annealed argument to Section 6, we get hSoli = 2n=(l� d). Substituting thisvalue into Equation (1) gives, � = log2(l=d)n :Note that, as required, when d = 1 this reduces to log2(l)=n, the constrainedness ofperfect number partitioning problems.A phase transition again occurs around the value � � 1. This phase transitionrescales identically to that for perfect partitioning. In Figure 8, we plot the probab-

Analysis of Heuristic for Number Partitioning 13
1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

5 10 15 20 25 30

"CKK"
"greedy"

Figure 7. Maximum value over all l for the mean number of nodes searched to �nd theoptimal partition di�erence (y-axis) against n (x-axis). Each problem has n numbers drawn uniformlyand at random from (0; l] with n from 6 to 30, and log2(l) varied from 0 to 2n.ility that a bag has an imperfect partition against � for n = 24, log2(d) from 1 to 5and 10, and log2(l) from 0 to 2n.
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

"log2(k)=1"
"log2(k)=2"
"log2(k)=3"
"log2(k)=4"
"log2(k)=5"

"log2(k)=10"

Figure 8. Probability of an imperfect partition of size d or less (y-axis) against � (x-axis).Each problem has 24 numbers drawn uniformly and at random from (0; l], with log2(d) varied from1 to 5 and 10, and log2(l) varied from 0 to 2n.Search cost again peaks at the phase transition. In Figure 9, we plot the average

14 Computational Intelligencenumber of nodes searched by the Ckk algorithm against �, again for n = 24, log2(d)from 1 to 5 and 10, and log2(l) from 0 to 2n. We modify the Ckk algorithm so thatit runs as a decision procedure, terminating search immediately a partition less thanor equal to d is found. Note that all problems in this graph are the same size, n sothat we do not need to rescale.
10

100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

"log2(k)=1"
"log2(k)=2"
"log2(k)=3"
"log2(k)=4"
"log2(k)=5"

"log2(k)=10"

Figure 9. Average number of nodes searched by Ckk �nding an imperfect partition of sized or less (y-axis) against � (x-axis). Each problem has 24 numbers drawn uniformly and at randomfrom (0; l], with log2(d) varied from 1 to 5 and 10, and log2(l) varied from 0 to 2n.10. OPTIMAL PARTITIONSFinite size scaling is also a good method for modelling the size of the optimalpartition di�erence. In Figure 10, we plot the mean optimal partition di�erenceagainst the rescaled parameter,
. For
 � 0, all problems have a perfect partition;as half the problems have an even sum and half have an odd sum, h�optimali =1=2. (Karmarkar, Karp, Lueker, & Odlyzko, 1986) gives a simple heuristic argumentfor partitioning real numbers in [0; 1] which we can adapt to estimate the optimalpartition di�erence for integers drawn uniformly from (0; l]. By considering a randomwalk with steps of size l, we expect the sum of each partition to lie within an intervalof size O(lpn). We divide this into 2n sub-intervals, each of size O(lpn=2n). By apigeonhole argument, we can expect to �nd two bags in the same sub-interval. Thatis, within O(lpn=2n) of each other. Hence, the mean optimal partition di�erenceis of size O(lpn=2n). Assume that h�opti / lpn=2n. In addition, assume thatlog2(l) � 12 log2(n), �c � 1 and � = 1. Then log2(h�opti) / log2(lpn=2n) =log2(l) + 12 log2(n) � n � log2(l) � n = (log2(l)=n� 1)n � (���c�c)n =
. Hencelog2(h�opti) is approximately proportional to the rescaled parameter,
. This agreeswith the data in Figure 10 since log2(h�opti) plotted against
 gives a straight linewith a gradient of +1.

