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tWhen writing a 
onstraint program, we have to 
hoose whi
h variables should be thede
ision variables, and how to represent the 
onstraints on these variables. In many 
ases,there is 
onsiderable 
hoi
e for the de
ision variables. Consider, for example, permutationproblems in whi
h we have as many values as variables, and ea
h variable takes an uniquevalue. In su
h problems, we 
an 
hoose between a primal and a dual viewpoint. In the dualviewpoint, ea
h dual variable represents one of the primal values, whilst ea
h dual valuerepresents one of the primal variables. Alternatively, by means of 
hannelling 
onstraintsto link the primal and dual variables, we 
an have a 
ombined model with both sets ofvariables. In this paper, we perform an extensive theoreti
al and empiri
al study of su
hprimal, dual and 
ombined models for two 
lasses of problems: permutation problemsand inje
tion problems. Our results show that it often be advantageous to use multipleviewpoints, and to have 
onstraints whi
h 
hannel between them to maintain 
onsisten
y.They also illustrate a general methodology for 
omparing di�erent 
onstraint models.1. Introdu
tionConstraint programming is a highly su

essful te
hnology for solving a wide variety of 
om-binatorial problems like resour
e allo
ation, transportation, and s
heduling. A 
onstraintprogram 
onsists of a set of de
ision variables, ea
h with an asso
iated domain of values,and a set of 
onstraints de�ning allowed values for subsets of these variables. The eÆ
ien
yof a 
onstraint program depends on many fa
tors in
luding a good 
hoi
e for the de
isionvariables, and 
areful modelling of the 
onstraints on these variables. There is often 
on-siderable 
hoi
e as to what the de
ision variables and their values should represent. Forexample, in an exam timetabling problem, the variables 
ould represent the exams, and thevalues represent the times. Alternatively, we 
an use a dual model in whi
h the variablesare the times, and the values are the exams. We always have a 
hoi
e of this kind in permu-tation problems. In a permutation problem, we have as many values as variables, and ea
hvariable takes an unique value. We 
an therefore easily ex
hange the roles of the variablesand the values in representing the underlying problem. Many assignment, s
heduling and
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Hni
h, Smith, & Walshrouting problems are permutation problems. For example, sports tournament s
heduling
an be modelled as �nding a permutation of the games to �t into the time slots, or a per-mutation of the time slots to �t the games into. The aim of this paper is to 
ompare su
hdi�erent models both theoreti
ally and empiri
ally.The paper is stru
tured as follows. In Se
tion 2, we give the formalism and notationused in the rest of the paper. In Se
tion 3, we present Langford's problem, whi
h is usedto illustrate the di�erent ways we 
an model a permutation problem. We then introdu
e aformal measure of 
onstraint tightness (Se
tion 4) used to 
ompare theoreti
ally the di�erentmodels of permutation problems (Se
tion 5). In Se
tion 6, we 
ompare SAT (Boolean)models of permutation problems. In Se
tions 7 and 8, we 
omplement the theoreti
al resultswith some asymptoti
 and experimental analysis. We then explore the bene�ts to bran
hingheuristi
s of having multiple viewpoints of the permutation (se
tion 9). In Se
tion 10, weextend our analysis to inje
tive mappings. Finally, we end with related work (Se
tion 11)and 
on
lusions (Se
tion 12).2. Formal Ba
kgroundA 
onstraint satisfa
tion problem (CSP) is a set of variables, ea
h with a �nite domain ofvalues, and a set of 
onstraints. A 
onstraint 
onsists of a list of variables (the s
ope) and arelation de�ning the allowed values for these variables. A binary 
onstraint is a 
onstraintwhose s
ope is a pair of variables. A solution to a 
onstraint satisfa
tion problem is anassignment of values to variables that satis�es all the 
onstraints.A permutation problem is a 
onstraint satisfa
tion problem in whi
h ea
h de
ision vari-able takes an unique value, and there is the same number of values as variables. Hen
eany solution assigns a permutation of the values to the variables. An important feature ofpermutation problems is that we 
an transpose the roles of the variables and the values inrepresenting the underlying problem to give a new dual model whi
h is also a permutationproblem. Ea
h variable in the original (primal) CSP be
omes a value in the dual CSP, andvi
e versa. The primal and the dual CSPs are equivalent sin
e any solution to one 
an betranslated into a solution to the other.We 
an 
hoose either model arbitrarily to be the primal model, although in pra
ti
e itmight be easier to express the problem 
onstraints in one of the models rather than theother, so we might tend to think of that model as the primal. We also 
onsider multiplepermutation problems in whi
h the variables divide into a number of (possibly overlapping)sets, ea
h of whi
h is a permutation problem. This lets us dis
uss problems like quasigroups.An order n quasigroup (or Latin square) 
an be modeled as a multiple permutation problem
ontaining 2n overlapping permutation problems.An inje
tion problem is a 
onstraint satisfa
tion problem in whi
h ea
h de
ision variabletakes an unique value, but there are now more values than variables. (Obviously, if thereare fewer values than variables, the problem is trivially unsatis�able.)Many levels of lo
al 
onsisten
y have been de�ned for 
onstraint satisfa
tion problemsinvolving binary 
onstraints (for referen
es see Debruyne and Bessi�ere, 1997). A problem is(i; j)-
onsistent i� it has non-empty domains and any 
onsistent instantiation of i variables
an be 
onsistently extended to j additional variables. A problem is ar
-
onsistent (AC)i� it is (1; 1)-
onsistent. A problem is path-
onsistent (PC) i� it is (2; 1)-
onsistent. A358



Dual Modelling of Permutation and Inje
tion Problemsproblem is strong path-
onsistent (ACPC) i� it is AC and PC. A problem is path inverse
onsistent (PIC) i� it is (1; 2)-
onsistent. A problem is restri
ted path-
onsistent (RPC)i� it is AC and if a value assigned to a variable is 
onsistent with just one value for anadjoining variable then for any other variable there is a 
ompatible value. A problem issingleton ar
-
onsistent (SAC) i� it has non-empty domains and for any instantiation of avariable, the resulting subproblem 
an be made AC.For non-binary 
onstraints, there has been less work on di�erent levels of lo
al 
on-sisten
y. One ex
eption is generalized ar
-
onsisten
y. A CSP with binary or non-binary
onstraints is generalized ar
-
onsistent (GAC) i� for any value for a variable in a 
onstraint,there exist 
ompatible values for all the other variables in the 
onstraint. For ordered do-mains (su
h as integers), a problem is bounds 
onsistent (BC) i� it has non-empty domainsand an assignment of its minimum or maximum value to any variable in a (binary or non-binary) 
onstraint 
an be 
onsistently extended to the other variables in the 
onstraint. Inline with the de�nitions introdu
ed by Debruyne and Bessi�ere (1997), we say that a lo
al
onsisten
y property A is as strong as a lo
al 
onsisten
y property B (written A ,! B) i�in any problem in whi
h A holds then B holds, A is stronger than B (written A ! B) i�A ,! B but not B ,! A, A is in
omparable with B (written A 
 B) i� neither A ,! Bnor B ,! A, and A is equivalent to B (written A $ B) i� both A ,! B and B ,! A. Ithas been shown that: ACPC ! SAC ! PIC ! RPC ! AC ! BC (Debruyne & Bessi�ere,1997).Ba
ktra
king algorithms are often used to �nd solutions to CSPs. Su
h algorithms tryto extend partial assignments, enfor
ing a lo
al 
onsisten
y after ea
h extension and ba
k-tra
king when this lo
al 
onsisten
y no longer holds. For example, the forward 
he
kingalgorithm (FC) maintains a restri
ted form of AC that ensures that the binary 
onstraintsbetween the most re
ently instantiated variable and any uninstantiated variables are AC.FC has been generalized to non-binary 
onstraints (Bessi�ere, Meseguer, Freuder, & Lar-rosa, 1999). nFC0 makes every k-ary 
onstraint with k�1 variables instantiated AC. nFC1applies (one pass of) AC to ea
h 
onstraint or 
onstraint proje
tion involving the 
urrentand exa
tly one future variable. nFC2 applies (one pass of) GAC to ea
h 
onstraint in-volving the 
urrent and at least one future variable. Three other generalizations of FCto non-binary 
onstraints, nFC3 to nFC5, degenerate to nFC2 on the single non-binary
onstraint des
ribing a permutation, so are not 
onsidered here. Finally, the maintainingar
-
onsisten
y algorithm (MAC) maintains AC during sear
h, whilst MGAC maintainsGAC.3. An ExampleThe n-queens problem is one of the simplest examples of a permutation problem. A 
ommonand natural model has a de
ision variable for ea
h row, with its value being the 
olumnin whi
h the queen on that row lies. The dual model has a de
ision variable for ea
h
olumn, with its value being the row on whi
h the queen in that 
olumn lies. However, then-queens problem is not 
ombinatorially 
hallenging as it be
omes easier as n grows. Forexample, Morris (1992) has argued that there are no lo
al maxima so throwing queens atrandom onto the board and performing min-
on
i
ts hill-
limbing will almost surely �nda solution. We fo
us therefore on a di�erent permutation problem that is simple like the359



