Modelling a Balanced
Academic Curriculum Problem

Brahim Hnich*, Zeynep Kiziltan*, and Toby Walsh*

*Uppsala University *University of York
Uppsala, Sweden York, England
{+46 18 471 1020, +46 18 471 1036} +44 1904 432793
{Brahim.Hnich,Zeynep.Kiziltan }@dis.uu.se tw@Qcs.york.ac.uk

Abstract. In this paper, we study a balanced academic curriculum
problem. We show that this problem can be modelled in different ways,
and argue why each model is useful. We also propose integrating the
models so as to benefit from the complimentary strengths of each model.
Experimental results show that the integration significantly increases the
domain pruning, and even decreases the run-time on many instances.
General lessons are learnt from this modelling exercise. First, when con-
straints are difficult to specify in a particular model, we should consider
channelling into a second model in which these constraints are easier to
specify and reason about. Second, whilst constraint programming (CP)
models can be best at finding optimal or near-optimal solutions, integer
linear programming (ILP) models may be better for proving optimality.
Hybrid CP and ILP models or a two phase approach may therefore be
advantageous. Third, CP and ILP tools should provide primitives for
channelling between models. Finally, we can often profitably combine
different problem representations, as well as different solution methods.

Keywords: Application, Modelling, Integration, Constraint Programming, and
Integer Linear Programming.

1 Introduction

Many real-life problems can be modelled as constraint satisfaction problems
(CSPs). For a given problem, many models can be developed, each having a
different problem representation and employing a different solution method to
solve the problem, as well as different formulation of the constraints. This may
make a model be better or worse than any of the other models. It may also
be the case that different models have complimentary strengths. In such a case,
alternate models of a problem can be integrated so as to obtain a new model that
overcomes the disadvantages of one model with the advantages of the other one,
and vice versa. Integration of different models of a problem has been studied by
Cheng et al. [2] and Smith [5], and a similar idea was previously suggested by
Geelen [4]. By integrating different models, the domain pruning carried out in
each model may significantly be improved, giving a more powerful model than

any of the participating models. However, this may increase the run-time due
to the increase in the number of variables and constraints. Such an integration
is achieved by introducing channeling constraints that link the variables of the
participating models.

In this paper, we study a balanced academic curriculum problem (BACP)
proposed in [1] and is prob030 in CSPLIB (www.csplib.org). The problem is
to design an academic schedule by assigning periods to courses such that the
academic load of each period is balanced. We show that this problem can be
modelled in different ways, and argue why each model is useful. We then propose
integrating the models so as to benefit from the complimentary strengths of each
model. Experimental results show that the integration significantly increases the
domain pruning, and even decreases the run-time on many instances.

The rest of this paper is organised as follows. In Section 2, we explain the
problem. In Section 3, we study an Integer Linear Programming (ILP) model
of the problem, and then in Section 4 we consider two Constraint Programming
(CP) models. In Section 5, we show why and how some models are integrated.
Then, in Section 6, we present the performance of the models on three real-life
instances of the problem. An alternative model is examined in Section 7. Finally,
in Section 8, we summarise and conclude our work.

2 Problem Description

The BACP proposed in [1] is to design a balanced academic curriculum by
assigning periods to courses in a way that the academic load of each period is
balanced, i.e., as similar as possible . The curriculum must obey the following
administrative and academic regulations:

— Academic curriculum: an academic curriculum is defined by a set of courses
and a set of prerequisite relationships among them.

— Number of periods: courses must be assigned within a maximum number of
academic periods.

— Academic load: each course has associated a number of credits or units that
represent the academic effort required to successfully follow it.

— Prerequisites: some courses can have other courses as prerequisites.

— Minimum academic load: a minimum amount of academic credits per period
is required to consider a student as full time.

— Mazimum academic load: a maximum amount of academic credits per period
is allowed in order to avoid overload.

— Minimum number of courses: a minimum number of courses per period is
required to consider a student as full time.

— Mazimum number of courses: a maximum number of courses per period is
allowed in order to avoid overload.

The goal is to assign a period to every course in a way that the minimum and
maximum academic load for each period, the minimum and maximum number of

courses for each period, and the prerequisite relationships are satisfied. An opti-
mal balanced curriculum minimises the maximum academic load for all periods.
Note that we could consider other types of balance criterion such as minimising
the sum of the academic load of all periods.