Analysis of Heuristic for Number Partitioning 15
0.1

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

"n=6"
"n=12"
"n=18"
"n=24"

Figure 10. Mean optimal partition di�erence, h�opti (y-axis) against
 (x-axis) with �c =0:96 and � = 1. Each problem has n numbers drawn uniformly and at random from (0; l], with nvaried from 6 to 24 and log2(l) varied from 0 to 2n.11. HEURISTIC PARTITIONSThe constrainedness parameter, � also provides a quantitative method for com-paring heuristics. Indeed, we can even use the �nite size scaling of � to compareheuristics. However, we need to substitute di�erent values of �c into the de�nition of
 for di�erent heuristics. These new values for �c re
ect the quality of the heuristicsas they are the minimum value of constrainedness for which the heuristic fails to�nd an optimal solution. In Figure 11, we plot the mean size of the KK partitiondi�erence (that is, the possibly sub-optimal partition di�erence found by the KKheuristic) against
 for n = 6 to 24 and log2(l) from 0 to 2n. To estimate �c, weagain found the point with the minimum spread in probabilities. This gives �c = 0:40and not 0:96 as previously. However, we continue to obtain a good �t with the samepower-law coe�cient, � = 1.Recall that �c is the �xed point for the rescaling. It gives the value of theconstrainedness parameter at which we move between di�erent phases. For � < 0:40,the KK heuristic almost always returns the optimal partition di�erence. For � >0:40, the quality of the solution returned decreases as n increases. In the region0:40 < � < 1, the KK heuristic performs poorly as n increases. This is despite thefact that these problems usually have perfect partitions.Performance guarantees for optimization procedures are often given as a ratio ofthe optimal value. Since the optimal partition di�erence can be zero, such a ratio canbe unde�ned for perfect partitions. As in (Williams & Hogg, 1994), we make a \mean-�eld" approximation that, h�KK�opt i � h�KKih�opti : The mean optimal partition di�erence,h�opti is at least 1/2 so the performance ratio is always de�ned. Another approachused in the literature is to add a small constant to the partition di�erence to preventdivision by zero. For instance, we could measure the ratio, (1 + �KK)=(1 + �opt).

16 Computational Intelligence
1e-10

1

1e+10

1e+20

-40 -20 0 20 40 60 80 100

"n=6"
"n=12"
"n=18"
"n=24"

Figure 11. Mean size of the KK partition di�erence, h�KKi (y-axis) against
 (x-axis) with�c = 0:40 and � = 1. Each problem has n numbers drawn uniformly and at random from (0; l], withn varied from 6 to 24 and log2(l) varied from 0 to 2n.This gives similar results to the mean-�eld approximation.In Figure 12, we plot the average performance ratio for the KK heuristic against
 again with �c = 0:40 and � = 1, n = 6 to 24 and log2(l) from 0 to 2n. Themaximum performance ratio grows approximately as a simple exponential in n. Wesee very similar behaviour with the KK2 and greedy heuristics. However, for bothheuristics, we need to rescale around �c � 0:15. Finite size scaling therefore providesus with a very simple and quantitative method for comparing heuristics. In theregion � < 0:15 all the heuristics return the optimal partition di�erence. In theregion 0:15 < � < 0:40, the greedy and KK2 heuristics (but not the KK heuristic)perform poorly as n increases. This is despite the fact that these problems haveperfect partitions that are usually found by the KK heuristic. And in the region0:40 < � < 1, all the heuristics perform poorly as n increases, again despite the factthat these problems have perfect partitions that Ckk can usually �nd with littlesearch.In addition to determining the range of constrainedness over which a heuristicreturns the optimal partition di�erence, we can also plot how much worse it does thanthe optimal. That is, we can plot the constrainedness of the problems we wanted tosolve (namely, �nding a perfect partition with � � 1) against the constrainedness ofthe problems the heuristic typically managed to solve (namely, �nding an imperfectpartition with � � d where d is the mean heuristic partition di�erence). In Figure 13,we plot the constrainedness of �nding a perfect partition against the constrainednessof the heuristic partition found for three di�erent heuristics: greedy, KK and KK2.In each experiment, 1000 bags of 24 numbers were generated at random from (0; l]for each point from log2(l) = 1 to 48 in steps of 1. For comparison, we also plot theconstrainedness of the best decision problem that is soluble, i.e. the value of � whend is set to �opt, the optimal partition di�erence.