Hni
h, Smith, & Walshn-queens problem but appears to be more 
ombinatorially 
hallenging. By using a simpleexample, the 
hara
teristi
s of permutation problems are hopefully more apparent than inmore 
omplex problems where the other 
onstraints have a larger impa
t.Langford's problem is prob024 in CSPLib (Gent & Walsh, 1999). A 
omprehensivehistory of the problem is given by Miller (2002). The problem is de�ned as follows:\A 27-digit sequen
e in
ludes the digits 1 to 9 three times ea
h. There is onedigit between the �rst two 1s, and one digit between the last two 1s. There arejust two digits between the �rst two 2s, and two digits between the last two 2s,. . . and so on. Find all possible su
h sequen
es."The problem 
an easily be generalized to the (n;m) problem where we have a sequen
e oflength n �m, 
ontaining the integers 1 to m repeated exa
tly n times. The above problemis thus the (3,9) problem. It has exa
tly 6 solutions:181915267285296475384639743191218246279458634753968357191618257269258476354938743347839453674852962752816191347936483574692582762519181753869357436854972642812191Note that the last three solutions are the reverse of the �rst three. This symmetry 
an beeliminated by adding 
onstraints; for instan
e, in the (3,9) problem the se
ond 9 
annot bepla
ed in the se
ond half of the sequen
e, and if it is in the 
entral position in the sequen
e,the se
ond 8 must be pla
ed in the �rst half of the sequen
e. Su
h 
onstraints have beenadded in what follows.The �rst model of Langford's problem we will 
onsider, whi
h we shall arbitrarily 
allthe primal model, has a variable for ea
h o

urren
e of the digits. The value of this variableis the position in the sequen
e of this o

urren
e. For example, the (3,9) problem has27 variables, xi with i 2 [1; 27℄. The value of xi is the lo
ation in the sequen
e of thei div m+1th o

urren
e of the digit i mod m. Thus, x1 has as its value the lo
ation ofthe 1st o

urren
e of the digit 1, x2 has as its value the lo
ation of the 1st o

urren
e ofthe digit 2, . . . , x9 has as its value the lo
ation of the 1st o

urren
e of the digit 9, x10has as its value the lo
ation of the 2nd o

urren
e of the digit 1, and so on. We have apermutation 
onstraint that ensures that ea
h digit o

urren
e o

urs at a di�erent positionin the sequen
e. This 
an be implemented either as a global all-di�erent 
onstraint on allthe xi, or as pairwise not-equals 
onstraints on ea
h possible pair of variables. We 
allthe former the \primal all-di�erent" model and the later the \primal not-equals" model.Finally, we have 
onstraints that the digit o

urren
es o

ur in order down the sequen
eand 
onstraints on the separation of the di�erent o

urren
es of a digit: that is we havexi < xi+m < xi+2m, xi+m � xi = i and xi+2m � xi+m = i for i � m.Table 1 gives the primal representation of the sequen
e 23421314, a solution to the (2,4)problem. For 
larity, we also indi
ate the 
orresponding digit o

urren
e using the notation\dk" for the kth o

urren
e of the digit d. For example, 32 is the 2nd o

urren
e of thedigit \3" and 21 is the 1st o

urren
e of the digit \2".360



Dual Modelling of Permutation and Inje
tion Problems
Index (i) 1 2 3 4 5 6 7 8Value of primal variable (xi) 5 1 2 3 7 4 6 8Equivalent digit o

urren
e 11 21 31 41 12 22 32 42Table 1: The primal representation of the sequen
e 23421314, a solution of the (2,4) prob-lem.The dual model of Langford's problem has a variable for ea
h lo
ation in the sequen
e.The value of this variable represents the digit o

urren
e at this lo
ation. For example, the(3,9) problem has 27 variables, dj with j 2 [1; 27℄. The value i of dj is an integer in theinterval [1; n�m℄, representing the fa
t that the i divm+1th o

urren
e of the digit i modmo

urs at lo
ation j. Thus, d3 = 2 represents the fa
t that the 1st o

urren
e of the digit 2o

urs at the 3rd lo
ation, and d4 = 10 represents the fa
t that the 2nd o

urren
e of thedigit 1 o

urs at the 4th lo
ation, and so on.In the dual model, we again have a permutation 
onstraint that ea
h lo
ation 
ontains adi�erent digit o

urren
e. This 
an again be implemented via a global all-di�erent 
onstrainton the dj or by pairwise not-equals 
onstraints on ea
h pair of dual variables. We 
all theformer the \dual all-di�erent" model and the later the \dual not-equals" model. Theseparation 
onstraints are not as simple to spe
ify in the dual model. For example, fori � m, we 
an add 
onstraints of the form: dj = i i� dj+i+1 = i + m and dj = i i�dj+2�(i+1) = i + 2 �m. Table 2 gives the dual representation of the sequen
e 23421314, asolution to the (2,4) problem.Index (j) 1 2 3 4 4 6 7 8Value of dual variable (dj) 2 3 4 6 1 7 5 8Equivalent digit o

urren
e 21 31 41 22 11 32 12 42Table 2: Dual representation of the sequen
e 23421314, a solution of the (2,4) problem.It is possible to 
ombine primal and dual models by linking the two sets of variables,using 
hannelling 
onstraints to maintain 
onsisten
y between the two viewpoints. Thisapproa
h is 
alled \redundant modelling" by Cheng et al. (1999). A similar idea waspreviously suggested, spe
i�
ally for permutation problems, by Geelen (1992). In Langford'sproblem, the 
hannelling 
onstraints are xi = j i� dj = i, and 
onstraints of the same form
an be used in building a 
ombined primal/dual model of any permutation problem. Many
onstraint toolkits support 
hannelling of this kind with eÆ
ient global 
onstraints. Forexample, ILOG Solver has a 
onstraint, Il
Inverse, whi
h 
an be used to repla
e a set ofindividual 
onstraints of the form xi = j i� dj = i, and the Si
stus �nite domain 
onstraintlibrary has an assignment predi
ate whi
h 
an be used similarly.The 
ombined model is 
learly redundant as we 
an delete the 
onstraints of either indi-vidual model without in
reasing the set of solutions. For instan
e, in Langford's problem,361



Hni
h, Smith, & Walshwe need only express the separation 
onstraints in terms of either the primal or the dualvariables. More surprisingly, the permutation 
onstraints on both the primal and the dualvariables are also redundant. The existen
e of the dual variables and the 
hannelling 
on-straints linking them to the primal variables are suÆ
ient to ensure that the values assignedto the primal variables are a permutation (and therefore the same must be true of the dualvariables).Even if 
onstraints are logi
ally redundant (that is, they 
an be deleted without 
hangingthe set of solutions), they may still be useful during sear
h. Logi
ally redundant 
onstraintsare often 
alled \implied 
onstraints", and useful implied 
onstraints are frequently added toa model to in
rease the amount of 
onstraint propagation (Smith, Stergiou, &Walsh, 2000)).In the next se
tion, we present a measure of 
onstraint tightness that allows us to determinewhen an implied 
onstraint added to a model will improve 
onstraint propagation. In thefollowing se
tion, we apply this measure of 
onstraint tightness to the di�erent models ofpermutation problems introdu
ed in this se
tion. We are able to show, for example, that the
hannelling 
onstraints not only make the binary not-equals 
onstraints redundant: theyare tighter and 
an give more domain pruning.4. Constraint TightnessOur de�nition of 
onstraint tightness assumes that 
onstraints are de�ned over the samevariables and values or, as in the 
ase of primal and dual models, variables and values whi
hare bije
tively related. In this way, we 
an always 
ompare like with like. Our de�nitionof 
onstraint tightness is strongly in
uen
ed by the way lo
al 
onsisten
y properties are
ompared by Debruyne and Bessi�ere (1997). Indeed, the de�nition is parameterized bya lo
al 
onsisten
y property sin
e the amount of pruning provided by a set of 
onstraintsdepends upon the level of lo
al 
onsisten
y being enfor
ed. If we enfor
e a high level of lo
al
onsisten
y, we may get as mu
h 
onstraint propagation with a loose 
onstraint as a mu
hlower level of lo
al 
onsisten
y applied to a tight 
onstraint. Our measure of 
onstrainttightness would also be useful in a number of other appli
ations (e.g. reasoning about theimpa
t of di�erent lo
al 
onsisten
y te
hniques on a single �xed model).Consider a set of 
onstraints A de�ned over a set of variables VA, and another setof 
onstraints B de�ned over a set of variables VB , where there is a bije
tion betweenassignments to VA and VB (in the rest of the paper, this bije
tion is either the identity map,or that de�ned by the 
hannelling 
onstraints). We say that the set of 
onstraints A is atleast as tight as the set B with respe
t to �-
onsisten
y (written �A ,! �B) i�, given anydomains for their variables, if A is �-
onsistent then the equivalent domains of B a

ordingto the bije
tion are also �-
onsistent. By 
onsidering all possible domains for the variables,this ordering measures the potential for domains to be pruned during sear
h as variablesare instantiated and domains pruned (possibly by other 
onstraints in the problem). Notethat we dis
uss the equivalent domains so that we 
an 
onsider primal and dual modelsin whi
h the variables and values are di�erent (but are in one to one relation with ea
hother). We say that a set of 
onstraints A is tighter than a set B wrt �-
onsisten
y (written�A ! �B) i� �A ,! �B but not �B ,! �A, A is in
omparable to B wrt �-
onsisten
y(written �A 
 �B) i� neither �A ,! �B nor �B ,! �A, and A is equivalent to B wrt �-
onsisten
y (written �A $ �B) i� both �A ,! �B and �B ,! �A. We 
an easily generalize362



Dual Modelling of Permutation and Inje
tion Problemsthese de�nitions to 
ompare �-
onsisten
y on A with �-
onsisten
y on B. This de�nitionof 
onstraint tightness has some ni
e monotoni
ity and �xed-point properties whi
h we willuse extensively throughout this paper.Property 1 (monotoni
ity and �xed-point)1. ACA[B ,! ACA ,! ACA\B2. ACA ! ACB implies ACA[B $ ACASimilar monotoni
ity and �xed-point properties hold for BC, RPC, PIC, SAC, ACPC,and GAC. We also extend these de�nitions to 
ompare 
onstraint tightness wrt sear
halgorithms like MAC and FC that maintain some lo
al 
onsisten
y during sear
h. Forexample, we say that A is at least as tight as B wrt algorithm X (written XA ,! XB) i�,given any �xed variable and value ordering and any domains for the variables of A, X visitsno more nodes to �nd a solution of A or prove it unsatis�able than X visits on B withthe equivalent domains, and the equivalent variable and value ordering. Equivalen
e hereis again with respe
t to the bije
tion between the assignments to the variables of A and toB. We say that A is tighter than B wrt algorithm X (written XA ! XB) i� XA ,! XB butnot XB ,! XA. Similar monotoni
ity and �xed-point properties 
an be given for FC, MACand MGAC. Finally, we write XA ) XB if XA ! XB and there is a parameterized set ofproblems of size n and a �xed variable and value ordering with whi
h X visits exponentiallyfewer nodes in n when applied to A than when applied to B. Our results 
an be extendedto algorithms that �nd all solutions. In addition, they 
an also be extended to a restri
ted
lass of dynami
 variable and value orderings (Ba

hus, Chen, van Beek, & Walsh, 2002).5. Theoreti
al ComparisonWe now have the theoreti
al ma
hinery needed to 
ompare the di�erent ways we 
an modela permutation problem su
h as Langford's problem. The primal not-equals model of a per-mutation has not-equals 
onstraints between the variables in ea
h permutation. The primalall-di�erent model has an all-di�erent 
onstraint between the variables in ea
h permutation.In a dual model, we inter
hange variables for values. A 
ombined primal and dual modelhas both the primal and the dual variables, and 
hannelling 
onstraints linking them, of theform: xi = j i� dj = i where xi is a primal variable and dj is a dual variable. A 
ombinedmodel 
an also have not-equals and/or all-di�erent 
onstraints on the primal and/or dualvariables. There will, of 
ourse, typi
ally be other 
onstraints on both sets of variableswhi
h depend on the nature of the permutation problem. For example, in Langford's prob-lem we also have the separation 
onstraints. As a se
ond example, in the all-interval seriesproblem from CSPLib, the variables and the di�eren
es between neighboring variables areboth permutations. In what follows, we do not 
onsider dire
tly the 
ontribution of su
hadditional 
onstraints to pruning. However, the ease with whi
h we 
an express ea
h addi-tional 
onstraint in the primal or the dual model and the resulting pruning power of these
onstraints may determine our 
hoi
e of the primal, dual or 
ombined model.We will use the following subs
ripts: \6=" for the primal not-equals 
onstraints, \
" for
hannelling 
onstraints, \6=
" for the primal not-equals and 
hannelling 
onstraints, \6=
6="363



