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Abstract. We introduce a new global constraint which combines to-
gether the lexicographic ordering constraint with two sum constraints.
Lexicographic ordering constraints are frequently used to break symme-
try, whilst sum constraints occur in many problems involving capacity
or partitioning. Our results show that this global constraint is useful
when there is a very large space to explore, such as when the problem
is unsatisfiable, or when the search strategy is poor or conflicts with the
symmetry breaking constraints. By studying in detail when combining
lexicographical ordering with other constraints is useful, we propose a
new heuristic for deciding when to combine constraints together.

1 Introduction

Global constraints specify patterns that reoccur in many problems. For example,
we often have row and column symmetry on a 2-d matrix of decision variables
and can post lexicographic ordering constraints on the rows and columns to
break much of this symmetry [4]. There are, however, only a limited number of
common constraints like the lexicographic ordering constraint which repeatedly
occur in problems. New global constraints are therefore likely to be increasingly
more specialized. An alternative strategy for developing global constraints that
might be useful in a wide range of problems is to identify constraints that often
occur together, and develop efficient constraint propagation algorithms for their
combination. In this paper, we explore this strategy.

We introduce a new global constraint on 0/1 variables that combines together
the lexicographic ordering constraint with two sum constraints. Sum and lexi-
cographic ordering constraints frequently occur together in problems involving
capacity or partitioning that are modelled with symmetric matrices of decision
variables. Examples are the ternary Steiner problem, the balanced incomplete
block design problem, the rack configuration problem, social golfers, etc. Our
results show that this new constraint is most useful when there is a very large
space to explore, such as when the problem is unsatisfiable, or when the branch-
ing heuristics are poor or conflict with the symmetry breaking constraints. The
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combined constraint gives additional pruning and this can, for example, help
compensate for the branching heuristic trying to push the search in a differ-
ent direction to the symmetry breaking constraints. Combining constraints is
a step towards tackling one of the most common criticisms of using symmetry
breaking constraints. By increasing the amount of propagation, we can partly
tackle conflict between the branching heuristic and the symmetry breaking con-
straints. Finally, by studying in detail when combining lexicographical ordering
with other constraints is useful, we propose a new heuristic for deciding when to
combine heuristics together. The heuristic suggests that the combination should
be likely to prune a significant number of shared variables.

2 Preliminaries

A constraint satisfaction problem (CSP) is a set of variables, each with a finite
domain of values, and a set of constraints that specify allowed values for subsets
of variables. A solution to a CSP is an assignment of values to the variables
satisfying the constraints. To find such solutions, constraint solvers often explore
the space of partial assignments enforcing a local consistency like generalized arc-
consistency (GAC). A constraint is GAC iff, when a variable in the constraint
is assigned any of its values, compatible values exist for all the other variables
in the constraint. For totally ordered domains, like integers, another level of
consistent is bounds-consistency (BC). A constraint is bounds consistent (BC)
iff, when a variable in the constraint is assigned its maximum or minimum value,
there exist compatible values for all the other variables in the constraint. If a
constraint ¢ is BC or GAC then we write BC(c) or GAC(c) respectively.

In this paper, we are interested in lexicographic ordering of vectors of vari-
ables in the presence of sum constraints on the vectors. We denote a vector z
of n finite integer variables as X = (Xy,...,X,_1), while we denote a vector x
of n ground values as @ = (g, ..., Zy—1). The sub-vector of & with start index
a and last index b inclusive is denoted by x,—j. The domain of a finite integer
variable V' is denoted by D(V'), and the minimum and the maximum elements
in this domain by min(D(V)) and maz(D(V)).