Analysis of Heuristic for Number Partitioning 17
1

10

100

1000

10000

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

"n=6"
"n=12"
"n=18"
"n=24"

Figure 12. Average performance ratio for the KK heuristic, �KK=�opt (y-axis) against
(x-axis) with �c = 0:40 and � = 1. Each problem has n numbers drawn uniformly and at randomfrom (0; l] with n varied from 6 to 24 and log2(l) varied from 0 to 2n.
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

"optimal"
"KK"

"KK2"
"greedy"

Figure 13. Average � of the number partitioning problem achieved by a heuristic (y-axis)against � of the desired perfect number partitioning problem (x-axis) for three heuristics and for theoptimal partition di�erence. Each problem has 24 numbers drawn uniformly and at random from(0; l], with log2(l) varied from 1 to 48.As before, for � < 0:40, the KK heuristic almost always returns the optimal andperfect partition. For � > 0:40, the quality of the solution returned decreases aslog2(l) increases, until � � 1 where KK is consistently able to achieve a value of �

18 Computational Intelligenceabout 0.5 less than the optimal. By comparison, the KK2 heuristic only performswell for � < 0:2 and in the worst case does about 0.7 less than the optimal and about0.2 worse than KK. The greedy heuristic performs just a little worse than KK2.The KK heuristic thus returns partition di�erences that are, in the worst case, afactor 20:5n larger than the optimum, whilst the KK2 and greedy heuristics returnpartition di�erences approximately 20:7n larger than the optimal. This graph clearlyshows that KK is the best heuristic throughout the phase space, followed by theKK2 heuristic with the greedy heuristic very slightly behind.12. CONSTRAINEDNESS AS A HEURISTICIn the last section, we showed that � provides a good method for comparingheuristics. Constrainedness can also be used to analyse heuristics. Gent, MacIntyre,Prosser and Walsh have recently suggested that many heuristics branch into thesubproblem that minimizes the constrainedness, � (Gent et al., 1996). The intuitionis that we try to branch on the most constrained variable giving the most under-constrained and soluble subproblem. This viewpoint is useful for understanding thedesign of heuristics in constraint satisfaction (Gent, MacIntyre, Prosser, B.M.Smith,& Walsh, 1996) and, as we show here, in number partitioning.Consider, for example, the KK heuristic. Recall that this heuristic takes a bagS of n numbers to partition and reduces it to a new bag R by removing the largesttwo numbers x and y, and replacing them by x � y (we assume without loss ofgenerality that x � y). This commits us to those solutions in which x and y are inopposite bags. Let s = Pi2S i and r = Pi2R i. To compute � for the subproblemsgenerated by the KK heuristic, we again use an annealed theory. We assume thatthe size of the numbers, l is approximated by twice the mean. Experiments with non-uniform distributions of numbers suggest that � for a wide class of distributions canbe approximated by log2(l)=n, where l is the size of the numbers being partitioned.As r = s � x � y + (x � y) = s � 2y, the constrainedness � goes from log2(2s=n)n tolog2(2(s�2y)=n�1)n�1 . As we have no control over the denominator, � is minimized bymaximizing y. Given that x � y, the maximum y is the second largest element of S.And thus the KK heuristic minimizes � by picking the two largest elements of S forx and y.Karmarkar and Karp suggest that the motivation behind set di�erencing is topick x and y so that x � y is small (Karmarkar & Karp, 1982). We therefore ranexperiments with a third set di�erencing heuristic, KK3 which choses x and y so thatx�y is minimal. This gave much poorer performance than the KK, KK2 and greedyheuristics. Minimizing constrainedness provides an explanation for the superiority ofthe KK heuristic over the KK2 heuristic, and of the KK2 heuristic over the KK3heuristic. Unlike the KK heuristic, by working in phases the KK2 heuristic maynot di�erence the two largest numbers. Consider, for instance, when the di�erencebetween the two largest numbers is larger than the smallest number (this occurs inthe example in Section 3). The KK2 heuristic therefore reduces � less than the KKheuristic. Whilst the KK2 often di�erences large numbers, the KK3 heuristic willfrequently di�erence small numbers as such numbers are usually closer together. Onaverage, the KK3 heuristic tends to reduce � the least.The greedy heuristic can also be seen as making decisions that minimizes �.Although both the greedy and KK heuristics minimize �, the decisions made by