Hni
h, Smith, & Walshfor the primal not-equals, dual not-equals and 
hannelling 
onstraints, \8" for the primalall-di�erent 
onstraint, \8
" for the primal all-di�erent and 
hannelling 
onstraints, and\8
8" for the primal all-di�erent, dual all-di�erent and 
hannelling 
onstraints. Thus AC 6=is AC applied to the primal not-equals 
onstraints, whilst SAC 6=
 is SAC applied to theprimal not-equals and 
hannelling 
onstraints.5.1 Ar
-Consisten
yWe �rst prove that, with respe
t to AC, 
hannelling 
onstraints are tighter than the primalnot-equals 
onstraints, but less tight than the primal all-di�erent 
onstraint.Theorem 1 On a permutation problem:GAC8
8 $ GAC8
 $ GAC8 ! AC6=
6= $ AC6=
 $ AC
 ! AC6=Proof: In this and following proofs, we just prove the most important results. Othersfollow qui
kly, often using transitivity, monotoni
ity and the �xed-point theorems.To show GAC8 ! AC
, 
onsider a permutation problem whose primal all-di�erent
onstraint is GAC. Suppose the 
hannelling 
onstraint between xi and dj was not AC. Theneither xi is set to j and dj has i eliminated from its domain, or dj is set to i and xi has jeliminated from its domain. But neither of these two 
ases is possible by the 
onstru
tionof the primal and dual model. Hen
e the 
hannelling 
onstraints are all AC. To showstri
tness, 
onsider a 5-variable permutation problem in whi
h x1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This is AC
 but not GAC8.To show AC
 ! AC 6=, suppose that the 
hannelling 
onstraints are AC. Consider anot-equals 
onstraint, xi 6= xj (i 6= j) that is not AC. Now, xi and xj must have the samesingleton domain, fkg. Consider the 
hannelling 
onstraint between xi and dk. The only ACvalue for dk is i. Similarly, the only AC value for dk in the 
hannelling 
onstraint betweenxj and dk is j. But i 6= j. Hen
e, dk has no AC values. This is a 
ontradi
tion as the
hannelling 
onstraints are AC. Hen
e all not-equals 
onstraints are AC. To show stri
tness,
onsider a 3-variable permutation problem with x1 = x2 = f1; 2g and x3 = f1; 2; 3g. Thisis AC6= but is not AC
.To show AC6=
6= $ AC
, by monotoni
ity, AC6=
6= ,! AC
. To show the reverse, 
onsidera permutation problem whi
h is AC
 but not AC6=
6=. Then there exists at least one not-equals 
onstraint that is not AC. Without loss of generality, let this be on two dual variables(a symmetri
 argument 
an be made for two primal variables). So both the asso
iated (dual)variables, 
all them di and dj must have the same singleton domain, say fkg. Hen
e, thedomain of the primal variable xk in
ludes i and j. Consider the 
hannelling 
onstraintbetween xk and di. Now this is not AC as the value xk = j has no support. This is a
ontradi
tion.To show GAC8
8 $ GAC8, 
onsider a permutation problem that is GAC8. For everypossible assignment of a value to a variable, there exist a 
onsistent extension to the othervariables, x1 = dx1 ; : : : xn = dxn with xi 6= xj for all i 6= j. As this is a permutation, this
orresponds to the assignment of unique variables to values. Hen
e, the 
orresponding dualall-di�erent 
onstraint is GAC. Finally, the 
hannelling 
onstraints are trivially AC. 2364



Dual Modelling of Permutation and Inje
tion ProblemsUsing these identities, we 
an immediately dedu
e, for instan
e, that it does not in
reasepruning to have both 
hannelling 
onstraints and primal (or dual) not-equals 
onstraints.Not-equals 
onstraints do not in
rease the amount of 
onstraint propagation over thata
hieved with 
hannelling 
onstraints alone. As our experiments show later on, they onlyadd overhead to the 
onstraint solver. It is insightful to extra
t from these proofs thereasons why ar
-
onsisten
y performs di�erent amounts of 
onstraint propagation in thedi�erent models. Ar
-
onsisten
y deletes values in the domains of variables as follows:primal not-equals 
onstraints: if the domain of any of the primal variables is redu
edto a singleton (either by 
onstraint propagation or by assignment in a ba
ktra
kingalgorithm), enfor
ing AC on the primal not-equals 
onstraints removes this value fromall other primal variables.
hannelling 
onstraints: as with primal not-equals 
onstraints; in addition, if the do-main of any dual variable is redu
ed to a singleton, enfor
ing AC on the 
hannelling
onstraints removes this value from all other dual variables. In parti
ular, if a valueo

urs in the domain of just one other primal variable, enfor
ing AC on the 
hannelling
onstraints ensures that no other value 
an be assigned to that primal variable.primal all-di�erent 
onstraint: enfor
ing GAC on a primal all-di�erent 
onstraint willprune all the values that are removed by enfor
ing AC on the primal not-equals or
hannelling 
onstraints. In addition, enfor
ing GAC is sometimes able to prune othervalues (e.g. if we have two primal variables with only two values between them, thesevalues will be removed from all other primal variables).In brief, AC on the primal not-equals 
onstraints dete
ts singleton variables, whilst AC onthe 
hannelling 
onstraints dete
ts both singleton variables and singleton values. GAC ona primal all-di�erent 
onstraint, on the other hand, determines global 
onsisten
y whi
hin
ludes singleton variables, singleton values and many other situations.5.2 Maintaining Ar
-Consisten
yThese results 
an be lifted to algorithms that maintain (generalized) ar
-
onsisten
y duringsear
h. Indeed, the gaps between the primal all-di�erent and the 
hannelling 
onstraints,and between the 
hannelling 
onstraints and the primal not-equals 
onstraints 
an be ex-ponentially large. Note that not all di�eren
es in 
onstraint tightness result in exponentialredu
tions in sear
h. For instan
e, some di�eren
es between models whi
h are only polyno-mial are identi�ed in Cheng et al. (1999). Re
all that we write XA ) XB i� XA ! XB andthere is a problem on whi
h algorithm X visits exponentially fewer bran
hes with A thanB. Note that GAC8 and AC are both polynomial to enfor
e, so an exponential redu
tionin bran
hes translates to an exponential redu
tion in runtime.Theorem 2 On a permutation problem:MGAC8 ) MAC6=
6= $ MAC6=
 $ MAC
 ) MAC6=Proof: We give proofs for the most important identities. Other results follow immediatelyfrom the last theorem. 365
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h, Smith, & WalshTo show MGAC8 ) MAC
, 
onsider a (n+3)-variable permutation problem with xi =f1; : : : ; ng for i � n+1 and xn+2 = xn+3 = fn+1; n+2; n+3g. Then, given a lexi
ographi
alvariable ordering, MGAC8 immediately fails, whilst MAC
 takes n! bran
hes.To show MAC
 ) MAC6=, 
onsider a (n+ 2)-variable permutation problem with x1 =f1; 2g, and xi = f3; : : : ; n + 2g for i � 2. Then, given a lexi
ographi
al variable ordering,MAC
 takes 2 bran
hes to show insolubility, whilst MAC 6= takes 2(n� 1)! bran
hes. 25.3 Forward Che
kingMaintaining (generalized) ar
-
onsisten
y on large permutation problems 
an be expensive.We may therefore de
ide to use a 
heaper lo
al 
onsisten
y property like that maintainedby forward 
he
king. For example, the Cho
o �nite-domain toolkit in Claire uses just nFC0on all-di�erent 
onstraints. The 
hannelling 
onstraints remain tighter than the primalnot-equals 
onstraints wrt FC.Theorem 3 On a permutation problem:nFC28 ! FC6=
6= $ FC6=
 $ FC
 ! FC6= ! nFC08"nFC28 ! nFC18Proof: Gent et al. (2000) prove FC6= ,! nFC08. To show stri
tness on permutationproblems (as opposed to the more general 
lass of de
omposable 
onstraints studied byGent, Stergiou, and Walsh, 2000), 
onsider a 5-variable permutation problem with x1 =x2 = x3 = x4 = f1; 2; 3g and x5 = f4; 5g. Irrespe
tive of the variable and value ordering,FC shows the problem is unsatis�able in at most 12 bran
hes. nFC0 by 
omparison takesat least 18 bran
hes.To show FC
 ! FC6=, 
onsider assigning the value j to the primal variable xi. FC 6=removes j from the domain of all other primal variables. FC
 instantiates the dual variabledj with the value i, and then removes i from the domain of all other primal variables.Hen
e, FC
 prunes all the values that FC6= does. To show stri
tness, 
onsider a 4-variablepermutation problem with x1 = f1; 2g and x2 = x3 = x4 = f3; 4g. Given a lexi
ographi
alvariable and numeri
al value ordering, FC6= shows the problem is unsatis�able in 4 bran
hes.FC
 by 
omparison takes just 2 bran
hes.Gent et al. (2000) prove nFC18 ,! FC 6=. To show the reverse, 
onsider assigning thevalue j to the primal variable xi. FC6= removes j from the domain of all primal variablesex
ept xi. However, nFC18 also removes j from the domain of all primal variables ex
eptxi sin
e ea
h o

urs in a binary not-equals 
onstraint with xi obtained by proje
ting outthe all-di�erent 
onstraint. Hen
e, nFC18 $ FC 6=.To show nFC28 ! FC 6=
6=, 
onsider instantiating the primal variable xi with the valuej. FC6=
6= removes j from the domain of all primal variables ex
ept xi, i from the domainof all dual variables ex
ept dj , instantiates dj with the value i, and then removes i from thedomain of all dual variables ex
ept dj . nFC28 also removes j from the domain of all primalvariables ex
ept xi. The only possible di�eren
e is if one of the other dual variables, saydl has a domain wipeout. If this happens, xi has one value in its domain, l that is in thedomain of no other primal variable. Enfor
ing GAC immediately dete
ts that xi 
annot366