Given two vectors, X and Y of variables, we write a lexicographical ordering
constraint as X <jex Y and a strict lexicographic ordering constraint as X <jex
Y. X <iox Y ensures that: Xg < Yy; X7 < Y; when Xg = Yy; Xo < Y5 when

XO = YO and X1 = Yl; sy Xn—l < Yn—l when XO = )/07 X1 = Yl, ey and
Xn_o=Y, 2. X <jox Y ensures that: X <jox Y;and X,,_; < Y,,_; when Xy =
Yo, X1 = Y1, ..., and X,,_2 = Y,,_o. We write LexLeqAndSun(X,Y, Sz, Sy)

for the constraint which ensure that X <;, Y, >, X; = Sz >, Y; = Sy.
Similarly, we write LexLessAndSum(X,Y, Sz, Sy) for X <., Y, >, X; = Sz,
and ). Y; = Sy. We denote the dual cases as LexGeqAndSum(X,Y,

Sz, Sy) and as LexGreaterAndSum (X, Y, Sz, Sy). We assume that the variables
being ordered are disjoint and not repeated. We also assume that Sz and Sy are
ground and discuss the case when they are bounded variables in Section 5.



3 A worked example

We consider the special (but nevertheless useful) case of vectors of 0/1 variables.
Generalizing the algorithm to non Boolean variables remains a significant chal-
lenge as it will involve solving subset sum problems. Fortunately, many of the
applications of our algorithm merely require 0/1 variables. To maintain GAC on
LexLeqAndSum (X, Y, Sz, Sy), we minimize X lexicographically with respect to
the sum and identify which positions in Y support 0 or 1. We then maximize Y
lexicographically with respect to the sum and identify which positions in X sup-
port 0 or 1. Since there are two values and two vectors to consider, the algorithm
has 4 steps.

In each step, we maintain a pair of lexicographically minimal and maximal
ground vectors sx = (szg,...,8T,_1) and sy = (syo,...,SYn—1). 1O serve re-
peatedly traversing the vectors we have a flag a where for all i < a we have
sx; = sy; and sz, # Sy,. That is, « is the most significant index where sx
and sy differ. Additionally, we may need to know whether sx,41—n—1 and
SYa+1—n—1 are lexicographically ordered. Therefore, we introduce a boolean
flag v whose value is true iff s&ot1—n-1 <iex SYati—n—1-

Consider the vectors

0,1}, {0}, {0}, {0,1}, {0,1}, {0}, {0})
0,1}, {0,1}, {1}, {0,1}, {0,1}, {0}, {0,1})

and the constraints X <;., Y, >, X; = 3, and ), Y; = 2. Each of these con-
straints are GAC and thus no pruning is possible. Our algorithm that maintains
GAC on LexLeqAndSum(X,Y, 3,2) starts with step 1 in which we have

where s& = min{x| > ,z; =2 AN x € X}, and sy =maz{Y| Y,y =2 ANy ¢€
Y}. We check where we can place one more 1 in sz to make the sum 3 as
required without disturbing sz <;., sy. We have a = 0 and v = true. We can
safely place 1 to the right of a as this does not affect sz <;., sy. Since 7 is
true, placing 1 at « also does not affect the order of the vectors. Therefore, all
the 1s in X have support.
In step 2 we have
se = (1, 1
sy=(1, 0

, 0,0,
, 0,1
T«

1,1, 0, 0)
,1,0,0,0,0)

where sz = min{x| > ,z;, =4 A x € X}, and sy is as before. We check where
we can place one more 0 in sx to make the sum 3 as required to obtain sx <j.,
sy. We have o = 1 and v = true. Placing 0 to the left of o makes sx smaller
than sy. Since 7 is true, placing 0 at « also makes sx smaller than sy. However,
placing 0 to the right of o orders the vectors lexicographically the wrong way

around. Hence, we remove 0 from the domains of the variables of X on the right
hand side of a. The vector X is now ({0,1},{0,1},{0},{0},{1},{1},{0}, {0}).



