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ABSTRACT

The h-index is an important bibliographic measure used to assess the performance of researchers.
Dutiful researchers merge different versions of their articles in their Google Scholar profile even
though this can decrease their h-index. In this article, we study themanipulation of the h-index by
undoing suchmerges. In contrast tomanipulation bymerging articles, suchmanipulation is harder
to detect.We present numerous results on computational complexity (from linear-time algorithms
to parameterized computational hardness results) and empirically indicate that at least small
improvements of the h-index by splitting merged articles are unfortunately easily achievable.

1. INTRODUCTION

We suppose that an author has a publication profile, for example in Google Scholar, that consists
of single articles and aims to increase her or his h-index1 by merging articles. This will result in a
new article with a potentially higher number of citations. The merging option is provided by
Google Scholar to identify different versions of the same article, for example a journal version
and its archived version.

Our main points of reference are three publications dealing with the manipulation of the
h-index, particularly motivated by Google Scholar author profile manipulation (de Keijzer & Apt,
2013; Pavlou & Elkind, 2016; van Bevern, Komusiewicz, et al., 2016b). Indeed, we will closely
follow the notation and concepts introduced by van Bevern et al. (2016b) and we refer to this work
for discussion of related work concerning strategic self-citations to manipulate the h-index
(Bartneck & Kokkelmans, 2011; Delgado López-Cózar, Robinson-García, & Torres-Salinas,

* An extended abstract of this article appeared in the proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI ’16; Komusiewicz, van Bevern, et al., 2016a). This full version contains addi-
tional, corrected experimental results, and strengthened hardness results (Theorem 5). The following errors
in the previously performed computational experiments were corrected: (a) The algorithm (Ramsey) for gen-
erating initially merged articles was previously not described accurately. The description is now more
accurate and we consider additional algorithms to avoid bias in the generated instances. (b) Two authors
from the ai10-2011 and ai10-2013 data sets with incomplete data have been used in the computational
experiments; these authors are now omitted. (c) There were several technical errors in the code relating
to the treatment of article and cluster identifiers of the crawled articles. This led to inconsistent instances
and thus erroneous possible h-index increases. All of these errors have been corrected.

1 The h-index of a researcher is the maximum number h such that he or she has at least h articles each cited at
least h times (Hirsch, 2005).
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2014; Vinkler, 2013), other citation indices (Egghe, 2006; Pavlou & Elkind, 2016; Woeginger,
2008), and manipulation in general (Faliszewski & Procaccia, 2010; Faliszewski, Hemaspaandra,
& Hemaspaandra, 2010; Oravec, 2017). The main difference between this work and previous
publications is that they focus on merging articles for increasing the h-index (Bodlaender & van
Kreveld, 2015; de Keijzer & Apt, 2013; Pavlou & Elkind, 2016; van Bevern et al., 2016b) or other
indices, such as g-index and the i10-index (Pavlou & Elkind, 2016), while we focus on splitting.

In the caseof splitting,weassume that,most of the time, an authorwillmaintain a correct profile
inwhich all necessarymerges are performed. Some of thesemergesmay decrease the h-index. For
instance, this can be the case when the two most cited papers are the conference and archived
version of the same article. A very realistic scenario is that at certain times, for examplewhen being
evaluated by their dean2, authors may temporarily undo some of these merges to artificially
increase their h-index. A further point that distinguishes manipulation by splitting from manipula-
tion bymerging is that formerging it is easier to detectwhether someone cheats toomuch. This can
be done by looking at the titles of merged articles (van Bevern et al., 2016b). In contrast, it is much
harder to prove that someone is manipulating by splitting; themanipulator can always claim to be
too busy or that he or she does not know how to operate the profile.

The main theoretical conclusion from our work is that h-index manipulation by splitting
merged articles3 is typically computationally easier than manipulation by merging. Hence,
undoing all merges and then merging from scratch might be computationally intractable in some
cases, while, in contrast, computing an optimal splitting is computationally feasible. The only
good news in terms of problem complexity (and, in a way, a recommendation) is that, if one were
to use the citationmeasure “fusionCite” as definedby vanBevern et al. (2016b), thenmanipulation
is computationally much harder than for the “unionCite”measure used by Google Scholar. In the
practical part of our work, we experimented with data from Google Scholar profiles (van Bevern
et al., 2016b).

1.1. Models for Splitting Articles

We consider the publication profile of an author and denote the articles in this profile byW � V,
where V is the set of all articles. Following previous work (van Bevern et al., 2016b), we call these
articles atomic. Merging articles yields a partitionP ofW in which each part P 2 Pwith |P| ≥ 2 is a
merged article.

Given a partitionP ofW, the aim of splitting merged articles is to find a refined partitionRofP
with a larger h-index, where the h-index of a partition P is the largest number h such that there are
at least h parts P 2 P whose number μ(P) of citations is at least h. Herein, we have multiple
possibilities of defining the number μ(P) of citations of an article in P (van Bevern et al., 2016b).
The first one, sumCite(P), was introduced by de Keijzer and Apt (2013), and is simply the sum of the
citations of each atomic article in P. Subsequently, van Bevern et al. (2016b) introduced the cita-
tion measures unionCite (used by Google Scholar), where we take the cardinality of the union of
the citing atomic articles, and fusionCite, where we additionally remove self-citations of merged
articles as well as duplicate citations between merged articles. In generic definitions, we denote
these measures by μ (see Figure 1 for an illustration and Section 2 for the formal definitions). Note

2 Lesk (2015) pointed out that the h-index is the modern equivalent of the old saying “Deans can’t read, they
can only count.” He also remarked that the idea of “least publishable units” by dividing one’s reports into
multiple (short) papers has been around since the 1970s.

3 Google Scholar allows authors to group different versions of an article. We call the resulting grouping a
merged article. Google Scholar author profiles typically contain many merged articles (e.g., an arXiv version
with a conference version and a journal version).
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that, to compute these citation measures, we need a citation graph: a directed graph whose
vertices represent articles and in which an arc from a vertex u to a vertex v means that article u
cites article v.

In this work, we introduce three different operations that may be used for undoing merges
in a merged article a:

Atomizing: splitting a into all its atomic articles,
Extracting: splitting off a single atomic article from a, and
Dividing: splitting a into two parts arbitrarily.

See Figure 2 for an illustration of the three splitting operations. Note that the atomizing, extracting,
and dividing operations are successively strictly more powerful in the sense that successively
larger h-indices can be achieved. Google Scholar offers the extraction operation. Multiple appli-
cations of the extraction operation can, however, simulate atomizing and, together with merging,
also dividing.

The three splitting operations lead to three problem variants, each taking as input a citation
graph D = (V, A), a setW � V of articles belonging to the author, a partition P ofW that defines
already-merged articles, and a nonnegative integer h denoting the h-index to achieve. For μ 2
{sumCite, unionCite, fusionCite}, we define the following problems.

ATOMIZING(μ)

Question: Is there a partition R of W such that

1. for each R 2 R either |R| = 1 or there is a P 2 P such that R = P,
2. the h-index of R with respect to μ is at least h?

Figure 1. Vertices represent articles, arrows represent citations, and numbers are citation counts.
The articles on a gray background in (a) have been merged in (b)–(d), and citation counts are given
according to the measures sumCite, unionCite, and fusionCite, respectively. The arrows represent
the citations counted by the corresponding measure.