Dual Modelling of Permutation and Inje
tion Problemstake the value j, and must instead take the value k. Hen
e nFC28 has a domain wipeoutwhenever FC6=
6= does. To show stri
tness, 
onsider a 7-variable permutation problem withx1 = x2 = x3 = x4 = f1; 2; 3g and x5 = x6 = x7 = f4; 5; 6; 7g. Irrespe
tive of the variableand value ordering, FC6=
6= takes at least 6 bran
hes to show the problem is unsatis�able.nFC28 by 
omparison takes no more than 4 bran
hes.Bessi�ere et al. (1999) prove nFC28 ,! nFC18. To show stri
tness on permutation prob-lems, 
onsider a 5-variable permutation problem with x1 = x2 = x3 = x4 = f1; 2; 3g andx5 = f4; 5g. Irrespe
tive of the variable and value ordering, nFC1 shows the problem isunsatis�able in at least 6 bran
hes. nFC2 by 
omparison takes no more than 3 bran
hes.25.4 Bounds Consisten
yAnother 
ommon method to redu
e 
osts is to enfor
e just bounds 
onsisten
y. For example,bounds 
onsisten
y is used to prune a global 
onstraint involving a sum of variables and aset of inequalities (R�egin & Rueher, 2000). As a se
ond example, some of the experimentson permutation problems performed by Smith (2000) used bounds 
onsisten
y on 
ertainof the 
onstraints. With bounds 
onsisten
y on permutation problems, we obtain a verysimilar ordering of the models as with AC.Theorem 4 On a permutation problem:BC8 ! BC6=
6= $ BC6=
 $ BC
 ! BC6="AC 6=Proof: To show BC
 ! BC 6=, 
onsider a permutation problem whi
h is BC
 but one ofthe primal not-equals 
onstraints is not BC. Then, it would involve two variables, xi andxj both with identi
al interval domains, [k; k℄. Enfor
ing BC on the 
hannelling 
onstraintbetween xi and dk would redu
e dk to the domain [i; i℄. Enfor
ing BC on the 
hannelling
onstraint between xj and dk would then 
ause a domain wipeout. But this 
ontradi
ts the
hannelling 
onstraints being BC. Hen
e, all the primal not-equals 
onstraints must be BC.To show stri
tness. 
onsider a 3-variable permutation problem with x1 = x2 = [1; 2℄ andx3 = [1; 3℄. This is BC 6= but not BC
.To show BC8 ! BC 6=
6=, 
onsider a permutation problem whi
h is BC8. Suppose weassign a boundary value j to a primal variable, xi (or equivalently, a boundary value i toa dual variable, dj). As the all-di�erent 
onstraint is BC, this 
an be extended to all theother primal variables using ea
h of the values on
e. This gives us a 
onsistent assignmentfor any other primal or dual variable. Hen
e, it is BC6=
6=. To show stri
tness, 
onsider a5-variable permutation problem with x1 = x2 = x3 = [1; 2℄ and x4 = x5 = [3; 5℄. This isBC6=
6= but not BC8.To show AC6= ! BC
, 
onsider a permutation problem whi
h is BC
 but not AC6=. Thenthere must be one 
onstraint, xi 6= xj, with xi and xj having the same singleton domain,fkg. But, if this is the 
ase, enfor
ing BC on the 
hannelling 
onstraints between xi anddk and between xj and dk would prove that the problem is unsatis�able. Hen
e, it is AC6=.To show stri
tness, 
onsider a 3-variable permutation problem with x1 = x2 = [1; 2℄ andx3 = [1; 3℄. This is AC 6= but not BC
. 2 367
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h, Smith, & Walsh5.5 Restri
ted Path Consisten
yDebruyne and Bessi�ere (1997) have shown that RPC is a promising �ltering te
hnique aboveAC. It prunes many of the PIC values at little extra 
ost to AC. Surprisingly, 
hannelling
onstraints are in
omparable to the primal not-equals 
onstraints wrt RPC. Channelling
onstraints 
an in
rease the amount of propagation (for example, when a dual variable hasonly one value left in its domain). However, RPC is hindered by the bipartite 
onstraintgraph between primal and dual variables. Additional not-equals 
onstraints on primaland/or dual variables 
an therefore help propagation.Theorem 5 On a permutation problem;GAC8 ! RPC 6=
6= ! RPC6=
 ! RPC
 
 RPC 6= 
 AC
Proof: To show RPC
 
 RPC6=, 
onsider a 4-variable permutation problem with x1 =x2 = x3 = f1; 2; 3g and x4 = f1; 2; 3; 4g. This is RPC6= but not RPC
. For the reversedire
tion, 
onsider a 5-variable permutation problem with x1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This is RPC
 but not RPC 6=.To show RPC6=
 ! RPC
, 
onsider again the last example. This is RPC
 but notRPC6=
.To show RPC6=
6= ! RPC6=
, 
onsider a 6-variable permutation problem with x1 = x2 =f1; 2; 3; 4; 5; 6g and x3 = x4 = x5 = x6 = f4; 5; 6g. This is RPC 6=
 but not RPC 6=
6=.To show GAC8 ! RPC6=
6=, 
onsider a permutation problem whi
h is GAC8. Supposewe assign a value j to a primal variable, xi (or equivalently, a value i to a dual variable,dj). As the all-di�erent 
onstraint is GAC, this 
an be extended to all the other primalvariables using up all the other values. This gives us a 
onsistent assignment for any twoother primal or dual variables. Hen
e, the problem is PIC 6=
6= and thus RPC6=
6=. To showstri
tness, 
onsider a 7-variable permutation problem with x1 = x2 = x3 = x4 = f1; 2; 3gand x5 = x6 = x7 = f4; 5; 6; 7g. This is RPC6=
6= but not GAC8.To show AC
 
 RPC6=, 
onsider a 4-variable permutation problem with x1 = x2 = x3 =f1; 2; 3g and x4 = f1; 2; 3; 4g. This is RPC6= but not AC
. For the reverse dire
tion, 
onsidera 5-variable permutation problem with x1 = x2 = x3 = f1; 2g and x4 = x5 = f3; 4; 5g. Thisis AC
 but not RPC6=. 25.6 Path Inverse Consisten
yThe in
omparability of 
hannelling 
onstraints and primal not-equals 
onstraints remainswhen we move up the lo
al 
onsisten
y hierar
hy from RPC to PIC.Theorem 6 On a permutation problem:GAC8 ! PIC6=
6= ! PIC6=
 ! PIC
 
 PIC6= 
 AC
Proof: To show PIC
 
 PIC 6=, 
onsider a 4-variable permutation problem with x1 =x2 = x3 = f1; 2; 3g and x4 = f1; 2; 3; 4g. This is PIC6= but not PIC
. Enfor
ing PICon the 
hannelling 
onstraints redu
es x4 to the singleton domain f4g. For the reversedire
tion, 
onsider a 5-variable permutation problem with x1 = x2 = x3 = f1; 2g andx4 = x5 = f3; 4; 5g. This is PIC
 but not PIC 6=.368