In step 3 we have
s

=
sy = (
N

where sz = min{z| >, z; =3 AN x € X}, and sy =maz{Y| Y,y =3 ANy e
Y'}. We check where we can place one more 0 in sy to make the sum 2 as
required without disturbing sx <;., sy. We have a = 0 and v = true. We can
safely place 0 to the right of o as this does not affect sx <;.; sy. Since ~ is
true, placing 0 at « also does not affect the order of the vectors. Therefore, all
the Os in Y have support.

Finally, in step 4 we have

se=(0, 1, 0,0, 1,1, 0, 0)
1 0

where sx is as before, and sy = maz{Y| > ,y; =1 A y € Y}. We check
where we can place one more 1 in sy to make the sum 2 as required to obtain
ST <jep SY. We have o = 1 and v = true. Placing 1 to the left of @ makes
sx <je; sy and so is safe. Since v is true, we can also safely place 1 at a.
However, placing 1 to the right of a makes sx >,., sy. Hence, we remove 1 from
the domains of the variables of Y on the right hand side of «. The algorithm
now terminates with domains that are GAC:

4 Algorithm

The algorithm first establishes BC on the sum constraints. Note that for 0/1
variables, BC is equivalent to GAC. If no failure is encountered we continue
with 4 pruning steps. In step 1, we are concerned with support for 1s in X as
in the worked example. In step 2, we are concerned with support for Os in X.
Step 3 is very similar to step 1, except we identify support for the Os in Y. Step
4 is very similar to step 2, except we identify support for the 1s in Y. None of
the prunings require any recursive calls back to the algorithm. The algorithm
runs in linear time in the length of the vectors and is correct. But, for reasons
of space, the details of the algorithm and the proofs are given in [5].

The algorithm can easily be modified for LexLessAndSum(X,Y, Sz, Sy) (the
strict ordering constraint). To do so, we need to disallow equality between the
vectors. This requires just two modifications to the algorithm. First, we change
the definition of . The flag v is true iff szq41-n—1 <iex SYa+1—n—1. Second, we
fail if we have min{x| Y, x; = Sx N x € X} >jep maz{y| >,y =Sy N y €
Y}

We can also deal with sums that are not ground but bounded. Assume we
have Iz < Sz < wx and ly < Sy < uy. We now need to find support first for
the values in the domains of the vectors and second for the values in the range
of lz..ux and ly..uy. In the first part, we can run our algorithm LexLeqAndSum



with >, X; = lz and ), Y; = uy. In the second part, we tighten the upper
bound of Sz with respect to the upper bound of Sy so that maz{x|) , x; =
ur AN x € X} <jep max{y|) ,yi =uy N y € Y}. The support for the upper
bound of Sz is also the support for all the other values in the domain of Sz.
Similarly, we tighten the lower bound of Sy with respect to the lower bound of
Sz so that min{x| )", z; =lo N © € X} <jep min{y|> ,vi=1ly N yeY}
The support for the lower bound of Sy is also the support for all the other
values in the domain of Sy. The values in the vectors are supported by [z and
uy. The prunings of the second part tighten only ux and ly. Hence the prunings
performed in the second part do not require any calls back to the first part. It
is easy to show that the modified algorithm is correct and runs in linear time.

Finally, we can extend the algorithm to detect constraint entailment. A con-
straint is entailed when any assignment of values to its variables satisfy the
constraint. Detecting entailment does not change the worst-case complexity but
is very useful for avoiding unnecessary work. For this purpose, we can maintain
a flag entailed, which is set to true whenever the constraint LexLeqAndSum is
entailed, and the algorithm directly returns on future calls if entailed is set to
True. The constraint is entailed when we have max{z| ) ,2z; = Sz AN x €
X} <iex min{y| > ,yi =Sy N yeY}.

5 Experimental Results

We performed a wide range of experiments to test when this combination of
constraints is useful in practice. But, for reasons of space, we only show the
results for BIBDs. In the following table, the results for finding the first solution
or that none exists are shown, where “-” means no result is obtained in 1 hour
(3600 secs) using ILOG Solver 5.3 on a 1GHz pentium III processor with 256
Mb RAM under Windows XP.