Analysis of Heuristic for Number Partitioning 19the greedy heuristic { assigning numbers to particular partitions { tend to be moreconstraining than the decisions made by the KK heuristic. We suggest that this helpsto explain the superior performance of the KK heuristic over the greedy heristic. Theanalysis of the e�ect of the greedy heuristic on � is a little more complex that that ofset di�erencing heuristics like KK since the greedy heuristic builds a partial partition.We can factor this into our analysis by observing that if we have partitioned numbersinto two bags, R and T with sums r and t and have a bag S of numbers remainingto be partitioned then this is equivalent to partitioning the bag S [fr� tg (withoutloss of generality we assume that r � t). The greedy heuristic picks an element x ofS and adds it to R or T . We minimize � by maximizing the reduction in �, the sumof S [fr� tg. If we add x to the bigger bag, R, then � is unchanged. If, however, weadd x to the smaller bag, T then � decreases. This is what we therefore do. Thereare two cases to consider. These depend on whether x > r�t or x � r�t. If x > r�tthen adding x to T makes it the partition with the larger sum, and � reduces byx+ r� t� ((x+ t)� r) = 2(r� t). If, however, x � r� t, then adding x to T leaves itthe bag with the smaller sum, and � reduces by x+r�t�(r�(x+t)) = 2x � 2(r�t).The �rst di�erence is always the larger and is therefore preferred. This suggests theheuristic of picking an x in S such that x � r � t, or failing that picking the largestx in S. The greedy heuristic does just this by picking the largest x in S and puttingit in the smaller bag.To test this hypothesis, we implemented a cautious heuristic which puts thesmallest number left into the smaller bag. This compares to the greedy heuristicwhich puts the largest number left into the smaller bag. The intuition behind thecautious heuristic is to leave as much space as possible in two bags. We generated1000 bags of 24 numbers at random from (0; l] for each point from log2(l) = 1 to 48in steps of 1. The cautious heuristic performed poorly on these problems. In almostevery case, it failed to �nd the optimal partition di�erence. In the worst case, itreturned partition di�erences that are a factor 20:85n larger than the optimum, and20:15n larger than those returned by the greedy heuristic.13. COMPARING HEURISTICSWe can compare analytically how good the greedy and KK heuristics are at re-ducing constrainedness. To do this, we contruct an \adaptive" heuristic that choosesbetween greedy and KK decompositions according to which reduces � most. Asshown by the following argument, such a heuristic is no better at reducing con-strainedness than the KK heuristic. Let the target di�erence be the di�erencebetween the sums of the two bags. Simple analysis show that if the target di�er-ence is greater than the second largest number left to partition, then � is decreasedmost if a greedy decomposition is performed, placing the largest number in the bagwith the smaller sum. If not, � is decreased most by a KK decomposition. If thetarget di�erence starts out zero, the adaptive heuristic will always apply the KKdecomposition rule since the target di�erence will remain zero and this is always lessthan the second largest number left. We can, however, start by committing one num-ber arbitrarily to the �rst bag. Such a commitment leaves � una�ected but createsa target di�erence. It also reduces search since we do not consider isomorphic par-titions in which the �rst number is placed in the second bag. We will maximize thedecrease in � at the second step if we begin by committing the largest number to the�rst bag. Although the adaptive heuristic will perform some greedy decompositions,