Dual Modelling of Permutation and Inje
tion ProblemsTo show PIC6=
 ! PIC
, 
onsider a 5-variable permutation problem with x1 = x2 =x3 = f1; 2g and x4 = x5 = f3; 4; 5g. This is PIC
 but not PIC 6=
.To show PIC6=
6= ! PIC 6=
, 
onsider a 6-variable permutation problem with x1 = x2 =f1; 2; 3; 4; 5; 6g and x3 = x4 = x5 = x6 = f4; 5; 6g. This is PIC 6=
 but not PIC 6=
6=.To show GAC8 ! PIC 6=
6=, 
onsider a permutation problem in whi
h the all-di�erent
onstraint is GAC. Suppose we assign a value j to a primal variable, xi (or equivalently, avalue i to a dual variable, dj). As the all-di�erent 
onstraint is GAC, this 
an be extendedto all the other primal variables using up all the other values. This gives us a 
onsistentassignment for any two other primal or dual variables. Hen
e, the not-equals and 
hannelling
onstraints are PIC. To show stri
tness, 
onsider a 7-variable permutation problem withx1 = x2 = x3 = x4 = f1; 2; 3g and x5 = x6 = x7 = f4; 5; 6; 7g. This is PIC6=
6= but notGAC8.To show PIC6= 
 AC
, 
onsider a 4-variable permutation problem with x1 = x2 = x3 =f1; 2; 3g and x4 = f1; 2; 3; 4g. This is PIC6= but not AC
. Enfor
ing AC on the 
hannelling
onstraints redu
es x4 to the singleton domain f4g. For the reverse dire
tion, 
onsider a5-variable permutation problem with x1 = x2 = x3 = f1; 2g and x4 = x5 = f3; 4; 5g. Thisis AC
 but not PIC6=. 25.7 Singleton Ar
-Consisten
yDebruyne and Bessi�ere (1997) also showed that SAC is a promising �ltering te
hniqueabove both AC, RPC and PIC, pruning many values for its CPU time. Prosser et al. (2000)reported promising experimental results with SAC on quasigroup problems, a multiple per-mutation problem. Interestingly, as with AC (but unlike RPC and PIC whi
h lie betweenAC and SAC), 
hannelling 
onstraints are tighter than the primal not-equals 
onstraintswrt SAC.Theorem 7 On a permutation problem:GAC8 ! SAC6=
6= $ SAC6=
 $ SAC
 ! SAC 6= 
 AC
Proof: To show SAC
 ! SAC 6=, 
onsider a permutation problem that is SAC
 and anyinstantiation for a primal variable xi. Suppose that the primal not-equals model of theresulting problem 
annot be made AC. Then there must exist two other primal variables,say xj and xk whi
h have at most one other value. Consider the dual variable asso
iatedwith this value. Then under this instantiation of the primal variable xi, enfor
ing AC on the
hannelling 
onstraint between the primal variable xi and the dual variable, and betweenthe dual variable and xj and xk results in a domain wipeout on the dual variable. Hen
e theproblem is not SAC
. This is a 
ontradi
tion. The primal not-equals model 
an therefore bemade AC following the instantiation of xi. That is, the problem is SAC 6=. To show stri
tness,
onsider a 5-variable permutation problem with domain x1 = x2 = x3 = x4 = f0; 1; 2g andx5 = f3; 4g. This is SAC 6= but not SAC
.To show GAC8 ! SAC
, 
onsider a permutation problem that is GAC8. Consider anyinstantiation for a primal variable. This 
an be 
onsistently extended to all variables inthe primal model. But this means that it 
an be 
onsistently extended to all variablesin the primal and dual model, satisfying any (
ombination of) permutation or 
hannelling369
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onstraints. As the 
hannelling 
onstraints are satis�able, they 
an be made AC. Considerany instantiation for a dual variable. By a similar argument, taking the appropriate instan-tiation for the asso
iated primal variable, the resulting problem 
an be made AC. Hen
e,given any instantiation for a primal or dual variable, the 
hannelling 
onstraints 
an bemade AC. That is, the problem is SAC
, To show stri
tness, 
onsider a 7-variable permu-tation problem with x1 = x2 = x3 = x4 = f0; 1; 2g and x5 = x6 = x7 = f3; 4; 5; 6g. ThisSAC
 but is not GAC8.To show SAC6= 
 AC
, 
onsider a four variable permutation problem in whi
h x1 to x3have the f1; 2; 3g and x4 has the domain f0; 1; 2; 3g. This is SAC 6= but not AC
. For thereverse, 
onsider a 4-variable permutation problem with x1 = x2 = f0; 1g and x3 = x4 =f0; 2; 3g. This is AC
 but not SAC 6=. 25.8 Strong Path-Consisten
yAdding primal or dual not-equals 
onstraints to 
hannelling 
onstraints does not help ACor SAC. The following result shows that their addition does not help higher levels of lo
al
onsisten
y like strong path-
onsisten
y (ACPC).Theorem 8 On a permutation problem:GAC8 
 ACPC 6=
6= $ ACPC6=
 $ ACPC
 ! ACPC6= 
 AC
Proof: To show ACPC
 ! ACPC 6=, 
onsider some 
hannelling 
onstraints that are ACPC.Now AC
 ! AC 6=, so we just need to show PC
! PC 6=. Consider a 
onsistent pair of values,l and m for a pair of primal variables, xi and xj. Take any third primal variable, xk. Asthe 
onstraint between dl, dm and xk is PC, we 
an �nd a value for xk 
onsistent withthe 
hannelling 
onstraints. But this also satis�es the not-equals 
onstraint between primalvariables. Hen
e, the problem is PC6=. To show stri
tness, 
onsider a 4-variable permutationproblem with x1 = x2 = x3 = x4 = f1; 2; 3g. This is ACPC 6= but not ACPC
.To show ACPC6=
6= $ ACPC6=
 $ ACPC
, we re
all that AC6=
 $ AC 6=
 $ AC
. Hen
ewe need just show that PC 6=
 $ PC 6=
 $ PC
. Consider a permutation problem. Enfor
ingPC on the 
hannelling 
onstraints alone infers both the primal and the dual not-equals
onstraints. Hen
e, PC 6=
 $ PC 6=
 $ PC
.To show GAC8 
 ACPC 6=
6=, 
onsider a 6-variable permutation problem with x1 = x2 =x3 = x4 = f1; 2; 3g, and x5 = x6 = f4; 5; 6g. This is ACPC 6=
6= but not GAC8. For thereverse dire
tion, 
onsider a 3-variable permutation problem with x1 = x2 = x3 = f1; 2; 3g,and the additional binary 
onstraint even(x1 + x3). Enfor
ing GAC8 prunes the domainsto x1 = x3 = f1; 3g, and x2 = f2g. However, these domains are not ACPC6=
6=. Enfor
ingACPC tightens the 
onstraint between x1 and x3 from not-equals to x1 = 1; x3 = 3 orx1 = 3; x3 = 1.To show ACPC6= 
 AC
, 
onsider a 5-variable permutation problem with x1 = x2 =x3 = f1; 2g, and x4 = x5 = f3; 4; 5g. This is AC
 but not ACPC 6=. For the reverse dire
tion,
onsider again the 4-variable permutation problem with x1 = x2 = x3 = x4 = f1; 2; 3g. Thisis ACPC 6= but not AC
. 2 370
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tion Problems5.9 Multiple Permutation ProblemsThese results extend to multiple permutation problems under a simple restri
tion that theproblem is triangle preserving (Stergiou & Walsh, 1999). That is, any triple of variableswhi
h are all-di�erent must o

ur together in at least one permutation. For example, thethree 
onstraints all-di�(x1; x2; x4), all-di�(x1; x3; x5), and all-di�(x2; x3; x6) are not trianglepreserving as x1, x2 and x3 are all-di�erent but are not in the same 
onstraint. The followingtheorem 
olle
ts together and generalizes many of the previous results.Theorem 9 On a multiple permutation problem:GAC8 
 ACPC 6=
6= $ ACPC6=
 $ ACPC
 ! ACPC6= 
 AC
# # # #GAC8 !SAC6=
6= $ SAC6=
 $ SAC
 ! SAC6= 
 AC
# # # #GAC8 !PIC6=
6= ! PIC6=
 ! PIC
 
 PIC6= 
 AC
# # # #GAC8 !RPC 6=
6= ! RPC6=
 ! RPC
 
 RPC6= 
 AC
# # # #GAC8 !AC6=
6= $ AC6=
 $ AC
 ! AC6= !BC
# # # # #BC8 !BC 6=
6= $ BC6=
 $ BC
 ! BC6=Proof: The proofs lift in a straightforward manner from the single permutation 
ase. Lo
al
onsisten
ies like ACPC, SAC, PIC and RPC 
onsider triples of variables. If these arelinked together, we use the fa
t that the problem is triangle preserving and a permutationis therefore de�ned over them. If these are not linked together, we 
an de
ompose theargument into AC on pairs of variables. Without triangle preservation, GAC8, may onlya
hieve as high a level of 
onsisten
y as AC6=. For example, 
onsider again the non-trianglepreserving 
onstraints in the last paragraph. If x1 = x2 = x3 = f1; 2g and x4 = x5 = x6 =f1; 2; 3g then the problem is GAC8, but it is not RPC 6=, and hen
e neither PIC6=, SAC 6=nor ACPC 6=. 26. SAT ModelsAnother solution strategy is to en
ode permutation problems into SAT and use a fastDavis-Putnam (DP) or lo
al sear
h pro
edure. For example, Bejar and Manya (2000)report promising results for propositional en
odings of round robin problems, whi
h in
ludepermutation 
onstraints. We 
onsider here just \dire
t" en
odings into SAT as these havebeen used most 
ommonly in the past (Walsh, 2000). An alternative and promising en
odingof CSPs into SAT is the \support en
oding". Re
ently, Gent (2002) has shown that unitpropagation in the support en
oding is equivalent to enfor
ing ar
-
onsisten
y in the originalCSP, and this 
an be a
hieved in asymptoti
ally optimal time. To 
ompare the supporten
odings of the di�erent models of a permutation problem, we simply need therefore tolook at our results on ar
-
onsisten
y. With the dire
t en
oding, unit propagation enfor
esa level of lo
al 
onsisten
y less than ar
-
onsisten
y. Indeed, the level of 
onsisten
y is oftenidenti
al to that a
hieved by the forward 
he
king algorithm.371
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h, Smith, & WalshIn the dire
t en
oding of a CSP into SAT, we have a Boolean variable Xij whi
h is truei� the primal variable xi takes the value j. In the primal SAT model, there are n 
lauses toensure that ea
h primal variable takes at least one value, O(n3) 
lauses to ensure that noprimal variable gets two values, and O(n3) 
lauses to ensure that no two primal variablestake the same value. Interestingly the 
hannelling SAT model has the same number ofBoolean variables as the primal SAT model (as we 
an use Xij to represent both the jthvalue of the primal variable xi and the ith value for the dual variable dj), and just nadditional 
lauses to ensure ea
h dual variable takes a value. The O(n3) 
lauses to ensurethat no dual variable gets two values are equivalent to the 
lauses that ensure no two primalvariables get the same value. The following results show that MAC is tighter than DP, andDP is equivalent to FC on these di�erent models. In what follows, we assume that the FCalgorithm uses a fail �rst heuristi
 that instantiates variables with single values left in theirdomains before variables with a 
hoi
e of values (Harali
k & Elliot, 1980).Theorem 10 On a permutation problem:MGAC8 ! MAC6=
6= $ MAC6=
 $ MAC
 ! MAC6=# # # #MGAC8 ! DP6=
6= $ DP6=
 $ DP
 ! DP6=l l l lMGAC8 ! FC6=
6= $ FC6=
 $ FC
 ! FC6=Proof: DP6= $ FC6= is a spe
ial 
ase of Theorem 14 (Walsh, 2000), whilst MAC6= ! FC6=is a spe
ial 
ase of Theorem 15.To show DP
 $ FC
 suppose unit propagation sets a literal l. There are four 
ases. Inthe �rst 
ase, a 
lause of the form Xi1 _ : : : _Xin has been redu
ed to an unit. That is, wehave one value left for a primal variable. The fail �rst heuristi
 in FC pi
ks this last valueto instantiate. In the se
ond 
ase, a 
lause of the form :Xij _ :Xik for j 6= k has beenredu
ed to an unit. This ensures that no primal variable gets two values. The FC algorithmtrivially never tries two simultaneous values for a primal variable. In the third 
ase, a 
lauseof the form :Xij _ :Xkj for i 6= k has been redu
ed to an unit. This ensures that no dualvariable gets two values. Again, the FC algorithm trivially never tries two simultaneousvalues for a dual variable. In the fourth 
ase, X1j _ : : : _Xnj has been redu
ed to an unit.That is, we have one value left for a dual variable. A fail �rst heuristi
 in FC pi
ks thislast value to instantiate. Hen
e, given a suitable bran
hing heuristi
, the FC algorithmtra
ks the DP algorithm. To show the reverse, suppose forward 
he
king removes a value.There are two 
ases. In the �rst 
ase, the value i is removed from a dual variable dj due tosome 
hannelling 
onstraint. This means that there is a primal variable xk whi
h has beenset to some value l 6= j. Unit propagation on :Xkl _ :Xkj sets Xkj to false, and then on:Xij _:Xkj sets Xij to false as required. In the se
ond 
ase, the value i is removed from adual variable dj , again due to a 
hannelling 
onstraint. The proof is now dual to the �rst
ase.To show MAC
 ! DP
, we use the fa
t that MAC dominates FC and FC
 $ DP
.To show stri
tness, 
onsider a 3-variable permutation problem with additional binary 
on-straints that rule out the same value for all 3 primal variables. Enfor
ing AC on the372
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hannelling 
onstraints 
auses a domain wipeout on the dual variable asso
iated with thisvalue. As there are no unit 
lauses, DP does not immediately solve the problem.To show DP
 ! DP6=, we note that the 
hannelling SAT model 
ontains more 
lauses.Hen
e, it dominates the primal SAT model. To show stri
tness, 
onsider a four variablepermutation problem with three additional binary 
onstraints that if x1 = 1 then x2 = 2,x3 = 2 and x4 = 2 are all ruled out. Consider bran
hing on x1 = 1. Unit propagation onboth models sets X12, X22, X32, X42, X21, X31 and X41 to false. On the 
hannelling SATmodel, unit propagation against the 
lause X12 _X22 _X32 _X42 then generates an empty
lause. By 
omparison, unit propagation on the primal SAT model does no more work. 27. Asymptoti
 ComparisonThe previous results tell us nothing about the relative 
ost of a
hieving these lo
al 
onsis-ten
ies. Asymptoti
 analysis adds detail to the results. We 
an a
hieve GAC8 in O(n4)time (R�egin, 1994). AC on binary 
onstraints 
an be a
hieved in O(ed2) where e is thenumber of 
onstraints and d is their domain size. As there are O(n2) 
hannelling 
on-straints, AC
 naively takes O(n4) time. However, by taking advantage of the fun
tionalnature of 
hannelling 
onstraints, we 
an redu
e this to O(n3) using the AC-5 algorithm(Hentenry
k, Deville, & Teng, 1992). AC 6= also naively takes O(n4) time as there are O(n2)binary not-equals 
onstraints. However, we 
an take advantage of the spe
ial nature of abinary not-equals 
onstraint to redu
e this to O(n2) as ea
h not-equals 
onstraint needs tobe made AC just on
e. We have proved that GAC8 ! AC
 ! AC6= and greater pruningpower is re
e
ted in higher worst 
ase 
omplexity (O(n4), O(n3), O(n2) respe
tively). Thuswe still need to run experiments to see if the additional pruning outweighs the potentiallyhigher 
ost.8. Experimental ComparisonWe ran a wide variety of experiments to explore the signi�
an
e of these theoreti
al andasymptoti
 di�eren
es. For example, even though binary not-equals 
onstraints do lesspruning than the 
hannelling 
onstraints, they might still speed up sear
h by pruningqui
ker. We limit the �rst set of experiments to a stati
 variable and value ordering aswe wish to 
on�rm the theoreti
al results, and these are limited either to stati
 orderings orto a restri
ted 
lass of dynami
 variable and value orderings in whi
h we make \equivalent"bran
hing de
isions in the di�erent sear
h trees (Ba

