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Abstract:

We describe a detailed experimental investigation of the phase transition for several
different classes of satisfiability problems including random k-SAT, the constant prob-
ability model, and encodings of k-colourability and the independent set problem. We
show that the conventional picture of easy-hard-easy behaviour is inadequate. In each
of the problem classes, although median problem difficulty shows an easy-hard-easy pat-
tern, there is also a region of very variable problem difficulty. Within this region, we
have found problems orders of magnitude harder than those in the middle of the phase
transition. These extraordinary problems can easily dominate the mean problem dif-
ficulty. We report experimental evidence which strongly suggests that this behaviour
is due to a “constraint gap”, a region where the number of constraints on variables is
minimal while simultaneously the depth of search required to solve problems is maximal.
We also report results suggesting that better algorithms will be unable to eliminate this
constraint gap and hence will continue to find very difficult problems in this region.
Finally, we report an interesting correlation between these variable regions and a peak
in the number of prime implicates. We predict that these extraordinarily hard problems
will be of considerable use in analysing and comparing the performance of satisfiability
algorithms.

*Available as Research Paper 680 from the Department of Artificial Intelligence, University of
Edinburgh.



1 Introduction

Many randomly generated NP-hard problems display a phase transition as some order
parameter is varied, and as the problems go from being almost always soluble to being
almost always insoluble [2]. This phase transition is often associated with problems
which are typically hard to solve. In this paper, we show that with several different
classes of satisfiability problems including random 3-SAT, the phase transition is indeed
associated with problems which are typically hard but there are also regions in which
problems are usually easy but sometimes extraordinarily hard. We postulate that this
behaviour occurs when problems are “critically constrained”. That is, when search
must proceed to great depths because of the absence of easily observable constraints.
We confirm this experimentally by demonstrating the existence of a “constraint gap”
for the Davis Putnam procedure, the best known complete procedure for satisfiability.
The constraint gap occurs in regions where most problems are satisfiable, and the ratio
of constraint propagations to search branching reaches a sharp minimum, while the
depth of search reaches a corresponding maximum. We predict that similar regions
of very variable problem difficulty will be found with many other NP-hard problems
besides satisfiability. The extraordinarily hard problems found in these regions may
be of considerable use in analysing and comparing the performance of algorithms for

NP-hard problems.

2 Satisfiability

Satisfiability (or SAT) is the problem of deciding if there is an assignment for the
variables in a propositional formula that makes the formula true. We will consider
SAT problems in conjunctive normal form (CNF); a formula, ¥ is in CNF iff it is
a conjunction of clauses, where a clause is a disjunction of literals, and a literal is a
negated or un-negated variable. SAT is of considerable practical interest as many Al
tasks like constraint satisfaction, diagnosis and planning can be encoded quite naturally
in SAT. It is also of considerable theoretical interest as it is the archetypical NP-hard
problem.

Figure 1). A standard procedure for determining satisfiability is due to Davis and
Putnam [4] (see To simplify a set of clauses with respect to a partial truth assignment,
we delete each clause that is satisfied by the partial truth assignment, and in every other
clause delete any literals that contradict the partial truth assignment. Note that the
Davis-Putnam procedure is non-deterministic since the literal used by the split rule is
unspecified. As in previous studies (eg. [12, 6]), we will split upon the first literal in
the first clause. We call this variant of the Davis-Putnam procedure “DP”. Despite its
simplicity, with efficient implementation and good heuristics for choosing literals to split
on, the Davis-Putnam procedure is still the best complete procedure for satisfiability [5].