20 Computational Intelligenceit ultimately �nds the same partition di�erence as the KK heuristic.Theorem 2. The partition di�erence found by the adaptive heuristic given an initialtarget di�erence �t and a bag S is identical to that found by the KK heuristic onthe bag S [f�tg.Proof. By induction on the size of S. In the base case, S is empty and both heuristicsreturn empty partitions. In the step case, let S be a bag containing n+1 numbers. Wedo a case split on the �rst decomposition step performed by the adaptive heuristic.If the �rst step is a KK decomposition then the adaptive heuristic reduces theproblem to one with S � fx; yg [fjx � yjg where x; y are the largest elements ofS. We can now appeal to the induction hypothesis as the new bag contains just nnumbers. The adaptive heuristic constructs the same partition di�erence as KK onthis smaller bag. And thus, as the �rst step is a KK decomposition for both theadaptive and KK heuristics, the same partition di�erences are constructed from Sby both the adaptive and KK heuristics.If the �rst step is a greedy decomposition then the adaptive heuristic reducesthe problem to partitioning S � fxg where x is the largest element of S with anew target di�erence of jx � �tj. Since the adaptive heuristic performed a greedydecomposition, the second largest element of S is smaller than �t. Given the initialbag, S [f�tg, the KK heuristic takes the two largest elements, which must be xand �t and replaces them by their di�erence jx��tj. But this corresponds to thesame decomposition as the adaptive heuristic. We can now appeal to the inductionhypothesis as the new bag, S � fxg contains n numbers. The adaptive heuristicconstructs the same partition di�erence as the KK heuristic on this smaller bag.Hence the same partitions are constructed from S by both the adaptive and KKheuristics.This result can be summarized by the slogan,KK+Greedy = KK:Together with our earlier results that demonstrated the inferiority of the greedyheuristic compared to the KK heuristic, this shows that, for numbers drawn from auniform distribution, the KK heuristic dominates the greedy heuristic. Of course, itis possible to construct individual problems or ensembles of problems on which thegreedy heuristic outperforms the KK heuristic.A slightly more complex argument shows that using the adaptive heuristic withina backtracking procedure gives an algorithm which �nds partition di�erences in thesame order as the Ckk algorithm. The adaptive algorithm commits the largestnumber, x to the �rst bag. This creates a target di�erence, �t of x. We thenchose between greedy and KK decompositions according to which reduces � most.A greedy split is applied if the target di�erence is greater than the second largestnumber left to partition, otherwise a KK split is performed. On backtracking, weperform the dual split. For example, a greedy split places the largest number in thebag with smallest sum. On backtracking, we place the largest number in the bagwith largest sum. Search is pruned (as in Ckk algorithm) if the largest number leftincluding the target di�erence is greater than the sum of the remaining numbers.Let S be the numbers remaining to be partitioned at a given node in the searchtree of the adaptive algorithm, and �t be the target di�erence at this point. If itis possible to follow the same path in the search tree of the Ckk algorithm and R

Analysis of Heuristic for Number Partitioning 21is the set of numbers remaining to be partitioned by Ckk at this point then we saythat the nodes in the two trees are equivalent i� R = S [f�tg.Theorem 3. The nodes of the search tree of the adaptive algorithm are equivalentto those of the Ckk algorithm.Proof. Let S be the bag being partitioned. The proof uses induction on S. Thebase case is trivial. In the step case, let S be a bag containing n + 1 numbers. Wenow do a case split on whether the �rst step along the path to a given node is to theleft (i.e. with the heuristic) or right (i.e. against the heuristic).If the �rst step is agreement with the heuristic, then we do a case split on whetherthe adaptive algorithm applies a greedy or a KK reduction. If it is a KK reductionthen we reduce the problem to one of size n and appeal to the induction hypothesis.Ckk trivially performs the same reduction. If the �rst step is a greedy reductionthen the problem reduces to S�fxg where x is the largest element of S, giving a newtarget di�erence of j�t� xj. Since the greedy heuristic is applied, the second largestelement of S is smaller than �t. Given the initial bag, S [f�tg, the Ckk algorithmtakes the two largest elements (which must be x and �t) and replaces them by theirdi�erence. But this is the same reduction as the adaptive algorithm. We then appealto the induction hypothesis on the reduced problem contains just n numbers.If the �rst step is against the heuristic, then we do a case split on whether theadaptive algorithm applies the dual of a greedy or a KK reduction. If it is the dual ofa KK reduction then we reduce the problem to one containing n numbers and appealto the induction hypothesis. Ckk trivially performs the same reduction. If the �rststep is the dual of a greedy reduction then the problem reduces to S � fxg where xis the largest element of S, giving a new target di�erence of x + �t. Since the dualof the greedy heuristic is applied, the second largest element of S is smaller than �t.Given the initial bag, S [f�tg, the Ckk algorithm takes the two largest elements(which must be x and �t) and replaces them by their sum. But this is the samereduction as the adaptive algorithm. We then appeal to the induction hypothesis onthe reduced problem contains just n numbers.Note that the pruning rules for the Ckk and adaptive algorithms are equivalentand act on equivalent nodes. The search trees are therefore an identical shape. Hence,the two algorithms enumerate partitions in the same order.This result can be summarized by the slogan,Ckk+Greedy = Ckk:Together with our earlier results that demonstrated the inferiority of the greedybacktracking algorithm compared to the Ckk algorithm, this shows that, for num-bers drawn from a uniform distribution, the Ckk algorithm dominates the greedybacktracking algorithm. 14. RELATED WORKUnlike the simple annealed theory presented here, the exact analysis of numberpartitioning problems has proved di�cult. Karmarkar, Karp, Lueker and Odlyzkohave determined bounds on the probability distribution for the size of the optimal