3 An ILP Model

courses = {1,...,m} : set(int)

periods = {1,...,n} : set(int)

a : int % minimum academic load allowed per period

b : int % maximum academic load allowed per period

¢ : int % minimum amount of courses allowed per period
d : int % maximum amount of courses allowed per period
credit : courses —» int

prereq : set(courses X courses)

Fig. 1. Inputs to the BACP.

The inputs to the BACP (shown in Figure 1) are the integer sets courses and
periods giving the courses and periods respectively, the integers a and and b
giving the minimum and maximum allowed academic loads per period respec-
tively, the integers ¢ and d giving the minimum and maximum allowed number of
courses per period respectively, the function credit giving the number of credits
for each course, and the set prereq of pairs of courses (i, j) such that course i is
a prerequisite of course j.

The ILP model that is already proposed in [1] and shown in Figure 2 is as
follows. The assignment of periods to courses is represented by a 2d 0/1 matrix of
decision variables (CURRICU LU M). The meaning of CURRICULU M[i, j] =
1 is that course i is assigned period j. The academic load is represented by a
1d matrix of decision variables (LOAD). The maximum academic load of all
periods is represented by the decision variable C'. The objective function simply
minimizes C. The first constraint enforces that every course is assigned only
one period because a 2d 0/1 matrix on its own does not ensure this property.
The second constraint uses a weighted column sum expression to compute the
academic load of each period. The third constraint guarantees that C is the
maximum academic load of all periods. Enforcing the prerequisites constraint
is however tricky. If course ¢ is a prerequisite of course j, the posted constraint
implies a strict lexicographical ordering between the i® row and the j** row of
the 2d 0/1 matrix. Hence, this disallows the course j to be assigned a period
that has lower index than the one assigned to course i. Enforcing the academic
load and the amount of courses allowed per period is achieved through a set of
inequalities.

C in 0..mazxint
Outputs: LOADI|periods] in 0..mazint
CURRICULU M |courses, periods] in 0..1

Minimize: C

% row sum to enforce that every course appears exactly in one period
Vi € courses . Zjeperiods CURRICULUM][i,j] =1
% weighted column sum to compute the academic load for each period
Vj € periods. LOAD[j] = 3. . credit(i)* CURRICULUM]Ii, j]
% C is the maximum academic load
C = maz;jeperiods LOAD[]
Constraints: % partial row sum to enforce the prerequisite constraints
V{i,j) € prereq.Vk € periods : k > 1.
CURRICULUM]j, k] < Z’:;; CURRICULUM]si, 7]

% set of inequalities restricting the academic load
Vj € periods. a < LOAD[j] <b

% column sum to restrict the number of courses for each period
Vj € periods.c <y . . . CURRICULUM[i jl<d

all constraints are linear

A
dvantages ease of statement of the academic load constraints (weighted column sum)

Disadvantages: difficulty to state the prerequisite constraints

Fig. 2. An ILP model of the BACP.

In this model, the academic load constraint of a period can easily be stated
by a weighted column sum on the 2d 0/1 matrix. Despite the difficulty of stating
the prerequisite constraints, all constraints of the model are linear. Therefore,
ILP methods can easily be employed to solve this model. We refer to the model
in Figure 2 as ILP when an ILP solver is used to solve the model.

4 Two CP Models

Many scheduling, assignment, routing and other problems can be efficiently and
effectively solved by constraint programs on matrices of decision variables (so
called "matrix models” [3]). The ILP model in Figure 2 can be used directly as
such a constraint model. We refer to the model in Figure 2 as CP, when a CP
solver is used to solve the model. The model C'P; has already been proposed in
[1].