Figure 2. Vertices represent articles, arrows represent citations, and numbers are citation counts.
The articles on a gray background have been merged in the initial profile (a) and correspond to
remaining merged articles after applying one operation in (c) and (d). Each (merged) article has
the same citation count, regardless of the used measure: sumCite, unionCite, and fusionCite.
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EXTRACTING(μ)

Question: Is there a partition R of W such that

1. for each R 2 R there is a P 2 P such that R � P,
2. for each P 2 P we have |{R 2 R | R � P and |R| > 1}| ≤ 1,
3. the h-index of R with respect to μ is at least h?

DIVIDING(μ)

Question: Is there a partition R of W such that

1. for each R 2 R there is a P 2 P such that R � P,
2. the h-index of R with respect to μ is at least h?

1.2. Conservative Splitting

We study for each of the problem variants an additional upper bound on the number of merged
articles that are split. We call these variants conservative: If an insincere author would like to
manipulate his or her profile temporarily, then he or she might prefer a manipulation that can
be easily undone. To formally define CONSERVATIVE ATOMIZING, CONSERVATIVE EXTRACTING, and
CONSERVATIVE DIVIDING, we add the following restriction to the partition R: “the number |P \ R|
of changed articles is at most k.”

A further motivation for the conservative variants is that, in a Google Scholar profile, an
author can click on a merged article and tick a box for each atomic article that he or she wants
to extract. As Google Scholar uses the unionCite measure (van Bevern et al., 2016b),
Conservative Extracting(unionCite) thus corresponds closely to manipulating the Google
Scholar h-index via few of the splitting operations available to the user.

1.3. Cautious Splitting

For each splitting operation, we also study an upper bound k on the number of split operations.
Following our previous work (van Bevern et al., 2016a), we call this variant cautious. In the case
of atomizing, conservativity and caution coincide, because exactly one operation is performed per
changed article. Thus, we obtain two cautious problem variants: CAUTIOUS EXTRACTING and CAUTIOUS

DIVIDING. For both we add the following restriction to the partition R: “the number |R| − |P| of ex-
tractions (or divisions, respectively) is at most k.” In both variantswe consider k to be part of the input.

1.4. Our Results

We investigate the parameterized computational complexity of our problem variants with respect to
the parameters “the h-index h to achieve,” and in the conservative case “the number k of modified
merged articles,” and in the cautious case “the number k of splitting operations.” To put it briefly, the
goal is to exploit potentially small parameter values (that is, special properties of the input instances)
to gain efficient algorithms for problems that are in general computationally hard. In our context, the
choice of the parameter h ismotivated by the scenario that young researchersmay have an incentive
to increase their h-index and, because they are young, the h-index h to achieve is not very large. The
conservative and cautious scenario tries to capture that the manipulation can easily be undone or is
hard to detect, respectively. Hence, it is well motivated that the parameter k shall be small. Our
theoretical (computational complexity classification) results are summarized in Table 1 (see
Section 2 for further definitions). Themeasures sumCite and unionCite behave in basically the same
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way. In particular, in the case of atomizing and extracting, manipulation is doable in linear time,
while fusionCite mostly leads to (parameterized) intractability; that is, to high worst-case computa-
tional complexity. Moreover, the dividing operation (the most general one) seems to lead to com-
putationally much harder problems than atomizing and extracting.

We performed computational experimentswith real-world data (van Bevern et al., 2016b) and
the mentioned linear-time algorithms, in particular for the case directly relevant to Google
Scholar; that is, using the extraction operation and the unionCite measure. Our general findings
are that increases of theh-index by one or two typically are easily achievablewith fewoperations.
The good news is that dramatic manipulation opportunities due to splitting are rare. They cannot
be excluded, however, and they could be easily executed when relying on standard operations
andmeasures (as used inGoogle Scholar).Workingwith fusionCite instead of the other two could
substantially hamper manipulation.

2. PRELIMINARIES

Throughout this work, we use n := |V| for the number of input articles andm := |A| for the overall
number of arcs in the input citation graphD= (V,A). ByW�Vwedenote the articles in the author
profile thatwe aremanipulating. Let degin(v) denote the indegree of an article v in a citation graph
D= (V,A); that is, v’s number of citations. Furthermore, letN in

D(v) := {u | (u, v)2A} denote the set of
articles that cite v andN in

D−W(v) := {u | (u, v)2A^ u =2W} be the set of articles outsideW that cite v.
For each part P 2 P, the following three measures for the number μ(P) of citations of P have been
introduced (van Bevern et al., 2016b). They are illustrated in Figure 1. The measure

sumCite Pð Þ :¼
X
v2P

degin vð Þ

Table 1. Time complexity of manipulating the h-index by splitting operations (see Section 2 for
definitions). For all FPT and W[1]-hardness results we also show NP-hardness

Problem sumCite / unionCite fusionCite
Atomizing Linear (Theorem 1) FPT† (Theorems 5 and 6)

Conservative A. Linear (Theorem 1) W[1]-h? (Theorem 7)

Extracting Linear (Theorem 2) NP-h� (Theorem 5)

Conservative E. Linear (Theorem 2) W[1]-h? (Corollary 1)

Cautious E. Linear (Theorem 2) W[1]-h? (Corollary 1)

Dividing FPT† (Theorem 3) NP-h� (Proposition 1)

Conservative D. FPT†,‡ (Theorem 3) W[1]-h? (Corollary 1)

Cautious D. W[1]-h},� (Theorem 4) W[1]-h? (Corollary 1)

† wrt. parameter h, the h-index to achieve.
} wrt. parameter k, the number of operations.
? wrt. parameter h + k + s, where s is the largest number of articles merged into one.
‡ NP-hard even if k = 1 (Proposition 1).
� Parameterized complexity wrt. h open.
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defines thenumber of citations of amergedarticleP as the sumof the citations of the atomic articles
it contains. This measure was proposed by de Keijzer and Apt (2013). In contrast, the measure

unionCite Pð Þ :¼
[
v2P

N in
D vð Þ

�����
�����

defines the number of citations of amerged article P as the number of distinct atomic articles citing
at least one atomic article in P. Google Scholar uses the unionCite measure (van Bevern et al.,
2016b). The measure

fusionCite Pð Þ :¼
[
v2P

N in
D−W vð Þ

�����
�����þ

X
P0 2P n Pf g

1 if 9v 2 P09w 2 P : v;wð Þ 2 A;
0 otherwise

�

is perhaps themost natural one: At most one citation of a part P 0 2 P to a part P2P is counted; that
is, we additionally remove duplicate citations between merged articles and self-citations of
merged articles.