hus et al., 2002).As explained before, many 
onstraint toolkits support 
hannelling with eÆ
ient global
onstraints. For example, ILOG Solver has the Il
Inverse 
onstraint, and the Si
stus �nitedomain 
onstraint library has the assignment predi
ate. Both perform a level of pruningwhi
h appears to be equivalent to enfor
ing AC on the expli
it 
hannelling 
onstraints.We therefore 
ompared this in our experiments to AC on the binary not-equals 
onstraintsand GAC on the all-di�erent 
onstraint. All the models are implemented in Solver 5.300,and are available via CSPLib. We lexi
ographi
ally order the variables and assign thevalues in numeri
al order. We therefore only bran
h on primal variables. As we observevery similar results on a range of permutation problems, we only show here results forLangford's problem. 373
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L(3,9) L(3,10)model heuristi
 fails se
. fails se
.8 stati
 12 0.001 42 0.003
 stati
 12 0.003 43 0.0056= stati
 25 0.001 82 0.0116=
 stati
 12 0.005 43 0.013
 6= stati
 12 0.001 43 0.0118
 stati
 12 0.001 42 0.009
8 stati
 12 0.003 42 0.0096=
 6= stati
 12 0.005 43 0.0158
 6= stati
 12 0.005 42 0.0116=
8 stati
 12 0.007 42 0.0138
8 stati
 12 0.003 42 0.009Table 3: Number of ba
ktra
ks (fails) and running time to �nd the �rst solution to two in-stan
es of Langford's problem. Runtimes are for ILOG Solver 5.300 on a 1200MHz,Pentium III pro
essor, and 512 MB of RAM.

L(3,9) L(3,10) L(3,11) L(3,12)model heuristi
 fails se
. fails se
. fails se
. fails se
.8 stati
 2006 0.22 10051 1.13 49118 5.86 279468 35.36
 stati
 2282 0.28 11336 1.45 56234 7.41 312926 41.896= stati
 6062 0.59 29018 3.15 167624 20.59 949878 131.046=
 stati
 2282 0.41 11336 2.26 56234 11.91 312926 72.85
 6= stati
 2282 0.41 11336 2.25 56234 11.94 312926 72.28
 stati
 2006 0.32 10051 1.72 49118 8.61 279468 50.53
8 stati
 2006 0.33 10051 1.76 49118 8.77 279468 51.416=
 6= stati
 2282 0.53 11336 3.21 56234 18.21 312926 114.448
 6= stati
 2006 0.43 10051 2.38 49118 12.32 279468 76.776=
8 stati
 2006 0.66 10051 2.49 49118 12.92 279468 78.958
8 stati
 2006 0.39 10051 2.09 49118 10.56 279468 62.49Table 4: Number of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of Langford's problem. Runtimes are forILOG Solver 5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.
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Dual Modelling of Permutation and Inje
tion ProblemsIn Table 3, we 
ompare the various models of a permutation when �nding the �rstsolution to two instan
es of Langford's problem. In Table 4, we 
ompare the same mod-els when �nding all solutions or proving that there are no solutions, for four instan
es ofLangford's problem. Only L(3,9) and L(3,10) in this table have any solutions. The exper-imental results 
on�rm our theoreti
al �ndings. First, enfor
ing GAC on an all-di�erent
onstraint does the most pruning, whilst enfor
ing AC on the binary not-equals 
onstraintsdoes the least, and enfor
ing AC on the 
hannelling 
onstraints is in between. Runtimesare similarly ordered. Se
ond, adding the primal or dual binary not-equals 
onstraints tothe 
hannelling 
onstraints does not bring any more pruning, and merely adds overhead tothe runtime. Third, adding extra 
onstraints to the primal or dual all-di�erent 
onstrainta
hieves the same amount of pruning as the all-di�erent 
onstraint on its own, and againjust adds overhead to the runtime.9. Dynami
 Variable And Value OrderingThe experimental results in the last se
tion might seem to have settled the matter of howto model permutation problems. Enfor
ing GAC on a single all-di�erent 
onstraint alwaysgave the smallest sear
h trees and runtimes. However, this ignores a signi�
ant potentialadvantage of 
hannelling into a dual model. Dynami
 variable and value ordering heuristi
smay be able to exploit the primal and dual viewpoints of a permutation to make betterde
isions. This is not a topi
 that 
an be easily addressed theoreti
ally. However, theexperimental results given in this se
tion show that variable and value ordering heuristi
s
an pro�t greatly from multiple viewpoints.A variable ordering heuristi
 like smallest domain is usually justi�ed in terms of a fail-�rst prin
iple: we have to pi
k eventually all the variables, so it is wise to 
hoose one that ishard to assign, giving us hopefully mu
h 
onstraint propagation and a small sear
h tree. Avalue ordering heuristi
 like maximum promise (Geelen, 1992) is usually justi�ed in termsof a su

eed-�rst prin
iple: we pi
k a value likely to lead to a solution, so redu
ing the riskof ba
ktra
king and trying one of the alternative values. In a permutation problem, we 
anbran
h on the primal or the dual variables or on both. We shall show here that fail-�rston one viewpoint is 
ompatible with su

eed-�rst on the dual. To do so, we 
onsider thefollowing heuristi
s.Smallest domain, SD(p+d) : 
hoose the primal or the dual variable with the smallestdomain, and 
hoose the values in numeri
 order.Primal smallest domain, SD(p) : 
hoose the primal variable with the smallest domain,and 
hoose the values in numeri
 order.Dual smallest domain, SD(d) : 
hoose the dual variable with the smallest domain, and
hoose the values in numeri
 order.Double smallest domain, SD2(p+d) : 
hoose the primal/dual variable with the small-est domain, and 
hoose the value whose dual/primal variable has the smallest domain.Primal double smallest domain, SD2(p) : 
hoose the primal variable with the small-est domain, and 
hoose the value whose dual variable has the smallest domain.375



Hni
h, Smith, & WalshDual double smallest domain, SD2(d) : 
hoose the dual variable with the smallestdomain, and 
hoose the value whose primal variable has the smallest domain.The smallest domain heuristi
 on the dual has been used as a value ordering heuristi
in a number of experimental studies (Jourdan, 1995; Cheng et al., 1999; Smith, 2000). Thefollowing argument shows that the double smallest domain heuristi
s are 
ompatible withthe fail �rst prin
iple for variable ordering and su

eed �rst for value ordering. Suppose weassign the primal value j to the primal variable xi (an analogous argument 
an be given ifwe bran
h on a dual variable). Constraint propagation will prune the primal value j fromthe other primal variables, and the dual value i from the other dual variables. Constraintpropagation may do more than this if we have an all-di�erent 
onstraint or 
hannelling
onstraints. However, to a �rst approximation, this is a reasonable starting point. Thesu

eed �rst value ordering heuristi
 
omputes the \promise" of the di�erent values bymultiplying together the domain sizes of the uninstantiated variables (Geelen, 1992). Anyterm in this produ
t is un
hanged if j or i, depending on whether this is a primal or dualvariable, does not o

ur in the domain and is redu
ed by 1 if j or i o

urs. The produ
t islikely to be maximized by ensuring we redu
e as few terms as possible. That is, by ensuringj and i o

ur in as few domains as possible. That is dj and xi have the smallest domainspossible. Hen
e double smallest domain will bran
h on the variable with smallest domainand tend to assign it the value with most promise.We now 
ompare these heuristi
s in an extensive set of experiments. The hypothesis wewish to test is that bran
hing heuristi
s 
an pro�t from multiple viewpoints. We use thefollowing 
olle
tion of permutation problems in addition to Langford's problem:Quasigroup existen
e problem: An orderm quasigroup is a Latin square of sizem, thatis, an m�m multipli
ation table in whi
h ea
h element o

urs in every row and every
olumn. Quasigroup existen
e problems determine the existen
e or non-existen
e ofquasigroups of a given size with additional properties:� QG3(m): denotes quasigroups of order m for whi
h (a � b) � (b � a) = a.� QG4(m): denotes quasigroups of order m for whi
h (b � a) � (a � b) = a.We additionally demand that the quasigroup is idempotent, i.e. a � a = a for everyelement a. The problem is prob003 in CSPLib.Golomb rulers problem: A Golomb ruler 
onsists of n marks arranged along a ruler oflength m su
h that the distan
es between any pair of marks form a permutation. Theproblem is prob006 at CSPLib. In our experiments we spe
ify the known optimallength and �nd all optimal solutions.Sport s
heduling problem: The problem 
onsists of s
heduling games between n teamsover n� 1 weeks when n is even (n weeks when n is odd). Ea
h week is divided inton=2 periods when n is even ((n � 1)=2 when n is odd). Ea
h game is 
omposed oftwo slots, "home" and "away", where one team plays home and the other team playsaway. The obje
tive is to s
hedule a game for ea
h period of every week su
h that:every team plays against every other team; a team plays exa
tly on
e a week whenwe have an even number of teams, and at most on
e a week when we have an odd376