Balanced Incomplete Block Designs (BIBD). BIBD generation is a standard
combinatorial problem from design theory with applications in cryptography
and experimental design. A BIBD is a set V' of v > 2 elements and a collection
of b > 0 subsets of V, such that each subset consists of exactly k elements
(v >k > 0), each element appears in exactly r subsets (r > 0), and each pair of
elements appear simultaneously in exactly A subsets (A > 0).

A BIBD can be specified as a constraint program by a 0/1 matrix of b columns
and v rows, with constraints enforcing exactly r ones per row, k ones per col-
umn, and a scalar product of A\ between any pair of distinct rows. This matrix
model has row and column symmetry[3], and both the rows and the columns are
now also constrained by sum constraints. Hence, we can impose our new global
constraint (both) on the rows and the columns.

Instantiating the matrix along its rows from top to bottom and exploring
the domain of each variable in increasing order works extremely well with the
symmetry breaking constraints. All the instances of [7] are solved within a few
seconds. Bigger instances such as (15,21,7,5,2) and (22,22,7,7,2) are solved in



Problem No symmetry breaking >iezR 2162 C LexGreaterAndSum R
LexGegAndSum C

# (v,b, 7, k,\)| Failures Time (sec.) | Failures Time (sec.)| Failures Time (sec.)
1 6,20,10,3,4 8,944 0.7 916 0.2 327 0.1

2 7,21,9,3,3 7,438 0.7 20,182 5.3 5,289 2.1

3 6,30,15,3,6 [1,893,458 192.3 10,618 3.7 1,493 1

1 7,28,12,3,4 | 229,241 26.1 801,290 330.7 52,027 27

5 9,24,8,3,2 6,841 1.1 2,338,067 1115.9 617,707 524.3

6 6,40,20,3,8 - >1hr 117,126 67.5 4,734 4.4

7 7,35,15,3,56 |7,814,878 1444.4 - > lhr 382,173 311.2

8 7,42,18,3,6 - >1hr - >1hr 2,176,006 2,603.7

Table 1. BIBDs: row-wise labelling.

less than a minute. With this search strategy, we observe no difference between
the inference of our algorithm and its decomposition into seperate lexicographic
ordering and sum constraints.

To see a difference, we need either a poor branching heuristic or a large search
space (e.g., an unsatisfiable problem). Instead of exploring the rows from top to
bottom, if we explore them from bottom to top then the problem becomes very
difficult to solve in the presence of the symmetry breaking constraints, i.e. even
small instances become hard to solve within an hour. We can make the prob-
lem more difficult to solve by choosing one row from the top and then one row
from the bottom, and so on. Table 1 shows how the search tree is affected. We
make a number of observations about these result. First, imposing the symmetry
breaking constraints significantly reduces the size of the search tree and time to
solve the problem compared to no symmetry breaking. Moreover, the additional
inference performed by our algorithm gives much smaller search trees in much
shorter run-times. See entries 1, 3, and 6. Second, lexicographic ordering con-
straints and the search strategy clash, resulting in bigger search trees. However,
the extra inference of our algorithm is able to compensate for this. This suggests
that even if the ordering imposed by symmetry breaking constraints conflicts
with the search strategy, more inference incorporated into the symmetry break-
ing constraints can significantly reduce the size of the search tree. See entries 2,
4, and 7. Third, increased inference scales up better, and recovers from mistakes
much quicker. See entry 5. Finally, the problem can sometimes only be solved,
when using a poor search strategy, by imposing our new global constraint. See
entry 8.

6 Lexicographic Ordering with Other Constraints

We obtained similar results with other problems like ternary Steiner, rack con-
figuration, steel mill slab design and the social golfers problem. In each case,
the combined constraint was only useful when the symmetry breaking conflicted
with the branching heuristic, the branching heuristic was poor, or there was a
very large search space to explore. Why is this so?