Our theoretical analysis is in the framework of parameterized complexity (Cygan, Fomin, et al.,
2015;Downey&Fellows, 2013; Flum&Grohe, 2006;Niedermeier, 2006). That is, for those prob-
lems that are NP-hard, we study the influence of a parameter, an integer associated with the input,
on the computational complexity. For a problem P, we seek to decide P using a fixed-parameter
algorithm, an algorithmwith running time f (p) · |I|O(1), where I is the input and f (p) is a computable
function depending only on the parameter p. If such an algorithm exists, then P is fixed-parameter
tractable (FPT)with respect top.W[1]-hard parameterizedproblems presumably do not admit FPT
algorithms. For example, the problemof finding an order-k clique in an undirected graph is known
to be W[1]-hard for the parameter k. W[1]-hardness of a problem P parameterized by p can be
shown via a parameterized reduction from a known W[1]-hard problem Q parameterized by q.
That is, a reduction that runs in f (q) · nO(1) time on input of size n with parameter q and produces
instances that satisfy p ≤ f (q) for some function f.

3. SUMCITE AND UNIONCITE

In this section, we study the sumCite and unionCite measures. We provide linear-time algorithms
for atomizing and extracting and analyze the parameterized complexity of dividingwith respect to
the number k of splits and the h-index h to achieve. In our results for sumCite and unionCite, we

Algorithm 1: Atomizing

Input: A citation graph D = (V, A), a set W � V of articles, a partition P of W, a nonnegative
integer h and a measure μ.

Output: A partition R of W.

1 R  ;
2 foreach P 2 P do

3 A  Atomize(P)

4 if 9A 2 A: μ(A) ≥ h then R  R [ A
5 else R  R [ {P}

6 return R
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often tacitly use the observation that local changes to the merged articles do not influence the
citations of other merged articles.

3.1. Manipulation by Atomizing

Recall that the atomizing operation splits a merged article into singletons and that, for the at-
omizing operation, the notions of conservative (touching few articles) and cautious (making
few split operations) manipulation coincide and are thus both captured by CONSERVATIVE

ATOMIZING. Both ATOMIZING and CONSERVATIVE ATOMIZING are solvable in linear time. Intuitively,
it suffices to find the merged articles that, when atomized, increase the number of articles with
at least h citations the most. This leads to Algorithms 1 and 2 for ATOMIZING and CONSERVATIVE

ATOMIZING. Herein, the Atomize() operation takes a set S as input and returns {{s} | s 2 S}. The
algorithms yield the following theorem.

Theorem 1. ATOMIZING(μ) and CONSERVATIVE ATOMIZING(μ) are solvable in linear time for μ 2
{sumCite, unionCite}.

Proof. We first consider ATOMIZING(μ). Let R be a partition created from a partition P by
atomizing a part P* 2 P. Observe that for all P 2 P and R 2 R we have that P = R implies
μ(P) = μ(R), for μ 2 {sumCite, unionCite}. Intuitively, this means that atomizing a single part
P* 2 P does not alter the μ-value of any other part of the partition.

Algorithm 1 computes a partitionR that has amaximal number of parts Rwith μ(R) ≥ h that can
be created by applying atomizing operations to P: It applies the atomizing operation to each part
P 2 P if there is at least one singleton A in the atomization of P with μ(A) ≥ h. By the above

Algorithm 2: Conservative Atomizing

Input: A citation graph D = (V, A), a set W � V of articles, a partition P of W, nonnegative
integers h and k, and a measure μ.

Output: A partition R of W.

1 R  P
2 foreach P 2 P do

3 ℓP  0

4 A  Atomize(P)

5 ℓP  ℓP + |{A 2 A | μ(A) ≥ h}|

6 if μ(P) ≥ h then ℓP  ℓP – 1

7 for i  1 to k do

8 P*  arg maxP2P{ℓP}

9 if ℓP* > 0 then

10 A  Atomize(P*)

11 R  (R \ {P*}) [ A
12 ℓP*  −1

13 return R
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observation, this cannot decrease the total number of parts in the partition that have a μ-value of at
least h. Furthermore, we have that for allR2R, we cannot potentially increase the number of parts
with μ-value at least h by atomizing R. Thus, we get the maximal number of parts R with μ(R) ≥ h
that can be created by applying atomizing operations to P.

Obviously, ifRhas at least h parts R with μ(R) ≥ h, we face a yes-instance. Conversely, if the
input is a yes-instance, then there is a number of atomizing operations that can be applied to P
such that the resulting partition R has at least h parts R with μ(R) ≥ h and the algorithm finds
such a partition R. Finally, it is easy to see that the algorithm runs in linear time.

The pseudocode for solving CONSERVATIVE ATOMIZING(μ) is given in Algorithm 2. First, in Lines
2–6, for each part P, Algorithm 2 records how many singletons A with μ(A) ≥ h are created when
atomizingP. Then, in Lines 7–12, it repeatedly atomizes the part yielding themost such singletons.
This procedure creates themaximumnumber of parts that have a μ-value of at least h, because the
μ-value cannot be increased by exchanging one of these atomizing operations by another.

Obviously, ifR has at least h parts R with μ(R) ≥ h, then we face a yes-instance. Conversely, if
the input is a yes-instance, then there are k atomizing operations that can be applied to P to yield
an h-index of at least h. Because Algorithm 2 takes successively those operations that yield the
most new parts with h citations, the resulting partition R has at least h parts R with μ(R) ≥ h. It is
not hard to verify that the algorithm has linear running time. □

3.2. Manipulation by Extracting

Recall that the extracting operation removes a single article from a merged article. All variants
of the extraction problem are solvable in linear time. Intuitively, in the cautious case, it suffices
to find k extracting operations that each increase the number of articles with h citations. In the
conservative case, we determine for each merged article a set of extraction operations that
increases the number of articles with h citations the most. Then we use the extraction opera-
tions for those k merged articles that yield the k largest increases in the number of articles with
h citations. This leads to Algorithms 3–5 for EXTRACTING, CAUTIOUS EXTRACTING, and CONSERVATIVE

EXTRACTING, respectively, which yield the following theorem.

Algorithm 3: Extracting

Input: A citation graph D = (V, A), a set W � V of articles, a partition P of W, a nonnegative
integer h and a measure μ.

Output: A partition R of W.

1 R  ;
2 foreach P 2 P do

3 foreach v 2 P do

4 if μ({v}) ≥ h then

5 R  R [ {{v}}

6 P  P \ {v}

7 if P 6¼ ; then R  R [ {P}

8 return R
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Theorem 2. EXTRACTING(μ), CONSERVATIVE EXTRACTING(μ), and CAUTIOUS EXTRACTING(μ) are solv-
able in linear time for μ 2 {sumCite, unionCite}.

Proof. We first consider EXTRACTING(μ). LetRbe a partition produced from P by extracting an
article from a part P* 2 P. Recall that this does not alter the μ-value of any other part (i.e., for
all P 2 P and R 2 R, we have that P = R implies μ(P) = μ(R) for μ 2 {sumCite, unionCite}).

Algorithm 5: Conservative Extracting

Input: A citation graph D = (V, A), a set W � V of articles, a partition P of W, nonnegative
integers h and k, and a measure μ.

Output: A partition R of W.

1 foreach P 2 P do

2 ℓP  0

3 RP  ;
4 foreach v 2 P do

5 if μ({v}) ≥ h and μ(P \ {v}) ≥ h then

6 RP  RP [ {{v}}

7 P  P \ {v}

8 ℓP  ℓP + 1

9 if P = ; then RP  RP [ {P}

10 P*  the k elements of P 2 P with largest ℓP-values

11 R  S
P2P* RP [ (P \ P*)

12 return R

Algorithm 4: Cautious Extracting

Input: A citation graph D = (V, A), a set W � V of articles, a partition P of W, nonnegative
integers h and k, and a measure μ.

