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1 IntroductionMany randomly generated NP-hard problems display a phase transition as some orderparameter is varied, and as the problems go from being almost always soluble to beingalmost always insoluble [2]. This phase transition is often associated with problemswhich are typically hard to solve. In this paper, we show that with several di�erentclasses of satis�ability problems including random 3-SAT, the phase transition is indeedassociated with problems which are typically hard but there are also regions in whichproblems are usually easy but sometimes extraordinarily hard. We postulate that thisbehaviour occurs when problems are \critically constrained". That is, when searchmust proceed to great depths because of the absence of easily observable constraints.We con�rm this experimentally by demonstrating the existence of a \constraint gap"for the Davis Putnam procedure, the best known complete procedure for satis�ability.The constraint gap occurs in regions where most problems are satis�able, and the ratioof constraint propagations to search branching reaches a sharp minimum, while thedepth of search reaches a corresponding maximum. We predict that similar regionsof very variable problem di�culty will be found with many other NP-hard problemsbesides satis�ability. The extraordinarily hard problems found in these regions maybe of considerable use in analysing and comparing the performance of algorithms forNP-hard problems.2 Satis�abilitySatis�ability (or SAT) is the problem of deciding if there is an assignment for thevariables in a propositional formula that makes the formula true. We will considerSAT problems in conjunctive normal form (CNF); a formula, � is in CNF i� it isa conjunction of clauses, where a clause is a disjunction of literals, and a literal is anegated or un-negated variable. SAT is of considerable practical interest as many AItasks like constraint satisfaction, diagnosis and planning can be encoded quite naturallyin SAT. It is also of considerable theoretical interest as it is the archetypical NP-hardproblem.Figure 1). A standard procedure for determining satis�ability is due to Davis andPutnam [4] (see To simplify a set of clauses with respect to a partial truth assignment,we delete each clause that is satis�ed by the partial truth assignment, and in every otherclause delete any literals that contradict the partial truth assignment. Note that theDavis-Putnam procedure is non-deterministic since the literal used by the split rule isunspeci�ed. As in previous studies (eg. [12, 6]), we will split upon the �rst literal inthe �rst clause. We call this variant of the Davis-Putnam procedure \DP". Despite itssimplicity, with e�cient implementation and good heuristics for choosing literals to spliton, the Davis-Putnam procedure is still the best complete procedure for satis�ability [5].3 Constant Probability ModelIn the constant probability model, given N variables, each of the 2N possible literals isincluded in a clause with probability p. Our experiments use a variant of the constant2



procedure DP(�)if � empty then return satis�ableif � contains an empty clause then return unsatis�able(Tautology) if � contains a tautologous clause c then return DP(�� fcg)(Unit propagation) if � contains a unit clause c thenreturn DP(� simpli�ed by assigning truth value which satis�es c)(Pure literal deletion) if � contains a literal l but not the negation of l thenreturn DP(� simpli�ed by assigning truth value which satis�es l)(Split) if DP(� simpli�ed by assigning a variable arbitrarily) is satis�ablethen return satis�ableelse return DP(� simpli�ed by assigning variable opposite value)Figure 1: The Davis-Putnam Procedure
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is a very considerable di�erence between mean and median performance. The worstcase mean of 1,009 branches occurs at L=N = 2:6 in a mostly satis�able region, whilstthe worst case median of just 18 branches occurs at L=N = 3:8 in the middle of thephase transition. Problem di�culty in the mostly satis�able region was very variable.Figure 2 (b) gives a breakdown in percentiles for the number of branches used from 50%(median) up to 100% (worst case). The worst case was 981,018 branches at L=N = 2:6,while at L=N = 3:8, the point of worst median performance, the worst case was just8,982 branches, two orders of magnitude smaller. Comparison of Figure 2 (a) and (b)clearly shows that worst case behaviour is responsible for almost all the features seen inthe mean in mostly satis�able region.In [6], Gent and Walsh have shown that similar behaviour for CP is observed withbetter splitting heuristics, though variable and di�cult behaviour is not apparent tilllarger N. In x5 we show that non-heuristic re�nements to the Davis-Putnam procedurealso appear unable to eliminate this behaviour. This suggests that the occurrence ofextraordinarily hard problems in highly satis�able regions is of great importance to theunderstanding of the hardness of satis�ability problems.4 Critically Constrained ProblemsOne explanation for the extraordinary di�culty of some problems in the mostly satis-�able region is that these problems are just unsatis�able or are satis�able but give riseto subproblems which are just unsatis�able. Such problems are \critically constrained".That is, there are just enough constraints to make the problems unsatis�able but nomore than that. The Davis-Putnam procedure therefore has very little informationabout the best variable for splitting, and the best truth value to assign it. In addition,there is very little information for simplifying the resulting clauses. The problems areon a knife-edge between being satis�able and unsatis�able. As there is little informationto suggest which it is, we must search through a large number of truth assignments todetermine satis�ability.The split rule is the only rule which gives rise to exponential behaviour. The otherrules simplify the problem and do not branch the search. For instance, the unit and purerules take advantage of constraints to commit to particular truth assignments. The poorperformance of Davis-Putnam thus arises due to a large number of splits compared tounit propagations and pure literal deletions. We conjecture therefore that both the unitand pure rules will be of less importance in the mostly satis�able region. In Figure 3 (a)we plot the mean ratio of pure literal deletions to splits, of unit propagations to splitsand of the sum of pure literal deletions and unit propagations to splits for CP at N=150.Since the split rule is merely formalised guessing, the last of these ratios indicates thenumber of variable assignments that can be deduced for each guess during search. Toavoid division by zero, we exclude the trivial problems which tend to occur at small L/Nwhich are solved with no splits. Such problems can be solved in polynomial time usinga simple preprocessing step which exhaustively applies the unit and pure rules. Theminimum in the mean ratio of the sum of units and pures to splits is 11.0 and occurs atL=N = 2:4, close to the region of most variable problem di�culty.4