The assignment of periods to courses can also be modelled using a 1d matrix
indexed by courses and ranging over periods. The model shown in Figure 3 uses
this data representation. We refer to this model as C'P,. The restriction on the
number of periods to be assigned a course is captured by the 1d matrix. Unlike
C P, computing the academic load requires constraints which use variables to

C in 0..mazxint
Outputs: LOADI|periods] in 0..mazint
CURRICULU M |courses] in periods

Minimize: C

% inefficient way of computing the academic load of each period
Vj € periods . LOAD(j] =} i ourses:cvrrrcu Lvmij—j Tedit(4)

% C is the maximum academic load

C = maxjcperiodas LOAD[]

% set of inequalities to enforce the prerequisite constraints
Constraints: V(i,j) € prereq. CURRICULUM][i] < CURRICULU M[j]

% set of inequalities restricting the academic load of each period
Vj € periods. a < LOAD[j] < b

% global constraints to restrict the number of courses for each period
Vj € periods . atleast(j, CURRICULUM,c) A atmost(j, CURRICULUM, d)

ease of statement of the prerequisite constraints

A : i i
dvantages use of global constraints (better propagation)

Disadvantages: inefficient statement of the academic load constraint

Fig. 3. The C P> model of the BACP.

index other variables; such constraints are typically delayed, resulting in an in-
efficient model. However, in this model, the prerequisite constraints are easily
stated by enforcing an ordering on the courses that have a prerequisite rela-
tionship. Furthermore, the global constraints atleast and atmost can be used to
enforce the restrictions on the amount of courses allowed per period. Finally, the
rest of the constraints and the objective function are the same in models CP;

5 Integrating the Models: ILP + CP; and CP, + CP;

The models ILP and CP; that are based on a 2d 0/1 matrix of decision vari-
ables, and the model C P, that is based on a 1d 0/1 matrix of decision variables
have complementary strengths. The models ILP and CP;, differ only in the
solution methods used. Each method has its own ability to reason with the con-
straints. Moreover, the academic load constraint for each period is easily stated
in the models ILP and CP; by a weighted column sum on the matrix. In CP;,
however, this constraint is poorly stated by reifications that do not propagate
well. The situation is the other way around if we consider the prerequisite con-
straints. In C'P,, this constraint is easily stated by ordering the courses that
have prerequisite relationship, while in the models ILP and CP; we need to
impose partial row sum constraints. Furthermore, in C P», the restriction on the
number of courses for each period can be achieved by global constraints that

Model |Main characteristics Solver

ILP 2d 0/1 matrix ILP
CP 2d 0/1 matrix CP
CP, 1d matrix CP
2d 0/1 matrix
1d matrix
ILP + CP>|only prerequisite constraints using 1d matrix ILP+CP

all other constraints using 2d 0/1 matrix
channelling constraints

2d 0/1 matrix

1d matrix

CP; + CP;|only computation of academic load is using 2d 0/1 matrix |CP
all other constraints using 1d matrix
channeling constraints

Fig. 4. Summary of the models.

maintain generalised arc-consistency. In order to benefit from the effectiveness
of each model, we propose integrating the models ILP and CP, (ILP + CP,),
and the models CP; and CP, (CP; + CP,) by channelling the variables of the
participating models. The disadvantages of these integrations are the increased
number of variables, and additional channeling constraints to be processed. A
summary of the proposed models is shown in Figure 4.

In ILP + CP,, we specify the prerequisite constraints on the 1d matrix, and
all the other constraints on the 2d matrix. This allows I LP to benefit from CPy’s
power in the statement of the prerequisite constraints, and C' P, benefit from
ILP’s power in the statement of the academic load constraints. Moreover, this
integration allows a hybrid solution method to be employed to solve the problem.
In CP; + CPs, we pose the academic load constraints on the 2d matrix, and all
the other constraints on the 1d matrix. This allows CP; to benefit from CPy’s
global constraints and prerequisite constraints, and CP, benefit from CP;’s
effectiveness of the academic load constraints. The constraints of the integrated
models are shown in Figure 5.

6 Experimental Results

In order to evaluate the performances of the proposed models, we carried out
some experiments by implementing the models in OPL [6]. Figure 6 and Figure 7
show the results on the three real-life instances used in [1] to find the optimal
solution and prove optimality, respectively. In the instances, we have 8, 10, and
12 periods, and 46, 42, and 66 courses, respectively. We adopt the same branching
heuristic for C'P; as in [1], which groups the variables by periods and assigns
the value 1 first. Note that this branching heuristic achieves the best results in
[1]. As for CP,, we use the fail first branching strategy, i.e., branching on the
variable with the smallest domain, and choosing values in lexicographical order.