3 Constant Probability Model

In the constant probability model, given N variables, each of the 2N possible literals is
included in a clause with probability p. Our experiments use a variant of the constant



procedure DP(Y)
if ¥ empty then return satisfiable
if ¥ contains an empty clause then return unsatisfiable
(Tautology) if ¥ contains a tautologous clause ¢ then return DP(X — {¢})
(Unit propagation) if ¥ contains a unit clause ¢ then
return DP(X simplified by assigning truth value which satisfies ¢)
(Pure literal deletion) if ¥ contains a literal [ but not the negation of [ then
return DP(X simplified by assigning truth value which satisfies [)
(Split) if DP(X simplified by assigning a variable arbitrarily) is satisfiable
then return satisfiable
else return DP(X simplified by assigning variable opposite value)

Figure 1: The Davis-Putnam Procedure
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Figure 2: random CP problems tested using DP, N= 150. Note log scales

probability model proposed in [9] and since used in other experimental studies [12, 6]. In
this problem class, empty and unit clauses are discarded and replaced by longer clauses
since the inclusion of empty or unit clauses typically makes problems easier. We call
this the “CP” model. In all our experiments, as in [12, 7], we choose p so that 2Np = 3
and the mean clause length remains approximately constant as N varies. In [7], Gent
and Walsh show that the position of the phase transition occurs at fixed L/N when 2Np
is kept constant.

In Figure 2 (a) we plot the mean and median number of branches used by DP for
the CP model at N = 150.! The number of branches is the number of leaf nodes in
the search tree, and is an indication of problem difficulty. The dotted line indicates
the observed probability that problems were satisfiable. Despite the log scale, there

'From L/N = 0.2 to 6 in intervals of 0.2 we tested 1000 problems at each point.



is a very considerable difference between mean and median performance. The worst
case mean of 1,009 branches occurs at L/N = 2.6 in a mostly satisfiable region, whilst
the worst case median of just 18 branches occurs at L/N = 3.8 in the middle of the
phase transition. Problem difficulty in the mostly satisfiable region was very variable.
Figure 2 (b) gives a breakdown in percentiles for the number of branches used from 50%
(median) up to 100% (worst case). The worst case was 981,018 branches at L/N = 2.6,
while at L/N = 3.8, the point of worst median performance, the worst case was just
8,982 branches, two orders of magnitude smaller. Comparison of Figure 2 (a) and (b)
clearly shows that worst case behaviour is responsible for almost all the features seen in
the mean in mostly satisfiable region.

In [6], Gent and Walsh have shown that similar behaviour for CP is observed with
better splitting heuristics, though variable and difficult behaviour is not apparent till
larger N. In §5 we show that non-heuristic refinements to the Davis-Putnam procedure
also appear unable to eliminate this behaviour. This suggests that the occurrence of
extraordinarily hard problems in highly satisfiable regions is of great importance to the
understanding of the hardness of satisfiability problems.

4 Critically Constrained Problems

One explanation for the extraordinary difficulty of some problems in the mostly satis-
fiable region is that these problems are just unsatisfiable or are satisfiable but give rise
to subproblems which are just unsatisfiable. Such problems are “critically constrained”.
That is, there are just enough constraints to make the problems unsatisfiable but no
more than that. The Davis-Putnam procedure therefore has very little information
about the best variable for splitting, and the best truth value to assign it. In addition,
there is very little information for simplifying the resulting clauses. The problems are
on a knife-edge between being satisfiable and unsatisfiable. As there is little information
to suggest which it is, we must search through a large number of truth assignments to
determine satisfiability.

The split rule is the only rule which gives rise to exponential behaviour. The other
rules simplify the problem and do not branch the search. For instance, the unit and pure
rules take advantage of constraints to commit to particular truth assignments. The poor
performance of Davis-Putnam thus arises due to a large number of splits compared to
unit propagations and pure literal deletions. We conjecture therefore that both the unit
and pure rules will be of less importance in the mostly satisfiable region. In Figure 3 (a)
we plot the mean ratio of pure literal deletions to splits, of unit propagations to splits
and of the sum of pure literal deletions and unit propagations to splits for CP at N=150.
Since the split rule is merely formalised guessing, the last of these ratios indicates the
number of variable assignments that can be deduced for each guess during search. To
avoid division by zero, we exclude the trivial problems which tend to occur at small L/N
which are solved with no splits. Such problems can be solved in polynomial time using
a simple preprocessing step which exhaustively applies the unit and pure rules. The
minimum in the mean ratio of the sum of units and pures to splits is 11.0 and occurs at
L/N = 2.4, close to the region of most variable problem difficulty.
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Figure 3: random CP problems tested using DP, N= 150.