Output: A partition R of W.

1 R  ;
2 foreach P 2 P do

3 foreach v 2 P do

4 if k > 0 and μ({v}) ≥ h and μ(P \ {v}) ≥ h then

5 R  R [ {{v}}

6 P  P \ {v}

7 k  k – 1

8 if P 6¼ ; then R  R [ {P}

9 return R
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Consider Algorithm 3. It is easy to see that the algorithm only performs extracting operations
and that the running time is linear. So we have to argue that whenever there is a partition R
that can be produced by extracting operations from P such that the h-index is at least h, then
the algorithm finds a solution.

We show this by arguing that the algorithm produces the maximum number of articles with at
least h citations possible. Extracting an article that has strictly less than h citations cannot produce
an h-index of at least h unless we already have an h-index of at least h, because the number of
articles with h or more citations does not increase. Extracting an article with h or more citations
cannot decrease the number of articleswith h ormore citations. Hence, if there are no articles with
at least h citations that we can extract, we cannot create more articles with h or more citations.
Therefore, we have produced the maximum number of articles with h or more citations when the
algorithm stops.

The pseudocode for solving CAUTIOUS EXTRACTING(μ) is given in Algorithm 4.We perform up to k
extracting operations (Line 6). Each of them increases the number of articles that have h or more
citations by one. As Algorithm 4 checks each atomic article in each merged article, it finds k
extraction operations that increase the number of articles with h or more citations if they exist.
Thus, it produces the maximum possible number of articles that have h or more citations and that
can be created by k extracting operations.

To achieve linear running time, we need to compute μ(P \ {v}) efficiently in Line 4. This can be
done by representing articles as integers and using an n-element array A that stores throughout
the loop in Line 3, for each article w 2 Nin

D[P], the number A[w] of articles in P that are cited by
w. Using this array, one can compute μ(P \ {v}) inO(degin(v)) time in Line 4, amounting to overall
linear time. The time needed to maintain array A is also linear: We initialize it once in the begin-
ning with all zeros. Then, before entering the loop in Line 3, we can inO(|Nin

D(P)|) total time store
for each article v 2Nin

D[P], the numberA[w] of articles in P that are cited byw. To update the array
within the loop in Line 3, we need O(degin(v)) time if Line 6 applies. In total, this is linear time.

Finally, the pseudocode for solving CONSERVATIVE EXTRACTING(μ) is given in Algorithm 5. For each
merged article P 2 P, Algorithm 5 computes a set RP and the number ℓP of additional articles v
with μ(v) ≥ h that can be created by extracting. Then it chooses a set P* of kmerged articles P 2 P
with maximum ℓP and, from each P 2 P*, extracts the articles inRP.

This procedure creates the maximum number of articles that have a μ-value of at least hwhile
only performing extraction operations on at most k merges.

Obviously, if the solution R has at least h parts R with μ(R) ≥ h, then we face a yes-instance.
Conversely, if the input is a yes-instance, then there are k merged articles that we can apply
extraction operations to, such that the resulting partition R has at least h parts R with μ(R) ≥ h.
Because the algorithm produces the maximal number of parts R with μ(R) ≥ h, it achieves an
h-index of at least h.

The linear running time follows by implementing the check in Line 5 in O(degin(v)) time as

described for Algorithm4 and by using counting sort to find the k parts to extract from in Line 10. □

3.3. Manipulation by Dividing

Recall that the dividing operation splits a merged article into two arbitrary parts. First we con-
sider the basic and conservative cases and show that they are FPT when parameterized by the
h-index h. Then we show that the cautious variant is W[1]-hard when parameterized by k.
DIVIDING(μ) is closely related to H-INDEX MANIPULATION(μ) (van Bevern et al., 2016b; de Keijzer
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& Apt, 2013) which is, given a citation graph D = (V, A), a subset of articles W � V, and a
nonnegative integer h, to decide whether there is a partition P of W such that P has h-index h
with respect to μ. de Keijzer and Apt (2013) showed that H-INDEX MANIPULATION(sumCite) is NP-
hard, even if merges are unconstrained. The NP-hardness of H-INDEX MANIPULATION for μ 2
{unionCite, fusionCite} follows. We can reduce H-INDEX MANIPULATION to CONSERVATIVE

DIVIDING by defining the partition P = {W}; hence we get the following.

Proposition 1. DIVIDING and CONSERVATIVE DIVIDING are NP-hard for μ 2 {sumCite, unionCite,
fusionCite}.

As to computational tractability, DIVIDING and CONSERVATIVE DIVIDING are FPT when parameterized
by h—the h-index to achieve.

Theorem 3. DIVIDING and CONSERVATIVE DIVIDING(μ) can be solved in 2O(h4 log h) · nO(1) time,
where h is the h-index to achieve and μ 2 {sumCite, unionCite}.

Proof. The pseudocode is given in Algorithm 6. Herein, Merge(D, W, h, μ) decides H-INDEX

MANIPULATION(μ); that is, it returns true if there is a partition Q of W such that has h-index h
and false otherwise. It follows from van Bevern et al. (2016b, Theorem 7) that Merge can be
carried out in 2O(h4 log h) · nO(1) time.

Algorithm 6 first finds, using Merge, the maximum number ℓP of (merged) articles with at least
h citations that we can create in each part P2P. For this, we first prepare an instance (D 0,W 0, h, μ)
of H-INDEX MANIPULATION(μ) in Lines 2 and 3. In the resulting instance, we ask whether there is a
partition of Pwith h-index h. If this is the case, then we set ℓP to h. Otherwise, we add one artificial
article with h citations toW 0 in Line 9. Intuitively, this causes Merge to check whether there is a
partition of P into h − 1 (more generally, one less than in the current iteration) merged articles with
h citations each in the next iteration. We iterate this process until Merge returns true, or we find
that there is not even one merged article contained in P with h citations. Clearly, this process

Algorithm 6: Conservative Dividing

Input: A citation graph D = (V, A), a set W � V of articles, a partition P of W, nonnegative
integers h and k, and a measure μ.

Output: true if k dividing operations can be applied to P to yield h-index h and false

otherwise.

1 foreach P 2 P do

2 D0  The graph obtained from D by removing all citations (u, v) such that
v =2 P and adding h + 1 articles r1, …, rh+1

3 W0  P, ℓP  0

4 for i  0 to h do

5 if Merge(D0, W0, h, μ) then

6 ℓP  h – i

7 Break

8 else

9 Add ri to W0 and add each citation (rj, ri), j 2 {1, …, h + 1} \ {i} to D0

10 return 9P0 � P s.t. |P0| ≤ k and �P2P0 ℓP ≥ h
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correctly computes ℓP. Thus, the algorithm is correct. The running time is clearly dominated by the
calls to Merge. As Merge runs in 2O(h4 log h) · nO(1) time (van Bevern et al., 2016b, Theorem 7), the
running time bound follows. □

We note that Merge can be modified so that it outputs the desired partition. Hence, we can
modify Algorithm 6 to output the actual solution. Furthermore, for k = n, Algorithm 6 solves
the nonconservative variant, which is therefore also fixed-parameter tractable parameterized
by h.