22 Computational Intelligencepartition di�erence for a bag of real numbers drawn from the interval [0; 1] (Kar-markar et al., 1986). Using some complicated analysis based on second moments,they proved that the median optimal partition di�erence is of size �(pn=2n). Whenpartitions are restricted to those of equal cardinality, the median optimal partitiondi�erence is of size �(n=2n).Karmarkar et al. admit that they were unable to derive the mean optimal parti-tion di�erence. In addition, their results only apply to probability distributions thathave a bounded density (for example, real numbers drawn uniformly from [0; 1]).They fail to hold for probability distributions in which there are values with non-zero probabilities (for example, integers drawn uniformly and at random from (0; l]).Korf (personal communication) has predicted that a phase transition occurs whenthe median optimal partition di�erence is 1, and observed that this coincides witha peak in search cost. Using the asymptotic value for the median optimal partitiondi�erence, Korf suggested that the phase transition occurs when pnl=2n = 1. Thisagrees asymptotically with � = 1.We have extended the annealed theory presented in Section 6 to multi-way par-titioning (Gent & Walsh, 1996a). For m-way partitioning problem, we show thatthe constrainedness � is (m� 1) logm(l)=n. As required, this reduces to log2(l)=n for2-way number partitioning. We have observed a phase transition for 3-way numberpartitioning around � � 1. Search cost to �nd the optimal partition di�erence againpeaks at the phase boundary.Tad Hogg has used phase transition behaviour to inform the design of valueordering heuristics for graph colouring (Hogg, 1995). He applies the Brelaz heuristicto select the most constrained variable. An estimate of position with respect tothe phase transition is then used to order values for this variable. He shows thatthis approach gives good performance on under-constrained and over-constrainedproblems but is less good at the phase transition.Joseph Pemberton and Weixiong Zhang have exploited phase transition behaviourto solve combinatorial optimization problems approximately (Pemberton & Zhang,1996). On a random tree model, their �-transformation method runs in expectedpolynomial time, returning a solution with constant relative error. They also reportgood performance for approximating the asymmetric traveling salesperson problemand the maximum satis�ability problem.15. CONCLUSIONSWe have illustrated how phase transition behaviour can be used to study heur-istics. By means of an annealed theory, we de�ned a parameter, � that measuresthe \constrainedness" of an ensemble of number partitioning problems. Contraryto a conjecture of Y. Fu (Fu, 1989), a phase transition occurs at a critical value ofthis parameter. Finite size scaling methods describe the shape of this phase trans-ition. We demonstrated that constrainedness and �nite size scaling o�er a preciseand quantitative means for comparing the performance of algorithms and heuristicsfor number partitioning. In addition, constrainedness can be used to analyse theheuristics themselves. We predict that a similar methodology will be useful in a widevariety of NP-complete problems.