Dual Modelling of Permutation and Inje
tion Problemsnumber of weeks; and a team plays at most twi
e in the same period over the 
ourseof the season. The problem is prob026 in CSPLib.Magi
 squares problem: An order n magi
 square is an n by n matrix 
ontaining thenumbers 1 to n2, with the sum of ea
h row, 
olumn, and diagonal being equal. Theproblem is prob019 in CSPLib.9.1 Langford's ProblemL(3,12) L(3,13) L(3,14) L(3,15)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 62016 10.27 300800 53.72 1368322 272.03 7515260 1601.008 SD(p) 20795 3.59 93076 16.95 405519 78.18 2072534 414.71
 SD(p+d) 11683 2.16 45271 8.66 184745 36.46 846851 171.97
 SD(p) 21148 3.68 94795 16.84 412882 74.99 2112477 389.69
 SD(d) 15214 2.64 59954 10.73 249852 46.39 1144168 221.01
 SD2(p+d) 11683 2.2 45271 9.04 184745 38.32 846851 180.00
 SD2(p) 20855 3.89 93237 17.07 406546 75.38 2077692 393.21
 SD2(d) 14314 2.62 56413 10.61 234770 45.68 1076352 213.518
 SD(p+d) 11449 2.84 44253 11.47 180611 48.71 827564 231.808
 SD(p) 20795 4.93 93076 22.61 405519 102.45 2072534 537.148
 SD(d) 14459 3.44 56701 13.94 234790 60.13 1069249 282.428
 SD2(p+d) 11451 2.91 44254 11.72 180631 49.71 827605 235.568
 SD2(p) 20488 4.98 91513 22.86 399092 103.09 2037159 540.048
 SD2(d) 13639 3.38 53483 13.78 221307 59.33 1009250 278.32Table 5: Number of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of Langford problem. Runtimes are forILOG Solver 5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.The results are given in Table 5. We make a number of observations. Enfor
ing ACon the primal not-equals model (\6=") gives the worst results (as it does in almost all thesubsequent problem domains). We will not therefore dis
uss it further. The best runtimesare obtained with the 
 model, heuristi
 SD(p+d), i.e. from enfor
ing a permutation bythe 
hannelling 
onstraints alone and 
hoosing the variable with smallest domain, whetherprimal or dual. Using just the primal or just the dual variables as de
ision variables tends toin
rease runtimes. The bran
hing heuristi
 does indeed pro�t from the multiple viewpoints.Note that the 8 model is no longer the best strategy, in terms of either failures or runtimes,as it was in Table 4. This is despite the fa
t that it has the strongest propagator. Thismodel has only one viewpoint and this hinders the bran
hing heuristi
. Note also that thesmallest sear
h trees (but not runtimes) are obtained with the 8
 model that 
ombines theall-di�erent 
onstraint on the primal with the 
hannelling 
onstraints between the primaland dual, when we use both primal and dual variables as de
ision variables. This 
ombina-tion gives the bene�ts of the strongest propagator and a dual viewpoint for the bran
hingheuristi
. 377
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h, Smith, & Walsh9.2 Quasigroups QG3(6) QG(7) QG3(8) QG3(9)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 8 0.01 100 0.22 1895 8.46 83630 600.618 SD(p) 7 0.01 59 0.17 955 5.76 35198 385.57
 SD(p+d) 7 0.02 63 0.16 1117 5.81 53766 463.40
 SD(p) 7 0.02 59 0.17 1039 5.70 38196 373.38
 SD(d) 6 0.01 54 0.19 888 5.40 46539 418.96
 SD2(p+d) 7 0.02 63 0.17 1117 5.83 53785 461.05
 SD2(p) 7 0.01 58 0.17 1043 5.68 38198 372.41
 SD2(d) 6 0.01 54 0.18 887 5.42 46741 419.948
 SD(p+d) 7 0.02 54 0.16 999 6.00 49678 474.828
 SD(p) 7 0.02 59 0.18 955 5.85 35198 376.068
 SD(d) 5 0.02 52 0.2 824 5.73 43278 438.818
 SD2(p+d) 7 0.03 54 0.17 999 6.05 49702 477.048
 SD2(p) 7 0.02 58 0.18 959 5.84 35201 368.878
 SD2(d) 5 0.02 52 0.19 823 5.80 43452 432.89Table 6: Number of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of QG3 problem. Runtimes are for ILOGSolver 5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.The quasigroup existen
e problem 
an be modelled as a multiple permutation problemwith 2n interse
ting permutation 
onstraints. We introdu
e a variable for ea
h entry inthe multipli
ation table of the quasigroup. We then post permutation 
onstraints on thevariables of ea
h row and ea
h 
olumn. In Tables 6 and 7, we give results for two familiesof problems. As before, the 6= model gives the worst performan
e, and by a 
onsiderablemargin for the larger instan
es. For QG3, all the other models and bran
hing heuristi
sgive broadly similar performan
e. A dual viewpoint, either by itself or in 
ombination withthe primal viewpoint, does not o�er any advantage, but does not hurt mu
h either. ForQG4, in Table 7, all the models and bran
hing heuristi
s are 
ompetitive, ex
ept for the 6=model and the heuristi
s that bran
h only on the dual variables.9.3 Golomb RulersTo model the Golomb rulers problem as a permutation problem, we introdu
e a variablefor ea
h pairwise distan
e between marks. Sin
e we may have more values than variables,we introdu
e additional variables to ensure that there are as many variables as values, assuggested by Geelen (1992). We 
an then post a permutation 
onstraint on this enlargedset of variables. In Table 8, we give results for �nding all optimal length rulers for fourinstan
es: Golomb(n;m) means the problem of �nding a Golomb ruler of (minimal) lengthm with n marks. Despite the fa
t that it has the strongest propagator, the 8 model is not378
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QG4(6) QG4(7) QG4(8) QG4(9)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 6 0.01 82 0.23 1779 8.29 116298 843.268 SD(p) 4 0.01 57 0.19 892 5.12 52419 496.24
 SD(p+d) 6 0.02 59 0.20 935 4.99 55232 489.89
 SD(p) 6 0.01 59 0.20 931 4.92 55397 485.72
 SD(d) 6 0.02 74 0.21 1266 7.59 83316 772.17
 SD2(p+d) 6 0.02 59 0.19 940 4.81 55264 476.66
 SD2(p) 6 0.01 59 0.19 936 4.87 55442 478.48
 SD2(d) 6 0.01 73 0.22 1267 7.37 82916 766.338
 SD(p+d) 4 0.02 57 0.19 900 5.19 52045 486.728
 SD(p) 4 0.02 57 0.20 892 5.29 52419 491.548
 SD(d) 4 0.02 67 0.21 1102 7.04 73997 745.098
 SD2(p+d) 4 0.01 57 0.19 905 5.24 52077 491.458
 SD2(p) 4 0.01 57 0.20 897 5.23 52463 493.708
 SD2(d) 4 0.01 66 0.23 1104 7.02 73714 745.86Table 7: Number of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of QG4 problem. Runtimes are for ILOGSolver 5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.
ompetitive on the larger instan
es. Model 
 and heuristi
 SD(p+d) gives the best runtimesfor the larger instan
es, whereas adding the all-di�erent 
onstraint (model 8
, heuristi
SD(p+d)) gives the least sear
h. Being for
ed to bran
h on just the primal variables hurtsthe bran
hing heuristi
.9.4 Sport S
hedulingUnlike the previous problems, we �nd only the �rst solution to the sports s
heduling prob-lem. This leads to mu
h greater variation in performan
e between the di�erent models. Wereport results in Table 9. Good runtimes are obtained with the 
 and 8
 models, using thedual variables as de
ision variables, either on their own or in 
ombination with the primalvariables.9.5 Magi
 SquaresWe model the order n magi
 square problem with a n by n matrix of variables whi
htake values from 1 to n2. We then post a permutation 
onstraint on all the variables in thematrix, and sum 
onstraints on the rows, 
olumns and diagonals. Results are given in Table10. Again, �nding just the �rst solution leads to wide variation in performan
e between themodels. Using only the dual variables as de
ision variables is a bad 
hoi
e, but the dualvariables are helpful if used as de
ision variables in 
ombination with the primal variables.For the largest instan
e solved, the best strategy is the double smallest domain heuristi
379
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Golomb(7,25) Golomb(8,34) Golomb(9,44) Golomb(10,55)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 912 0.15 5543 1.12 { { { {8 SD(p) 500 0.11 2949 0.81 { { { {
 SD(p+d) 606 0.12 3330 1.01 17002 7.54 72751 49.14
 SD(p) 890 0.15 5343 1.25 { { { {
 SD(d) 626 0.12 3390 1.02 17151 7.55 73539 49.25
 SD2(p+d) 608 0.12 3333 1.03 17022 7.63 72853 49.37
 SD2(p) 928 0.17 5648 1.27 { { { {
 SD2(d) 626 0.12 3390 1.03 17179 7.59 73628 49.598
 SD(p+d) 493 0.12 2771 1.10 14313 8.29 61572 54.638
 SD(p) 500 0.13 2949 1.08 { { { {8
 SD(d) 495 0.13 2782 1.10 14325 8.28 61616 54.468
 SD2(p+d) 504 0.14 2787 1.1 14392 8.38 61898 54.948
 SD2(p) 542 0.14 3258 1.12 { { { {8
 SD2(d) 495 0.13 2794 1.11 14400 8.39 61893 54.97Table 8: Number of ba
ktra
ks (fails) and running time to �nd all optimal solutions tofour instan
es of the Golomb rulers problem, where the optimal length is given.Runtimes are for ILOG Solver 5.300 on 1200MHz, Pentium III pro
essor, and 512MB of RAM. A dash means that no results were returned after 1 hour.on model 
 or model 8
. The former explores a larger sear
h tree, but does so very slightlyqui
ker than the latter.To 
on
lude, these results show that dynami
 bran
hing heuristi
s 
an be signi�
antlymore e�e
tive when they look at both viewpoints of a permutation. Indeed, bran
hing onprimal or dual variables was often more important to our results than using a strongerpropagator. For example, enfor
ing GAC on an all-di�erent 
onstraint, and sear
hing juston the primal variables, often gave worse performan
e than enfor
ing AC on the 
han-nelling 
onstraints, and thus being able to bran
h on both sets of variables. In addition,in some problem 
lasses, the double smallest domain bran
hing heuristi
 o�ered the bestperforman
e. As we have argued, this heuristi
 is 
onsistent with the fail �rst prin
iple forvariable ordering and the su