In contrast, for the cautious variant we show W[1]-hardness when parameterized by k, the
number of allowed operations.

Theorem 4. CAUTIOUS DIVIDING(μ) is NP-hard and W[1]-hard when parameterized by k for μ
2 {sumCite, unionCite, fusionCite}, even if the citation graph is acyclic.

Proof. We reduce from theUNARYBIN PACKING problem: givena set Sofn itemswith integer sizes
si, i 2 {1,…, n}, ℓ bins and a maximum bin capacity B, can we distribute all items into the ℓ bins?
Herein, all sizes are encoded in unary.UNARY BIN PACKING parameterized by ℓ isW[1]-hard (Jansen,
Kratsch, et al., 2013).

Given an instance (S, ℓ, B) of UNARY BIN PACKING, we produce an instance (D, W, P, h, ℓ − 1)
of CAUTIOUS DIVIDING(sumCite). Let s* = �i si be the sum of all item sizes. We assume that B < s*
and ℓ · B ≥ s* as, otherwise, the problem is trivial, because all items fit into one bin or they
collectively cannot fit into all bins, respectively. Furthermore, we assume that ℓ < B because,
otherwise, the instance size is upper bounded by a function of ℓ and, hence, is trivially FPT
with respect to ℓ. We construct the instance of CAUTIOUS DIVIDING(sumCite) in polynomial time
as follows.

• Add s* articles x1, …, xs* to D. These are only used to increase the citation count of other
articles.

• Add one article ai to D and W for each si.
• For each article ai, add citations (xj, ai) for all 1 ≤ j ≤ si to G. Note that, after adding these

citations, each article ai has citation count si.
• Add Δ := ℓ · B – s* articles u1, …, uΔ to D and W.
• For each article ui with i 2 {1, …, Δ}, add a citation (x1, ui) to D. Note that each article ui

has citation count 1.
• Add B – ℓ articles h1, …, hB−ℓ to D and W.
• For each article hi with i 2 {1, …, B − ℓ}, add citations (xj, hi) for all 1 ≤ j ≤ B to D. Note

that each article hi has citation count B.
• Add P* = {a1, …, an, u1, …, uΔ} to P, for each article hi with i 2 {1, …, B − ℓ}, add {hi} to
P, and set h = B.

Now we show that (S, ℓ, B) is a yes-instance if and only if (D, W, P, h, ℓ − 1) is a yes-instance.

()) Assume that (S, ℓ, B) is a yes-instance and let S1,…, Sℓ be a partition of S such that items
in Si are placed in bin i. Now we split P* into ℓ parts R1, …, Rℓ in the following way. Note that
for each Si, we have that �sj2Si sj = B − �i for some �i ≥ 0. Furthermore, �i �i = Δ. Recall that
there are Δ articles u1,…, uΔ in P*. Let �<i = �j<i �j and Ui = {u�<i+1, …, u�<i+�i}, with �0 = 0 and
if �i > 0, let Ui = ; for �i = 0. We set Ri = {aj | sj 2 Si} [ Ui. Then for each Ri, we have that
sumCite(Ri) = sumCite({aj | sj 2 Si}) + sumCite(Ui), which simplifies to sumCite(Ri) = �sj2Si sj +
�i = B. For each i, 1 ≤ i ≤ n, we have sumCite({hi}) = B. Hence, R = {R1, …, Rℓ, {h1}, …, {hB−ℓ}}
has h-index B.
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(() Assume that (D, W, P, h, ℓ − 1) is a yes-instance and let R be a partition with h-index h.
Recall that P consists of P* and B − ℓ singletons {h1}, …, {hB−ℓ}, which are hence also con-
tained in R. Furthermore, sumCite({hi}) = B for each hi and, by the definition of the h-index,
there are ℓ parts R1, …, Rℓ with Ri � P* and sumCite(Ri) ≥ B for each i. Because, by definition,
sumCite(P*) = ℓ · B and sumCite(P*) = �1≤ i≤ℓ sumCite(Ri) we have that sumCite(Ri) = B for all i.
It follows that sumCite(Ri \ {u1, …, uΔ}) ≤ B for all i. This implies that packing into bin i each
item in {sj | aj 2 Ri} solves the instance (S, ℓ, B). □

Note that this proof can be modified to cover also the unionCite and fusionCite cases by
adding ℓ · s* extra x-articles and ensuring that no two articles in W are cited by the same
x-article.

4. FUSIONCITE

We now consider the fusionCite measure, which makes manipulation considerably harder
than the other measures. In particular, we obtain that, even in the most basic case, the manip-
ulation problem is NP-hard.

Theorem 5. ATOMIZING(fusionCite) and EXTRACTING(fusionCite) are NP-hard, even if the cita-
tion graph is acyclic and s = 3, where s is the largest number of articles merged into one.

Proof. We reduce from the NP-hard 3-SAT problem: Given a 3-CNF formula F with n var-
iables and m clauses, decide whether F has a satisfying truth assignment to its variables.
Without loss of generality, we assume n + m > 3 and that each clause contains three literals
over mutually distinct variables. Given a formula F with variables x1, …, xn and clauses c1, …,
cm such that n + m > 3, we produce an instance (D, W, P, m + n) of ATOMIZING(fusionCite) or
EXTRACTING(fusionCite) in polynomial time as follows. The construction is illustrated in Figure 3.

For each variable xi of F, add to D and W sets X F
i := {XF

i;1, X
F
i;2, X

F
i;3} and XT

i := {XT
i;1, X

T
i;2, X

T
i;3} of

variable articles. Add X F
i and XT

i to P. Let h := m + n. For each variable xi, add

1. h − 2 citations from (newly introduced) distinct atomic articles to XT
i;1 and XF

i;1,
2. citations from XF

i;1 to XT
i;2 and from XT

i;2 to XF
i;3 and

3. citations from XT
i;1 to XF

i;2 and from XF
i;2 to XT

i;3.

Next, for each clause cj of F, add a clause article Cj with h − 4 incoming citations to D, to W,
and add {Cj} to P. Finally, if a positive literal xi occurs in a clause cj, then add citations (XT

i;ℓ, Cj)

to D for ℓ 2 {2, 3}. If a negative literal ¬xi occurs in a clause cj, then add citations (XF
i;ℓ, Cj) to D

Figure 3. Illustration of the construction in the proof of Theorem 5 for a literal ¬xi contained in a
clause cj.
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for ℓ 2 {2, 3}. This concludes the construction. Observe that D is acyclic, as all citations go
from variable articles to clause articles or to variable articles with a higher index. It remains to
show that F is satisfiable if and only if (D, W, P, h) is a yes-instance.

()) If F is satisfiable, then a solution R for (D, W, P, h) looks as follows: for each i 2 {1, …,

n}, if xi is true, then we put XF
i 2 R and we put XT

i 2 R otherwise. All other articles of D are
added toR as singletons. We count the citations that every part ofR gets from other parts ofR.
If xi is true, then XF

i gets two citations from {XT
i; ℓ} for ℓ 2 {1, 2} and the h − 2 initially added

citations. Moreover, for the clause cj containing the literal xi, {Cj} gets two citations from {XT
i; ℓ}

for ℓ 2 {2, 3}, at least two citations from variable articles for two other literals it contains, and

the h − 4 initially added citations. Symmetrically, if xi is false, then {XT
i } gets h citations and so

does every {Cj} for each clause cj containing the literal ¬xi. As every clause is satisfied and
every variable is either true or false, it follows that each of the m clause articles gets h citations

and that, for each of the n variables xi, either X F
i or XT

i gets h citations. It follows that h = m + n
parts of R get at least h citations and thus, that R has h-index at least h.