C in 0..mazxint

LOAD|periods] in 0..mazint
CURRICULU M1|courses] in periods
CURRICULU M2[courses, periods] in 0..1

Outputs:

Minimize: C

% using the 2d matrix to compute the academic load of each period
Vj € periods. LOAD[j] =Y. .. CURRICULUM?2]i, j] credit(i)
% C is the maximum academic load

C= maijperiodsLOAD[j]

% using the 1d matrix to state the prerequisite constraints

V(i,j) € prereq. CURRICULUM1[i] < CURRICULUM1[j]

% set of inequalities restricting the academic load of each period
Vj € periods.a < LOAD[j] < b

Constraints:
% using the 2d matrix for restricting the number of
% courses of each period in ILP + CP;
Vj € periods. c < Zie“mrses CURRICULUM]i,j] < d
% using the 1d matrix to state global constraints
Y%restricting the number of courses of each period in CP; + CP»
Vj € periods. atleast(j, CURRICULUM]1,c) A atmost(j, CURRICULUM]1,d)
% channelling constraints between the 1d matrix and 2d 0/1 matrix
Vi € courses, j € periods. CURRICULUM1[i] = j «++» CURRICULUM?2[i,j] =1
Advantages: ease of statement of all problem constraints
" use of global constraints (better propagation)
. redundant variables
Disadvantages:

extra channelling constraints

Fig.5. The ILP/CP: + CP; integrated models.

The quickest model that found the optimal solution is CP, + CP,, which
shows that integrating the models CP; and CP; resulted in a better model
despite the increased number of variables and additional channelling constraints.
This is due to the increase in the amount of pruning, which led to a reduction
in the search space that compensated the increase of variables and constraints.
The second best model is ILP + CP,, which is better than the model CP, on
all instances, and better than the model ILP on two instances. This shows that
a hybrid solution method achieved better results. In this integration, the CP
model is essential in reducing the search space while the ILP model with its
relaxation is essential for bounding and guiding the search. However, the model
C P, + CP; is still better than ILP+ C P, in finding the optimal solution because
it performs more inference and thus eliminating more search space.

Proving optimality was tough for all CP models (CP,, CP,, and CP, +
CP,). We observe that ILP + C P, proves optimality quicker than ILP on two
instances, and is the quickest on these instances. This is because it benefits from

Model Results |8 periods|10 periods|12 periods

ILP runtime | 3.45 4.23 131.30
failures |N/A N/A N/A
runtime| 58.52 - -

Ch failures |499336 |- -
runtime | 45.10 - -

CP failures |56766 |- -
runtime | 0.81 8.44 3.05

ILP + CP2 fitures | 183 | 4445 525
runtime | 0.29 0.59 1.09

CP+ CPe| boitures | 651 1736 1539

Fig. 6. Finding an optimal solution.

Model Results |8 periods|10 periods|12 periods

ILP runtime | 3.45 4.23 131.30
failures |N/A N/A N/A

P, ruptlme - - -
failures |- - -

CPs ru'ntlme - - -
failures |- - -
runtime | 0.81 8.44 3.05

ILP + CPe g irures | 183 4445 525

CP + CP, ru.ntlme)))
failures |- - -

Fig. 7. Proving optimality.

the CP model in reducing the search space, and from the relaxation of the ILP
model, which bounds and guides the search.

The CP solver used in the experiments is the one used by OPL, while the ILP
solver is the CPLEX one (used by OPL again). In [1], the authors used 0z to
solve the model C'P;, and Ip-solve' to solve the model ILP. Their experiments
are concerned with finding the optimal solution but not with proving optimality.
They showed that with varying the default labelling heuristic of the model C Py,
the three instances were solved very quickly, but lIp-solve could only solve the
first instance. However, our experiments using OPL showed the opposite, as seen
in Figure 5. Note that we used the same labelling strategy for the model CP;
as in [1].