These graphs confirm that the unit and pure rules are not effective in the region of
very variable problem difficulty. There appears to be a “constraint gap” in this region.
That is, the unit and pure rules are often unable to identify any constraint on the truth
assignments. We are thus forced to use the split rule extensively. This would suggest
that the depth of search (i.e. the depth of nesting of split rule applications) would also
peak in this region. In Figure 3 (b), we plot the mean minimum, and mean maximum
depth of search. The peak of the minimum depth is 13.4 at L/N = 2.6, while the peak
of maximum depth is 15.6 at L/N = 2.8. This coincides closely with the minimum in
the ratio of the sum of units and pures to splits, and with the position of the variable
region. For unsatisfiable problems, a peak in minimum search depth corresponds to an
exponentially larger peak in problem difficulty, as all branches must be searched to at
least the minimum depth of the tree. We confirmed this be plotting the logarithm of
problem difficulty for unsatisfiable problems alone. This was approximately proportional
to mean minimum search depth.

A very interesting question is whether the constraint gap occurs with incomplete
procedures which can only solve satisfiable problems. One such procedure is GSAT [13].
Although we have investigated this point experimentally, we have as yet failed to find
any strong evidence for variable behaviour or for a constraint gap in experiments, for
instance, on CP at N = 150. Procedures like GSAT do not necessarily explore the
whole search space, and so may avoid the exponential growth in search discussed above.
Variable behaviour may, however, exist for such procedures but only at larger N.

5 Binary Rule

There are other constraints which might be expected to narrow or even remove this
constraint gap. For instance, one of the major features of the CP model which distinguish
it from other problem classes like random k-SAT (see next section) is the variable length
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Figure 4: CP using DP+4(Binary), and random 3-SAT using DP for N= 50

of clauses, and, in particular, the large numbers of binary clauses. Since there exists a
linear time algorithm for the satisfiability of binary clauses [1], we have augmented DP
with the following rule:

(Binary) if the binary clauses of (X simplified with the literal [ set to True) are unsat-
isfiable then set [ to Flalse.

This rule has a non-deterministic choice of literal; this may affect the number of pure,
unit or binary rules applied but not the number of splits.

In Figure 4 (a) we plot the mean ratios of the number of applications of the binary
rule to splits and of the sum of the unit, pure and binary rules to splits for CP at N=50.
As in §3 we fix 2Np = 3. 2 The binary rule allows a significant number of unsatisfiable
problems to be solved without search, and as before these are omitted from the figure,
accounting for some noise at large L./N. The ratios of unit and pure rule propagations
to splits are similar to those in Figure 3 (a). Note that there are comparatively few
applications of the binary rule compared to splits® and, like the unit rule, the utility of
the binary rule increases with L/N. Although the binary rule reduces search significantly
(the peak mean number of branches goes down from approximately 6 to 1.31), it does
not appear to be very effective in the variable region. This suggests that the binary rule
will not eliminate the constraint gap nor variable behaviour. Indeed, we found tentative
evidence of variability. At /N = 2.6, one problem needed 75 branches, almost 3 times
more than the next worse case over the whole experiment. The minimum value for the
ratio of all propagations to splits also occurred at L/N =2.6, and was 10.8. Given the
change in problem size and procedure, it is surprising that this value is so close to the
value of 11.0 observed in §4.

2From L/N = 0.2 to 6 in intervals of 0.2 we tested 1000 problems at each point.
3This may be affected by our implementation, in which the binary rule is only applied if the com-
putationally cheaper pure and unit rules fail.



We also implemented a restricted version of the binary rule which just determines the
satisfiability of the binary clauses and does not simplify on any of the literals. Although
this restricted rule is less expensive, it appears to be of little use in reducing search; for
CP at N=100, 2Np = 3, it closed at most 20% of branches at large L./N but less than 3%
of branches in the region of the constraint gap. It had little affect on mean behaviour. It
remains to be seen if other constraints (eg. those on Horn or near Horn clauses) can be
used to overcome the constraint gap, but we see no reason to expect this to be possible.