(() Let R be a solution for (D, W, P, m + n). We first show that, for each variable xi, we

have either XT
i 2 R or X F

i 2 R. To this end, it is important to note two facts:

1. For each variable xi, XT
i contains two atomic articles with one incoming arc in D and

one with h − 2 incoming arcs. Thus, no subset of XT
i can get h citations. The same holds

for X F
i .

2. If, for some variable xi, the part XT
i 2 R gets h citations, then X F

i =2 R and vice versa.

Thus, as there are at most m clause articles and R contains h = m + n parts with h citations, R
contains exactly one of the partsXT

i ,XF
i of each variable xi. It follows that, inR, all singleton clause

articles have to receive h citations. Each such article gets at most h − 4 initially added citations and

citations from at most three sets XT
i or XF

i for some variable xi. Thus, for each clause cj, there is a

literal xi in cj or a literal ¬xi in cj such thatXT
i =2RorX F

i =2R, respectively. It follows that setting each

xi to true if and only if XT
i =2 R gives a satisfying truth assignment to the variables of F. □

This NP-hardness result motivates the search for fixed-parameter tractability.

Theorem 6. ATOMIZING(fusionCite) can be solved in O(4h
2

(n +m)) time, where h is the h-index
to achieve.

Proof. We use the following procedure to solve an instance (D, W, P , h) of ATOMIZING

(fusionCite).

Let P≥h be the set of merged articles P 2 P with fusionCite (P) ≥ h. If |P≥h| ≥ h, then we face a
yes-instance and output “yes.”We can determine whether this is the case in linear time because
we can compute fusionCite (P) in linear time for all P 2 P. Below we assume that |P≥h| < h.

First, we atomize all P 2 P that cannot have h or more citations; that is, for which, even if
we atomize all merged articles except for P, we have fusionCite(P) < h. Formally, we atomize P
if �v2P |Nin

D−P(v)| < h. Let P0 be the partition obtained from P after these atomizing operations;
note that P0 can be computed in linear time.

The basic idea is now to look at all remaining merged articles that receive at least h citations
from atomic articles; they form the set P<h below. They are cited by at most h − 1 other merged
articles. Hence, if the size of P<h exceeds some function f(h), then, among the contained merged
articles, we find a large number ofmerged articles that do not cite each other. If we have such a set,
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then we can atomize all other articles, obtaining h-index h. If the size of P<h is smaller than f(h),
then we can determine by brute force whether there is a solution.

Consider all merged articles P 2 P 0 that have fewer than h citations but can obtain h or more
citations by applying atomizing operations to merged articles in P0. Let us call the set of these
merged articles P<h. Formally, P 2 P<h if �v2P |Nin

D−P (v)| ≥ h and fusionCite(P) < h. Again, P<h

can be computed in linear time. Note that P0 \ (P≥h [ P<h) consists only of singletons.

Now, we observe the following. If there is a setP*�P<h of at least hmerged articles such that,
for all Pi, Pj2P*, neither Pi cites Pj nor Pj cites Pi, thenwe can atomize all merged articles inP0 \P*
to reach an h-index of at least h. We finish the proof by showing that we can conclude the
existence of the set P* if P<h is sufficiently large and solve the problem using brute force
otherwise.

Consider the undirected graphG that has a vertex vP for each P 2 P<h and an edge between vPi
and vPj if Pi cites Pj or Pj cites Pi. Note that {vP | P2P*} forms an independent set inG. Furthermore,
let I be an independent set inG that has size at least h. Let P** = {P 2 P<h | vP 2 I}. Then, we can
atomize all merged articles in P 0 \ P** to reach an h-index of at least h.

We claim that the number of edges inG is at most (h − 1) · |P<h|. This is because the edge set of
G can be obtained by enumerating for every vertex vP the edges incident with vP that result from a
citation of P from another P 0 2 P<h. The citations for each P are less than h as, otherwise, wewould
have P 2 P≥h. Now, we can make use of Turán’s Theorem, which can be stated as follows: If a
graphwith ℓ vertices has at most ℓk/2 edges, then it admits an independent set of size at least ℓ/(k +
1) (Jukna, 2001, Exercise 4.8). Hence, if |P<h| ≥ 2h2 − h, then we face a yes-instance because G
contains an independent set of size at least h. Consequently, we can find a solution by taking an
arbitrary subsetP0<h ofP<hwith |P0<h| = 2h2− h, atomizing everymerged article outside ofP0<h, and
guessing whichmerged articleswe need to atomize inside ofP0<h. If |P<h| < 2h2 − h, thenwe guess
whichmerged articles inP<h[P≥hweneed to atomize to obtain a solution if it exists. In both cases,
for each guess we need linear time to determine whether we have found a solution, giving the

overall running time ofO(4h
2

· (m + n)). □
For the conservative variant, however, we cannot achieve FPT, even if we add the number

of atomization operations and the maximum size of a merged article to the parameter.

Theorem 7. CONSERVATIVE ATOMIZING(fusionCite) is NP-hard andW[1]-hardwhen parameterized
by h + k + s, where s := maxP2P |P|, even if the citation graph is acyclic.

Proof. We reduce from the CLIQUE problem: Given a graph G and an integer k, decide whether
G contains a clique on at least k vertices. CLIQUE parameterized by k is known to be W[1]-hard.

Given an instance (G, k) of CLIQUE,weproduce an instance (D,W,P,h, k) of CONSERVATIVE ATOMIZING

(fusionCite) in polynomial time as follows.Without loss of generality, we assume k ≥ 4 so that k
2

� �
≥ 4.

For each vertex vofG, introduce a setRvof d k
2

� �
=2evertices toD andW andaddRv as apart toP. For

an edge {v,w} of G, add to D andW a vertex e{v,w} and add {e{v,w}} to P. Moreover, add a citation

from each vertex in Rv [ Rw to e{v,w}. Finally, set h := k
2

� �
. Each of h, k, and s in our constructed

instance of CONSERVATIVE ATOMIZING(fusionCite) depends only on k in the input CLIQUE instance. It
remains to show that (G, k) is a yes-instance for CLIQUE if and only if (D, W, P, h, k) is.