7 Future work

In our future work, we intend to look at models for the BACP problem based on
set variables. So far, we have been viewing the BACP as finding a mapping from

! An ilp solver: available free at ftp://ftp.ics.ele.tue.nl/pub/Ip_solve

C in 0..mazxint
LOAD|periods] in 0..mazint
Outputs: P : set(courses)

P, : set(courses)

Minimize: C

% enforcing that every course is assigned only one period
ViZj€l.n-P,NP; =0
P, U...UP, = courses

Vi€l.n.). p credit(i) = LOAD[j]
7

% C is the maximum academic load
Constraints: C = MA%jeperiods LOAD]]]
% inefficient expression of the prerequisite constraints
V(i,j) € prereq.Vkel.n—1. i€ P, > (jEPIN...Nj ¢ Py)

% set of inequalities restricting the academic load of each period
Vj € periods. a < LOAD[j] <b

Viel.n.c<|P| <d

% weighted sum over set variable that computes the academic load of each period

% cardinality of set variables used to restrict the amount of courses of each period

Advantages: use of global constraints on set variables

Disadvantages: ineflicient statement of the prerequisite constraints

Fig. 8. A model of the BACP based on set variables

the set of courses into the set of periods. However, one can also view the BACP
as a set partitioning problem, where the set of courses ought to be partitioned
into n subsets, one for each period. With this view on the BACP, the model
shown in Figure 8 declares n set variables that are subsets of the set of courses.
To ensure that every course is given in exactly 1 period, the n set variables
must all be pairwise disjoint and their union must equal the set of courses. The
availability of global constraints on set variables, such as weighted sum and the
cardinality constraint, in most constraint programming languages supporting set
variables (CONJUNTO, 0%, ILOG SOLVER), makes it possible to compute the load
of each period, as well as stating the restrictions of the amount of courses per
period. However, with set variables, an inefficient formulation of the prerequisite
constraints is unavoidable. Therefore, we will also consider channelling the model
based on set variables into the model C' P, in which the prerequisite constraints
are easier to specify and reason about.

8 Conclusion

In this paper different models of the BACP are proposed and evaluated exper-
imentally on three real-life instances. The models ILP and CP, have already
been proposed in [1]. We propose another CP model CP, as well as carefully
integrated models ILP+C P, and CP; +CP,. The integrated model ILP+CP;
combines two different representations of the BACP in such a way that the cons
of the model ILP is overcome with the pros of the model C'P,, and vice versa.
Additionally, the integrated model employs a hybrid solution method, which
combines an ILP solver with a CP solver, and thus the information is propa-
gated from one model to the other through the usage of channelling constraints.
The integrated model C P, + CP, also exploits the complimentary strengths of
the participating models. For this integrated model, a CP solver is used and
domain pruning on the set of variables in C'P; is propagated to the variables
in the C' P, model with the help of the channeling constraints (and vice versa),
allowing more pruning to take place. The integrated model C P, + CP; is the
quickest model to find an optimal solution, while the model ILP + C'P; is the
quickest (for two instances) to prove optimality. Hence, the integration results
in better models despite the increase of the number of variables and constraints.

What general lessons can we learn from this modelling exercise? First, when
constraints are difficult to specify in a particular model, we should consider
channelling into a second model in which these constraints are easier to specify
and reason about. Second, whilst constraint programming models can be best at
finding optimal or near-optimal solutions, integer linear programs may be better
for proving optimality. Hybrid CP and ILP models or a two phase approach may
therefore be advantageous. Third, CP and ILP tools should provide primitives
for channelling between models. In addition to being able to specify such con-
straints compactly, such primitives can permit efficient constraint propagation
between models. Finally, we can often profitably combine different problem rep-
resentations, as well as different solution methods. Each view of the problem and
solution method can exploit different aspects of the problem. Careful integration
of different models can result in better models despite the increase in the number
of variables and constraints.

Acknowledgments
We ackowledge Pierre Flener for his feedback on an earlier draft of this paper.

We would like also to thank C. Castro and S. Manzano for providing us with
the real-life instances they used in their experiments.

References

1. C. Castro and S. Manzano. Variable and value ordering when solving balanced
academic curriculum problem. In: Proc. of the ERCIM WG on constraints, 2001.

. BM.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing constraint
propagation by redundant modelling: An experience report. Constraints, 4:167—
192, 1999.

. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Matrix Mod-
elling. In: Proc. of the CP-01 Workshop on Modelling and Problem Formulation.
International Conference on the Principles and Practice of Constraint Program-
ming, 2001.

. P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proc. of ECAI’92, pp. 31-35, 1992.

. B.M. Smith. Dual models in constraint programming. Research Report 2001.02,
University of Leeds (UK), School of Computing, 2001.

. P. Van Hentenryck. The OPL Optimization Programming Language. The MIT Press,
1999.