6 Random k-SAT

Although the constant probability model has been the focus of much theoretical study
(see for example [10]), most recent experimental work has been on the phase transition
of random 3-SAT [12, 3, 11]. A problem in random k-SAT consists of L clauses, each of
which has exactly £ literals chosen uniformly from the N possible variables, each literal
being positive or negative with probability %

We have observed a very similar constraint gap in 3-SAT to that seen for CP. In
Figure 4 (b) we plot the mean ratio of propagations to splits and the mean minimum
search depth for 3-SAT problems at N=50.* Again we omit problems solved by con-
straint propagation alone. The ratio of propagations to splits is very similar to Figure 3
(a), and reaches a minimum of 3.7 at L/N = 2.4. The graph of minimum search depth
is very similar to Figure 3 (b), and reaches a maximum of 11.1 at L./N = 2.6. The
graphs clearly illustrate the inverse relationship between search depth and constraint
propagation, and the existence of a constraint gap away from the phase transition.

To date, we do not have conclusive evidence that the very variable behaviour de-
scribed in §3 is found with random k-SAT. However, given the existence of a constraint
gap, it is likely that the behaviour is present, but is just more difficult to observe than
in CP. Crawford and Auton, for instance, have observed some problems in an otherwise
easy region of random 3-SAT for L./N ~ 2 that were as hard as the hard problems
from the phase transition where L./N & 4.3 [3]. To investigate this further, we compared
100,000 problems from 3-SAT at N = 50 and L/N set to 2 and 4.3 with a simplified
version of the DP used in previous studies [12, 6] in which the pure rule is omitted.
Remarkably, while problems at L./N=2 were typically very easy, one problem was nearly
60 times harder than the worst case at L/N=4.3. Yet this one problem was the only
problem which needed more than 1000 branches to solve at L/N = 2, compared to 21
such problems at L/N = 4.3. Further details of the number of branches searched are
given below.

L/N | Prob(sats) || median | mean | s.d. | worst case
20 |1 1| 234|313 98,996
4.3 | 0.566 125 146 | 124 1,670

Although tentative, the evidence presented here of variable behaviour at L/N = 2 is
certainly consistent with the constraint gap observed in Figure 4 (b).

4From L/N = 0.2 to 6 in intervals of 0.2 we tested 1000 problems at each point.
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Figure 5: Encodings of two NP-hard problems into SAT

7 k-Colourability

Another way of randomly generating SAT problems is to map random problems from
some other NP-hard problem into SAT. For example, the k-colourability (kCOL) of
random graphs can be easily mapped into SAT. Given a graph, GG the k-colourability
problem is to assign one of k labels to each vertex of (¢ so that adjacent vertices carry
different labels. For a graph with n vertices and e edges, our encoding of kCOL into
SAT uses n.k variables. We generate random graphs to encode into SAT by choosing
e edges from the n.(n — 1)/2 possible uniformly at random. We use x(n,e) to denote
graphs drawn from this class.

In Figure 5 (a) we plot the breakdown in percentiles for the number of branches used
by DP for encodings of 3-colourability for 1000 problems taken from y(n,e) with n = 40
and e/n = 0.5 to 4 in steps of 0.1. The worst case was 2,905,011 branches at ¢/n = 1.6,
while at ¢/n = 2.4, the point of worst median performance, the worst case was just 4,139
branches, 3 orders of magnitude smaller. As with the other random problem classes,
median problem difficulty shows a simple easy-hard-easy pattern through the phase
transition. Very similar behaviour for k-colourability was observed by Hogg and Williams
using two special purpose colouring algorithms [8]. We again observed a constraint gap
for this problem class, closely correlated with the variable region. For example, the
maximum depth of search reached a peak at e/n = 1.