Katsirelos and Bacchus have proposed a simple heuristic for combining con-
straints together [6]. The heuristic suggests grouping constraints together if they
share many variables in common. This heuristic would suggest that combining
lexicographical ordering and sum constraints would be very useful as they in-
tersect on many variables. However, this ignores how the constraints are propa-
gated. The lexicographical ordering constraint only prunes at one position, « («
points to the most significant index of X and Y where X; and Y; are not ground
and equal). If the vectors are already ordered at this position then any future
assignments are irrelevant. Of course, o can move to the right but on average it
moves only one position for each assignment. Hence, the lexicographic ordering
constraint interacts on average with one variable from each of the sum con-
straints. Such interaction is of limited value because the constraints are already
communicating with each other via the domain of that variable. This explains
why combining lexicographical ordering and sum constraints is only of value
on problems where there is a lot of search and even a small amount of extra
inference may save exploring large failed subtrees.

A similar argument will hold for combining lexicographic ordering constraints
with other constraints. For example, Carlsson and Beldiceanu have introduced
a new global constraint, called lex_chain, which combines together a chain of
lexicographic ordering constraints [1]. When we have a matrix say with row
symmetry, we can now post a single lexicographic ordering constraint on all
the m vectors corresponding to the rows as opposed to posting m — 1 of them.
In theory, such a constraint can give more propagation. However, our exper-
iments on BIBDs indicate no gain over posting lexicographic ordering con-
straints between the adjacent vectors. In Table 2, we report the results of solving
BIBDs using SICStus Prolog 3.10.1. We either post lexicographic ordering or
anti-lexicographic ordering constraints on the rows and columns, and instanti-
ate the matrix from top to bottom exploring the domains in ascending order.
The lexicographic ordering constraints are posted using lex_chain of Carlsson
and Beldiceanu, which is available in SICStus Prolog 3.10.1. This constraint
is either posted once for all the symmetric rows/columuns, or between adjacent
rows/columns. In all the cases, we observe no benefits in combining a chain of
lexicographic ordering constraints.

The interaction between the constraints is again very restricted. Each of them
is concerned only with a pair of variables and it interacts with its neighbour
either at this position or at a position above its « where the variable is already
ground. This argument suggests a new heuristic for combining constraints: the
combination should be likely to prune a significant number of shared variables.

7 Conclusion

We have introduced a new global constraint on 0/1 variables which combines a
lexicographical ordering constraint with sum constraints. Lexicographic ordering
constraints are frequently used to break symmetry, whilst sum constraints occur
in many problems involving capacity or partitioning. Our results showed that



v, b, 7, k, A ||No symmetry <tez R <iea C >lex R Ziex C
breaking lex_chain lex_chain
(X050 Xm—1) (X, Xig1)[(Xo, -+ s Xon—1) (Xi, Xiy1)
Backtracks Backtracks Backtracks Backtracks Bactracks
6,20,10,3,4 5,201 84 84 706 706
7,21,9,3,3 1,488 130 130 72 72
6,30,15,3,6 540,039 217 217 9216 9216
7,28,12,3,4 23,160 216 216 183 183
9,24,8,3,2 - 1,473 1,473 79 79
6,40,20,3,8 - 449 449 51,576 51,576
7,35,15,3,5(] 9,429,447 326 326 395 395
7,42,18,3,6|] 5,975,823 460 460 756 756

Table 2. BIBD: lex_chain((Xo, ..., Xm—1)) vs lex_chain((X;, X;11)) for all 0 <14 <
m — 1 with row-wise labelling.

this global constraint is useful when there is a very large space to explore, such
as when the problem is unsatisfiable, or when the branching heuristic is poor
or conflicts with the symmetry breaking constraints. However, our combined
constraint did not compensate in full for a poor branching heuristic. Overall, it
was better to use a good branching heuristic. Finally, by studying in detail when
combining lexicographical ordering with other constraints is useful, we proposed
a new heuristic for deciding when to combine constraints together.
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