()) Assume that (G, k) is a yes-instance and let S be a clique in G. Then, atomizing Rv for
each v 2 S yields k

2

� �
articles with at least k

2

� �
citations in D: For each of the k

2

� �
pairs of vertices

v, w 2 S, the vertex e{v,w} gets d k
2

� �
=2e citations from the vertices in Rv and the same number of

citations from the vertices in Rw and, thus, at least k
2

� �
citations in total.
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(() Assume that (D,W, P, h, k) is a yes-instance and letR be a solution. We construct a sub-
graph S= (VS,ES) ofG that is a cliqueof sizek. LetVS := {v2V(G) |Rv2P\R} and ES := {{v,w}2 E(G) |

{v,w}� VS}; that is, S =G[VS]. Obviously, |VS| ≤ k. It remains to show |ES| ≥ k
2

� �
, which implies both

that |VS| = k and that S is a clique. To this end, observe that the only verticeswith incoming citations
in D are the vertices e{v,w} for the edges {v, w} of G. The only citations of a vertex e{v,w} are from
the parts Rv and Rw in P . That is, with respect to the partition P , each vertex e{v,w} has two

citations. As the h-index h to reach is k
2

� �
, at least k

2

� �
vertices e{v,w} have to receive k

2

� �
≥ 4 citations,

which is only possible by atomizing bothRv andRw. That is, for at least k
2

� �
vertices e{v,w}, we have {Rv,

Rw} � P \R and, thus, v, w � VS and {v, w} 2 ES. It follows that |ES| ≥ k
2

� �
. □

The reduction given above easily yields the same hardness result for most other problem
variants: A vertex e{v,w} receives a sufficient number of citations only if Rv and Rw are atom-
ized. Hence, even if we allow extractions or divisions on Rv, it helps only if we extract or split
off all articles in Rv. The only difference is that the number of allowed operations is set to k ·

d k
2

� �
=2 − 1e for these two problem variants. By the same argument, we obtain hardness for the

conservative variants.

Corollary 1. For μ = fusionCite, CONSERVATIVE EXTRACTING(μ), CAUTIOUS EXTRACTING(μ),
CONSERVATIVE DIVIDING(μ), and CAUTIOUS DIVIDING(μ) are NP-hard and W[1]-hard when parame-
terized by h + k + s, where s := maxP2P |P|, even if the citation graph is acyclic.

5. COMPUTATIONAL EXPERIMENTS

To assess how much the h-index of a researcher can be manipulated by splitting articles in
practice, we performed computational experiments with data extracted from Google Scholar.

5.1. Description of the Data

We use three data sets collected by van Bevern et al. (2016b). One data set consists of 22
selected authors of the conference IJCAI’13. The selection of these authors was biased to
obtain profiles of authors in their early career. More precisely, the selected authors have a
Google Scholar profile, an h-index between 8 and 20, between 100 and 1,000 citations, and
activity between 5 and 10 years when the data was collected. Below we refer to this data set
as ijcai-2013. The other two data sets contain Google Scholar data of “AI’s 10 to Watch,” a
list of young accomplished researchers in AI compiled by IEEE Intelligent Systems. One data
set contains five profiles from the 2011 edition (ai10-2011), the other eight profiles from
the 2013 edition of the list (ai10-2013). In comparison with van Bevern et al. (2016b) we
removed one author from the ai10-2013 data set because the data were inconsistent. All data
were gathered between November 2014 and January 2015. For an overview of the data see
Table 2.

Due to difficulties in obtaining the data from Google Scholar, van Bevern et al. (2016b) did
not gather the concrete set of citations for articles that are cited a large number of times. These
were articles that will always be part of the articles counted in the h-index. They subsequently
ignored these articles as it is never beneficial to merge them with other articles to increase
the h-index. In our case, although such articles may be merged initially, they will also always
be counted in the h-index and hence their concrete set of citations is not relevant for us as
well. The information about whether such articles could be merged is indeed contained in the
data sets.
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5.2. Generation of Profiles with Merged Articles

In our setting, the input consists of a profile that already contains somemerged articles. Themerges
should be performed in a way which reflects the purpose of merging in the Google Scholar inter-
face. That is, themerged articles should roughly correspond to different versions of the samework.
To find different versions of the same work, we used the compatibility graphs for each profile pro-
vided by van Bevern et al. (2016b) which they generated as follows. The set of vertices is the set of
articles in the profile. For each article u let T(u) denote the set of words in its title. There is an edge
between articles u and v if |T(u) [ T(v)| ≥ t · |T(u) [ T(v)|, where t 2 [0, 1] is the compatibility
threshold. For t = 0, the compatibility graph is a clique; for t = 1 only articles with the same words
in the title are adjacent. For t ≤ 0.3, very dissimilar articles are still considered compatible (van
Bevern et al., 2016b). Hence, we usually focus on t ≥ 0.4 below.

We then generated the merged articles as follows. We used four different methods so that we
can avoid artifacts that could be introduced by one specific method. Each method iteratively
computes an inclusion-wise maximal clique C in the compatibility graphD, adds it as a merged
article to the profile, and then removes C from D. The clique C herein is computed as follows.

GreedyMax Recursively include into C a largest-degree vertex that is adjacent to all vertices
already included until no such vertex exists anymore.

GreedyMin Recursively include into C a smallest-degree vertex that is adjacent to all vertices
already included until no such vertex exists anymore.

Maximum A maximum-size clique.

Ramsey A recursive search of a maximal clique in the neighborhood of a vertex v and the
remaining graph. See algorithm Clique Removal by Boppana and Halldórsson
(1992) for details.

If the compatibility graph has no edge any more, then each method adds all remaining articles
as atomic articles of the profile.

Figure 4 shows the distributions of the h-indices of the generated profiles with merged ar-
ticles and those where no article has been merged. The lower edge of a box is the first quartile,
the upper edge the third quartile, and the thick bar is the median; the remaining data points are
shown by dots. Note that when no article is merged—and no atomic article cites itself—all
three citation measures coincide. Often, merging compatible articles leads to a decline in
h-index in our data sets and this effect is most pronounced for the more senior authors (in
ai10-2011). In contrast, merging very closely related articles (compatibility threshold t = 0.9) for
authors in ai10-2013 led to increased h-indices. The initial h-indices are very weakly affect-
ed by the different methods for generating initially merged articles.

Table 2. Properties of the three data sets. Here, p is the number of profiles for each data set,
�
Wj j is the average number of atomic articles in the

profile, �c is the average number of citations, �h is the average h-index in the data set (without merges), and h/a is the average h-index increase
per year; the ‘max’ subscript denotes the maximum of these values.

p
�
Wj j |W|max �c cmax

�h hmax h/a
ai10-2011 5 170.2 234 1614.2 3725 34.8 46 2.53

ai10-2013 7 58.7 144 557.5 1646 14.7 26 1.57

ijcai-2013 22 45.9 98 251.5 547 10.4 16 1.24
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5.3. Implementation

We implemented Algorithms 2, 4 and 5—the exact, linear-time algorithms from Section 3 for
CONSERVATIVE ATOMIZING, CONSERVATIVE EXTRACTING, and CAUTIOUS EXTRACTING, respectively, each
for all three citation measures, sumCite, unionCite, and fusionCite. The algorithms for
sumCite and unionCite were implemented directly as described. For fusionCite, we imple-
mented minor modifications of the described algorithms—to make the computation of
μ well defined, we need to additionally specify which articles are currently merged, but
otherwise the basic algorithms are unchanged. More precisely, recall that for Algorithm 2
we greedily perform atomizing operations if they increase the h-index. Thus, in the adaption
to fusionCite, the partition P is continuously updated whenever the check in Line 6 is positive,
and the application of μ = fusionCite in that line uses the partition P which is current at the
time of application. Similarly, the partitions are updated after positive checks in Algorithm 4,
Line 4, and in Algorithm 5, Line 5, and the application of μ = fusionCite in that line uses the
current partition P.