8 Independent Set

Our final problem class is constructed by mapping the independent set problem (ISET)
into SAT. Given an integer k and a graph (V, ), the independent set problem is to find
a subset S C V of size k such that all vertices of S are independent (not connected to
each other). This is closely related to the clique problem since (V, ) has an independent
set of size k iff (V, F) has a clique of size k where E is the complement of £. For a graph
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with n edges, our encoding into SAT uses n.k variables. As before, we use random
graphs from y(n,e).

In Figure 5 (a) we plot the breakdown in percentiles for the number of branches
used by DP for encodings of the independent set problem for 1000 problems taken from
x(n,e) with k = 6, n = 12 and e¢/n = 75 to 4 in steps of . As before, the worst
case performance is found in the region of typically underconstrained and satisfiable
problems. The worst problem required 8,209 branches at 11 edges. By comparison,
median problem difficulty shows a simple easy-hard-easy pattern through the phase
transition. The peak median is 1,241 branches at 21 edges, where the worst case was
3,246 branches. We do not yet have conclusive evidence that the constraint gap occurs
with this problem class as the ratio of all propagations to splits is within 10.6 £+ 0.5
from 2 to 26 edges. Although the variable behaviour is not quite as dramatic as in our
previous experiments, it does fit well the pattern identified in this paper. We conjecture
therefore that variable behaviour will become more obvious with increasing n.

9 Prime Implicates

In an empirical study of the phase transition for random 3-SAT, Crawford and
Auton found a secondary peak in problem difficulty in a region of high satisfiability
[3]. Subsequently during a talk at AAAI-93, Crawford and Schrag observed that the
number of prime implicates for random 3-SAT appears to peak in the same region, and
suggested that the two phenomenon might be related.

A clause D is an implicate of a set of clauses C iff C' implies D. D is a prime
implicate iff it is an implicate and there is no other implicate F of C such that £
implies D. Since an unsatisfiable set of clauses has a single prime implicate, the empty
clause, the number and length of the prime implicates is not of help in understanding the
difficulty of unsatisfiable problems. In Figure 6 (a) and (b) we therefore plot the mean
number of prime implicates and their mean minimum, median and maximum length for



satisfiable problems generated by the CP model for N=10 and 15. As before, we fix
2Np = 3. Computational limits prevented us from using larger N.

The peak mean number of prime implicates occurs at L/N = 2.2 for N= 15, and at
2.4 at N= 10. This corresponds closely to the region of very variable problem difficulty
seen in §3, the constraint gap identified in §4, and the maximum in the depth of search.
We expected the length of the prime implicates to be related to the difficulty of SAT
problems since a branch closes if and only if it contains the negations of all the literals of
one of the prime implicates. The solution depth and problem difficulty should therefore
depend on the length of the prime implicates. Figure 6 (b) suggests, however, that if
there is a correlation between the length of prime implicates and problem difficulty then
it is not as direct as that with the number of prime implicates.

10 Related Work

Hogg and Williams have observed extremely variable problem difficulty for graph colour-
ing using both a backtracking algorithm based on the Berlaz heuristic and a heuristic
repair algorithm [8]. They found that the hardest graph colouring problems were in
an otherwise easy region of graphs of low connectivity. The median search cost, by
comparison, shows the usual easy-hard-easy pattern through the phase transition.

In an empirical study of the phase transition for random 3-SAT and the CP model
using the Davis-Putnam procedure, Mitchell et al. noted that the mean is influenced
by a very small number of very large values [12]. Their study therefore concentrated
solely on the median as they felt that “it appears to be a more informative statistic”.
Our results suggest that the distribution of values is, in fact, of considerable importance
in understanding problem difficulty, and that the median alone provides a somewhat
incomplete picture.

In another empirical study of random 3-SAT using a tableau based procedure, Craw-
ford and Auton observed a secondary peak in mean problem difficulty in a region of
high satisfiability [3]. However, they noted that this peak did not seem to occur with
the Davis-Putnam procedure and speculated that it was probably an artifact of the
branching heuristics used by their procedure. Subsequently, as mentioned before, Craw-
ford and Schrag have suggested that this peak might be related to the number of prime
implicates. Our results suggest that this secondary peak also occurs with the Davis-
Putnam procedure, but that it requires larger problems and larger sample sizes to be
demonstrated convincingly.