Analysis of Heuristic for Number Partitioning 23ACKNOWLEDGEMENTSThe second author was supported in part by a HCM Postdoctoral Fellowshipand by Epsrc grant GR/L/24014. We thank Alan Bundy, the members of theMathematical Reasoning Group at Edinburgh, Fausto Giunchiglia and the membersof the Mechanized Reasoning Group at Trento for many CPU cycles donated tothese and other experiments. We also thank Richard Korf for providing us with hiscode for the Ckk and greedy backtracking algorithms, and for suggesting numberpartitioning as one of the experimental themes at the First AI and ORWorkshop, heldat Timberline, Oregon in June 1995. Both authors are members of the Algorithms,Problems and Empirical Studies Group (APES), and we thank the other membersof this group at Leeds and Strathclyde for discussion and feedback.ReferencesBarber, M. N. (1983). Finite-size scaling. In Phase Transitions and Critical Phe-nomena, Volume 8, pp. 145{266. Academic Press.Cheeseman, P., Kanefsky, B., & Taylor, W. (1991). Where the really hard prob-lems are. In Proceedings of the 12th IJCAI, pp. 331{337. International JointConference on Arti�cial Intelligence.Chvatal, V., & Reed, B. (1992). Mick gets some (the odds are on his side). In Pro-ceedings of the 33rd Annual Symposium on Foundations of Computer Science,pp. 620{627. IEEE.Fu, Y. (1989). The uses and abuses of statistical mechanics in computational com-plexity. In Stein, D. (Ed.), Lectures in the Sciences of Complexity, pp. 815{826.Addison-Wesley Longman.Garey, M. R., & Johnson, D. S. (1979). Computers and intractability : a guide tothe theory of NP-completeness. W H Freeman.Gent, I. P., & Walsh, T. (1994). The hardest random SAT problems. In Nebel, B.,& Dreschler-Fischer, L. (Eds.), KI-94: Advances in Arti�cial Intelligence. 18thGerman Annual Conference on Arti�cial Intelligence, pp. 355{366. Springer-Verlag.Gent, I., MacIntyre, E., Prosser, P., B.M.Smith, & Walsh, T. (1996). An empiricalstudy of dynamic variable ordering heuristics for the constraint satisfactionproblem. In Proceedings of CP-96, pp. 179{193. Springer Verlag.Gent, I., MacIntyre, E., Prosser, P., & Walsh, T. (1995). Scaling e�ects in the CSPphase transition. In 1st International Conference on Principles and Practicesof Constraint Programming (CP-95), pp. 70{87. Springer-Verlag.Gent, I., MacIntyre, E., Prosser, P., & Walsh, T. (1996). The constrainedness ofsearch. In Proceedings of AAAI-96, pp. 246{252.Gent, I., & Walsh, T. (1996a). Phase transitions and annealed theories: Numberpartitioning as a case study. In Proceedings of ECAI-96, pp. 170{174.Gent, I., & Walsh, T. (1996b). The TSP phase transition. Arti�cial Intelligence, 88,349{358.Hogg, T. (1995). Exploiting problem structure as a search heuristic. Tech. rep.,Dynamics of Computation Group, Xerox Palo Alto Research Center. PARCPreprint, ftp://parcftp.xerox.com/pub/dynamics/constraints.html.Karmarkar, N., & Karp, R. (1982). The di�erencing method of set partitioning.Technical report UCB/CSD/82-114, Computer Science Division, University of

24 Computational IntelligenceCalifornia, Berkeley, California.Karmarkar, N., Karp, R., Lueker, J., & Odlyzko, A. (1986). Probabilistic analysis ofoptimum partitioning. Journal of Applied Probability, 23, 626{645.Kirkpatrick, S., & Selman, B. (1994). Criticial behaviour in the satis�ability ofrandom boolean expressions. Science, 264, 1297{1301.Korf, R. (1995). From approximate to optimal solutions: A case study of numberpartitioning. In Proceedings of the 14th IJCAI. International Joint Conferenceon Arti�cial Intelligence.Mitchell, D., Selman, B., & Levesque, H. (1992). Hard and Easy Distributions of SATProblems. In Proceedings of the 10th National Conference on AI, pp. 459{465.American Association for Arti�cial Intelligence.Pemberton, J., & Zhang, W. (1996). Epsilon-transformation: exploiting phase trans-itions to solve combinatorial optimization problems. Arti�cial Intelligence, 81,297{325.Ruml, W., Ngo, J., Marks, J., & Shieber, S. (1994). Easily searched encodings fornumber partitioning. Tech. rep. TR-10-94, Center for Research in ComputingTechnology, Harvard University.Selman, B., & Kirkpatrick, S. (1996). Critical behavior in the computational cost ofsatis�ability testing. Arti�cial Intelligence, 81 (1-2), 273{296.Smith, B., & Dyer, M. (1996). Locating the phase transition in binary constraintsatisfaction problems. Arti�cial Intelligence, 81, 155{181.Williams, C., & Hogg, T. (1994). Exploiting the deep structure of constraint prob-lems. Arti�cial Intelligence, 70, 73{117.