Using the algorithms, we computed h-index increases under the respective restrictions. For
sumCite and unionCite these algorithms yield the maximum-possible h-index increases by
Theorems 1 and 2. For fusionCite, we obtain only a lower bound.

Figure 4. h-index distributions of the profiles with generated merged articles in comparison to the
profiles without any merged articles.
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The implementation is in Python 3.6.7 under Ubuntu Linux 18.04 and the source code is
freely available4. In total, 137,626 instances of the decision problems were generated. Using a
2.5 GHz Intel Core i5-7200U CPU and 8 GB RAM, the instances could be solved within 14
hours altogether (ca. 350 ms average time per instance).

5.4. Authors with Potential for Manipulation

Figure 5 gives the number of profiles in which the h-index can be increased by unmerging articles.
We say the profiles or the corresponding authors have potential. Concordant with intuition, for
each threshold value, the methods for creating initial merges are roughly ordered according to
the number of authors with potential as follows: Maximum > Ramsey > GreedyMax >

4 See http://gitlab.com/rvb/split-index.

Figure 5. Number of profiles whose h-indices may be increased by unmerging.
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GreedyMin. GreedyMax and GreedyMin are surprisingly close. However, the differences be-
tween the methods in general are rather small, indicating that the property of having potential is
inherent to the profile rather than themethod for generating initialmerges. AsGreedyMax is one of
the most straightforward of the four, we will focus only on GreedyMax below.

At first glance, we could expect that the number of authors with potential would decrease
monotonically with increasing compatibility threshold: Note that, for increasing compatibility
threshold the edge sets in compatibility graphs are decreasing in the subset order. Hence each
maximal clique in the compatibility graph can only increase in size.However, becausewe employ
heuristics to find the set of initialmerges (in the case ofRamsey,GreedyMax, andGreedyMin) and
because there may be multiple choices for a maximum-size clique (for Maximum), different
possible partitionings into initial merges may result. This can lead to the fact that the authors with
potential do not decrease monotonically with increasing compatibility threshold.

Furthermore, with the same initial merges it can happen that an increase in the h-index value
through unmerging with respect to sumCite is possible and no increase is possible with respect to
unionCite and vice versa. The first may happen, for example, if two articles v,w are merged such
that sumCite({v,w}) is above but unionCite({v,w}) is below the h-index threshold. The secondmay
happen if the h-index of the merged profile is lower for unionCite compared to that for sumCite.
Then, unmerging articles may yield atomic articles that are still above the h-index threshold for
unionCite but not for sumCite. As can be seen from Figure 5, both options occur in our data set.

The fraction of authors with potential differs clearly between the three data sets. The authors
in ai10-2011 have already accumulated so many citations that almost all have potential for
each threshold up to 0.6. Meanwhile, the authors with potential in ai10-2013 continually drop
for increasing threshold and this drop is even more pronounced for ijcai-2013. This may reflect
the three levels of seniority represented by the data sets.

There is no clear difference between the achievable h-indices when comparing fusionCite
with unionCite and sumCite: While there are generally more authors with potential for each
threshold for fusionCite in the ai10-2011 data set, there are fewer authors with potential for the
ai10-2013 data set, and a similar number of authors with potential for the ijcai-2013 data set.

Focusing on the most relevant threshold, 0.4, and the unionCite measure, which is used by
Google Scholar (van Bevern et al., 2016a), we see that all authors (100%) in ai10-2011 could
potentially increase their h-indices by unmerging, four authors (57%) could do so in ai10-

2013, and seven (31%) in ijcai-2013. We next focus only on these authors with potential
and gauge to that extent manipulation is possible.

5.5. Extent and Cost of Possible Manipulation

Figure 6 shows the largest achievable h-index increases for the authors with potential in the
three data sets: Again, the lower edge of a box is the first quartile, the upper edge the third
quartile, and the thick bar is the median; the remaining data points are shown by dots.

In the majority of cases, drastic increases can only be achieved when the compatibility
threshold is lower than 0.4. Generally, the increases achieved for the fusionCite measure are
slightly lower than for the other two, but the median is at most smaller by one. Because of the
heuristic nature of our algorithms for fusionCite, we cannot exclude the possibility that the
largest possible increases for fusionCite are comparable to the other two measures. In the most
relevant regime of unionCite and compatibility threshold t = 0.4, the median h-index increases
are 4 for the ai10-2011 authors, 1 for the ai10-2013 authors, and 2 for the ijcai-2013 authors.
Notably, there is an outlier in ijcai-2013 who can achieve an increase of 5.
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Figure 6. h-index increases for each compatibility threshold for authors with potential (note that
these authors may be different for different threshold values). The increases are largest-possible for
sumCite and unionCite.

Figure 7. h-index increases versus number of changed articles or allowed operations for authors
with potential and compatibility threshold 0.4. The increases are largest-possible for sumCite and
unionCite.
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Figure 7 shows the h-index increases that can be achieved by changing a certain number of
articles (in the rows containing the conservative problem variants) or with a certain number of
operations (in the row containing the cautious problem variant) for compatibility threshold 0.4.
For the majority of ai10-2013 and ijcai-2013 authors we can see that, if manipulation is
possible, then the maximum h-index increase can be reached already by manipulating at most
two articles and performing at most two unmerges. The more senior authors in the ai10-2011

data set can still gain increased h-indices by manipulating four articles and performing four
unmerges. For the outlier in ijcai-2013 with an h-index increase of 5, we see that there is one
merged article that contains many atomic articles with citations above her or his unmanipulated
h-index: With respect to an increasing number of operations, we see a continuously increasing
h-index for CAUTIOUS EXTRACTING compared to a constant high increase for CONSERVATIVE ATOMIZING.

Summarizing, our findings indicate that realistic profiles from academically young authors
cannot in the majority of cases be manipulated by unmerging articles. If they can, then in most
cases the achievable increase in h-index is at most two. Furthermore, our findings indicate that
the increase can be obtained by tampering with a small number of merged articles (at most two
in the majority of cases).

6. CONCLUSION

In summary, our theoretical results suggest that using fusionCite as a citation measure for
merged articles makes manipulation by undoing merges harder. From a practical point of
view, our experimental results indicate that author profiles with surprisingly large h-index
may be worth inspecting concerning potential manipulation.

Regarding theory, we leave three main open questions concerning the computational com-
plexity of EXTRACTING(fusionCite), the parameterized complexity of DIVIDING(fusionCite), and the pa-
rameterized complexity of CAUTIOUS DIVIDING (sumCite / unionCite) with respect to h (see Table 1),
as the most immediate challenges for future work. Also, finding hardness reductions that produce
more realistic instanceswould be desirable. From the experimental side, evaluating the potentially
possible h-index increase by splitting on real merged profiles would be interesting as well as com-
putational experiments using fusionCite as a measure. Moreover, it makes sense to consider the
manipulation of the h-index also in context with the simultaneous manipulation of other indices
(e.g., Google’s i10-index; see also Pavlou and Elkind [2016]) and to look for Pareto-optimal
solutions. We suspect that our algorithms easily adapt to other indices. In addition, it is natural
to consider combining merging and splitting in manipulation of author profiles.
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