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We also implemented a restricted version of the binary rule which just determines thesatis�ability of the binary clauses and does not simplify on any of the literals. Althoughthis restricted rule is less expensive, it appears to be of little use in reducing search; forCP at N=100, 2Np = 3, it closed at most 20% of branches at large L=N but less than 3%of branches in the region of the constraint gap. It had little a�ect on mean behaviour. Itremains to be seen if other constraints (eg. those on Horn or near Horn clauses) can beused to overcome the constraint gap, but we see no reason to expect this to be possible.6 Random k-SATAlthough the constant probability model has been the focus of much theoretical study(see for example [10]), most recent experimental work has been on the phase transitionof random 3-SAT [12, 3, 11]. A problem in random k-SAT consists of L clauses, each ofwhich has exactly k literals chosen uniformly from the N possible variables, each literalbeing positive or negative with probability 12 .We have observed a very similar constraint gap in 3-SAT to that seen for CP. InFigure 4 (b) we plot the mean ratio of propagations to splits and the mean minimumsearch depth for 3-SAT problems at N=50.4 Again we omit problems solved by con-straint propagation alone. The ratio of propagations to splits is very similar to Figure 3(a), and reaches a minimum of 3.7 at L=N = 2:4. The graph of minimum search depthis very similar to Figure 3 (b), and reaches a maximum of 11.1 at L=N = 2:6. Thegraphs clearly illustrate the inverse relationship between search depth and constraintpropagation, and the existence of a constraint gap away from the phase transition.To date, we do not have conclusive evidence that the very variable behaviour de-scribed in x3 is found with random k-SAT. However, given the existence of a constraintgap, it is likely that the behaviour is present, but is just more di�cult to observe thanin CP. Crawford and Auton, for instance, have observed some problems in an otherwiseeasy region of random 3-SAT for L=N � 2 that were as hard as the hard problemsfrom the phase transition where L=N � 4:3 [3]. To investigate this further, we compared100,000 problems from 3-SAT at N = 50 and L=N set to 2 and 4.3 with a simpli�edversion of the DP used in previous studies [12, 6] in which the pure rule is omitted.Remarkably, while problems at L/N=2 were typically very easy, one problem was nearly60 times harder than the worst case at L/N=4.3. Yet this one problem was the onlyproblem which needed more than 1000 branches to solve at L=N = 2, compared to 21such problems at L=N = 4:3. Further details of the number of branches searched aregiven below. L=N Prob(sats) median mean s.d. worst case2.0 1 1 2.34 313 98,9964.3 0.566 125 146 124 1,670Although tentative, the evidence presented here of variable behaviour at L=N � 2 iscertainly consistent with the constraint gap observed in Figure 4 (b).4From L=N = 0:2 to 6 in intervals of 0.2 we tested 1000 problems at each point.7
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satis�able problems generated by the CP model for N=10 and 15. As before, we �x2Np = 3. Computational limits prevented us from using larger N.The peak mean number of prime implicates occurs at L=N = 2:2 for N= 15, and at2.4 at N= 10. This corresponds closely to the region of very variable problem di�cultyseen in x3, the constraint gap identi�ed in x4, and the maximum in the depth of search.We expected the length of the prime implicates to be related to the di�culty of SATproblems since a branch closes if and only if it contains the negations of all the literals ofone of the prime implicates. The solution depth and problem di�culty should thereforedepend on the length of the prime implicates. Figure 6 (b) suggests, however, that ifthere is a correlation between the length of prime implicates and problem di�culty thenit is not as direct as that with the number of prime implicates.10 Related WorkHogg and Williams have observed extremely variable problem di�culty for graph colour-ing using both a backtracking algorithm based on the Berlaz heuristic and a heuristicrepair algorithm [8]. They found that the hardest graph colouring problems were inan otherwise easy region of graphs of low connectivity. The median search cost, bycomparison, shows the usual easy-hard-easy pattern through the phase transition.In an empirical study of the phase transition for random 3-SAT and the CP modelusing the Davis-Putnam procedure, Mitchell et al. noted that the mean is in
uencedby a very small number of very large values [12]. Their study therefore concentratedsolely on the median as they felt that \it appears to be a more informative statistic".Our results suggest that the distribution of values is, in fact, of considerable importancein understanding problem di�culty, and that the median alone provides a somewhatincomplete picture.In another empirical study of random 3-SAT using a tableau based procedure, Craw-ford and Auton observed a secondary peak in mean problem di�culty in a region ofhigh satis�ability [3]. However, they noted that this peak did not seem to occur withthe Davis-Putnam procedure and speculated that it was probably an artifact of thebranching heuristics used by their procedure. Subsequently, as mentioned before, Craw-ford and Schrag have suggested that this peak might be related to the number of primeimplicates. Our results suggest that this secondary peak also occurs with the Davis-Putnam procedure, but that it requires larger problems and larger sample sizes to bedemonstrated convincingly.11 ConclusionsWe have performed a detailed experimental investigation of the phase transition forfour di�erent classes of randomly generated satis�ability problems. With each problemclass, the median problem di�culty displays an easy-hard-easy pattern with the hardestproblems being associated with the phase transition. We have shown, however, that the\conventional" picture of easy-hard-easy behaviour is inadequate since the distribution ofproblem di�culties has several other important features. In particular, all the problem10
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