11 Conclusions

We have performed a detailed experimental investigation of the phase transition for
four different classes of randomly generated satisfiability problems. With each problem
class, the median problem difficulty displays an easy-hard-easy pattern with the hardest
problems being associated with the phase transition. We have shown, however, that the
“conventional” picture of easy-hard-easy behaviour is inadequate since the distribution of
problem difficulties has several other important features. In particular, all the problem

10



classes have a region of very variable problem difficulty where problems are typically
underconstrained and satisfiable. Within this region, we have found problems orders of
magnitude harder than problems in the middle of the phase transition.

We have presented evidence that these very hard problems arise because of a “con-
straint gap”; that is, in this region, there are few constraints on the assignment of truth
values to variables, requiring us occasionally to search through exponentially many pos-
sible truth assignments. As a consequence, the depth of the search tree also peaks in this
region. We have also shown that this gap cannot be eliminated even if we take advantage
of extra constraints (eg. those on the binary clauses). Finally, we have suggested that
the appearance of these very hard problems is related to the number of prime implic-
ates which peaks in this region. Given the wide range of problem classes that exhibit
this very variable and sometimes extraordinary hard problem difficulty, this behaviour
should be of considerable importance for the analysis of algorithms for satisfiability. In
addition, our connection of this variable behaviour with a constraint gap should help
researchers identify the hardest regions of other randomly generated problems for SAT

and other NP-hard problems.

Acknowledgements

This first author was supported by a SERC Postdoctoral Fellowship and the second by a
HCM Postdoctoral fellowship. We thank Alan Bundy, Pierre Lescanne, Bob Constable,
and the members of the Mathematical Reasoning Group at Edinburgh (supported by
SERC grant GR/H 23610), the Eureca group at INRIA-Lorraine, and the Department of

Computer Science at Cornell University, for their constructive comments and for rather

a lot of CPU cycles.

References

[1] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the
truth of certain quantified Boolean formulas. Information Processing Letters, 8:121—

123, 1979.

[2] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems are.
In Proceedings of the 12th IJCAIL pages 163-169. 1991.

[3] J.M. Crawford and L.D. Auton. Experimental results on the crossover point in satis-
fiability problems. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 21-27. AAAT Press/The MIT Press, 1993.

[4] M. Davis and H. Putnam. A computing procedure for quantification theory. .J.
Assoctation for Computing Machinery, 7:201-215, 1960.

[5] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. In Pro-
ceedings of the Second DIMACS Challenge, 1993.

[6] I.LP. Gent and T. Walsh. Easy problems are sometimes hard. Research Paper 642,
Dept. of Artificial Intelligence, Edinburgh, June 27 1993.

11



7]
[3]

[9]

[10]

[11]

[.P. Gent and T. Walsh. The SAT phase transition. Research paper, Department
of Artificial Intelligence, University of Edinburgh, 1994.

T. Hogg and C. Williams. The Hardest Constraint Problems: A Double Phase
Transition. Technical report, Dynamics of Computation Group, Xerox Palo Alto

Research Center, 1993. PARC Preprint.

J. N. Hooker and C. Fedjki. Branch-and-cut solution of inference problems in
propositional logic. Annals of Mathematics and Artificial Intelligence, 1:123-139,
1990.

P.W. Purdom Jr. and C.A. Brown. The pure literal rule and polynomial average
time. SIAM Journal of Computing, 14(4):943-953, November 1985.

T. Larrabee and Y. Tsuji. Evidence for a Satisfiability Threshold for Random
3CNF Formulas. Technical Report UCSC-CRL-92-42, Baskin Center for Computer
Engineering and Information Sciences, University of California, Santa Cruz, 1992.
D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT

problems. In Proceedings, 10th National Conference on Artificial Intelligence. AAAI
Press/The MIT Press, July 12-16 1992.

B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiab-
ility problems. In Proceedings, 10th National Conference on Artificial Intelligence.
AAAI Press/The MIT Press, 1992.

12