eed �rst prin
iple for value ordering.It is worth noting that the results of our experiments run 
ounter to the usual expe
ta-tions of value ordering. We found that double smallest domain (that is, smallest domain forboth variable ordering and value ordering) gave di�erent numbers of ba
ktra
ks to small-est domain variable ordering, even when �nding all solutions. It is generally thought thatvalue ordering makes no di�eren
e to the overall sear
h e�ort when �nding all solutions, if
hronologi
al ba
ktra
king is used. Indeed, the argument given earlier for su

eed �rst as avalue ordering prin
iple is based on �nding only one solution: if we 
hoose the right value,380
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Sport(6) Sport(8) Sport(10) Sport(12)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 0 0.00 1248 0.22 1863275 397.70 5777382 1971.928 SD(p) 0 0.01 566 0.15 1361686 350.92 3522705 1444.44
 SD(p+d) 624 0.09 4 0.01 7 0.03 5232 1.78
 SD(p) 0 0.00 566 0.14 1376143 355.99 3537447 1368.84
 SD(d) 589 0.07 3 0.01 336 0.07 6368 1.9
 SD2(p+d) 7 0.00 9 0.01 1112 0.30 46122 18.4
 SD2(p) 113 0.02 6601 0.94 820693 168.91 { {
 SD2(d) 514 0.06 43 0.01 7028 1.58 6252 2.298
 SD(p+d) 624 0.10 4 0.01 7 0.03 5190 1.988
 SD(p) 0 0.01 566 0.16 1361686 372.10 3522705 1495.418
 SD(d) 589 0.09 3 0.01 329 0.08 6262 2.188
 SD2(p+d) 7 0.00 9 0.01 1102 0.35 45125 20.988
 SD2(p) 113 0.02 6563 1.09 812696 186.23 { {8
 SD2(d) 514 0.07 43 0.02 6920 1.76 6129 2.55Table 9: Number of ba
ktra
ks (fails) and running time to �nd the �rst solution to fourinstan
es of the sports s
heduling problem. Runtimes are for ILOG Solver 5.300on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.we 
an avoid ba
ktra
king to 
hoose another one. If we want to �nd all solutions, we shallhave to ba
ktra
k to try all the alternative values anyway. Smith (2000) shows how valueordering 
an make a di�eren
e to the sear
h in Langford's problem, even when �nding allsolutions. In brief, when we ba
ktra
k having tried the assignment V ar = value, we 
anpost the 
onstraint V ar 6= value. In some 
ases, propagation may now lead to immediatefailure. A good ordering for the values 
an therefore save sear
h.10. Inje
tive MappingsIn many problems, variables may be 
onstrained to take unique values, but we have morevalues than variables. That is, we are looking for an inje
tive mapping from the variablesto the values. For example, an optimal 5-ti
k Golomb ruler has ti
ks at the marks 0, 1, 4,9, and 11. The 10 inter-ti
k distan
es are all di�erent but do not form a permutation asthe distan
e 6 is absent. Finding a 5-ti
k Golomb ruler of length 11 
an be modelled as apermutation problem by introdu
ing an additional 11th variable to take on the missing value6. Indeed, this is the method we use to model the problem in the last se
tion. However,there are a number of alternative ways to model an inje
tion from n variables into m valueswhi
h we explore here.For example, there are two simple primal models of an inje
tion. In ea
h we have nprimal variables whi
h take one of m possible values. In the primal all-di�erent model(denoted by \8"), we simple post a single all-di�erent 
onstraint on the primal variables.381
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Magi
(3) Magi
(4) Magi
(5) Magi
(6)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 6 0.00 20 0.00 1576 0.11 { {8 SD(p) 4 0.00 19 0.00 1355 0.11 2748609 196.45
 SD(p+d) 5 0.00 18 0.00 4637 0.37 { {
 SD(p) 4 0.00 20 0.00 1457 0.14 3448162 249.84
 SD(d) 5 0.00 37 0.01 49312 4.61 { {
 SD2(p+d) 5 0.00 10 0.00 555 0.06 463865 37.41
 SD2(p) 4 0.00 11 0.00 495 0.05 1648408 132.35
 SD2(d) 5 0.00 18 0.00 928217 86.07 { {8
 SD(p+d) 5 0.01 18 0.00 4436 0.48 { {8
 SD(p) 4 0.00 19 0.00 1355 0.17 { {8
 SD(d) 5 0.00 5 0.00 42426 5.33 { {8
 SD2(p+d) 5 0.02 10 0.01 435 0.07 290103 39.018
 SD2(p) 4 0.00 11 0.00 355 0.05 1083993 148.738
 SD2(d) 5 0.00 16 0.00 919057 106.55 { {Table 10: Number of ba
ktra
ks (fails) and running time to �nd the �rst solution to fourinstan
es of magi
 square problem. Runtimes are for ILOG Solver 5.300 on1200MHz, Pentium III pro
essor, and 512 MB of RAM. A dash means that noresults were returned after 1 hour.

In the primal not-equals model (denoted by \6=") we post binary not-equals 
onstraintsbetween every two distin
t primal variables. We 
an also use dual models. For example,in the dual not-equals model, we have m dual variables, ea
h with a domain of m possiblevalues (m� n of these are dummy values), and binary not-equals 
onstraints between ea
hpair of dual variables.We will 
onsider three di�erent 
ombined models whi
h 
hannel between primal and dualmodels. In the �rst 
ombined model (denoted by \
1"), we have 
hannelling 
onstraintsof the form xi = j implies dj = i and no additional dummy values for the dual variables.In the se
ond 
ombined model (denoted by \
2"), the dual variables have m � n extradummy values, and we have 
hannelling 
onstraints of the form xi = j i� dj = i. Inthe third 
ombined model (denoted by \
3"), the dual variables have just a single extradummy value, and we have 
hannelling 
onstraints of the form xi = j i� dj = i but onlywhen j is not equal to the dummy value. Note that any of these 
hannelling 
onstraintsalone (without additional 
onstraints on the primal or dual variables) is enough to de�nean inje
tion.We 
an also model an inje
tion by introdu
ing m � n dummy primal variables andensuring that this extended set of variables forms a bije
tion. This 
ase is, however, 
overedby our earlier results on permutations. 382



Dual Modelling of Permutation and Inje
tion Problems10.1 Ar
-Consisten
yWe �rst prove that, with respe
t to ar
-
onsisten
y, the �rst type of 
hannelling 
onstraintsare as tight as the primal not-equals 
onstraints, but less tight than the primal all-di�erent
onstraint. Then, we prove that the se
ond type of 
hannelling 
onstraints are as tightas the primal not-equals 
onstraints, but less tight than the 
hannelling and dual not-equals 
onstraints, whi
h are less tight than the primal all-di�erent 
onstraint. Finally, weprove that the third type of 
hannelling 
onstraints are as tight as the primal not-equals
onstraints but less tight than the primal all-di�erent 
onstraint. This means that the threetypes of 
hannelling 
onstraints give the same pruning when we enfor
e ar
-
onsisten
y asthe primal not-equals 
onstraints. Note, however, that we get more pruning when we addthe dual not-equals 
onstraints (but not the primal not-equals 
onstraints). This is di�erentto permutations where neither the addition of the primal nor the dual not-equals 
onstraintsto the 
hannelling 
onstraint gave more pruning.Theorem 11 On an inje
tion problem:GAC8 ! AC6=
1 $ AC
1 $ AC6=Proof: To show GAC8 ! AC
1 , 
onsider an inje
tion problem whose primal all-di�erent
onstraint is GAC. Suppose the 
hannelling 
onstraint between xi and dj was not AC.Then xi is set to j and dj has i eliminated from its domain. But this is not possible bythe 
onstru
tion of the primal and dual model. Hen
e the 
hannelling 
onstraints are allAC. To show stri
tness, 
onsider an inje
tion problem in whi
h x1 = x2 = x3 = f1; 2g andd1 = d2 = d3 = d4 = f1; 2; 3g. This is AC
1 but not GAC8.To show AC
1 $ AC6=, suppose that the 
hannelling 
onstraints are AC. Consider anot-equals 
onstraint, xi 6= xj (where i 6= j) that is not AC. Now, xi and xj must have thesame singleton domain, fkg. Consider the 
hannelling 
onstraint between xi and dk. Theonly AC value for dk is i. Similarly, the only AC value for dk in the 
hannelling 
onstraintbetween xj and dk is j. But i 6= j. Hen
e, dk has no AC values. This is a 
ontradi
tion asthe 
hannelling 
onstraints are AC. Hen
e all not-equals 
onstraints are AC. Now supposethat the not-equals 
onstraints are AC. Consider a 
hannelling 
onstraint between xi anddj that is not AC. Then xi is set to j and dj has i eliminated from its domain. But for ito be eliminated from the domain of dj , some other primal variable, say xk where k 6= i, isset to j, whi
h eliminate j from the domain of xi (sin
e the not-equals 
onstraints are AC).Hen
e, it is not possible to set xi to j and dj has i eliminated from its domain. Thus, all
hannelling 
onstraints are AC. 2Theorem 12 On an inje
tion problem:GAC8 ! AC6=
2 6= $ AC
2 6= ! AC
2 $ AC6=Proof: To show GAC8 ! AC
2 6=, 
onsider an inje
tion problem whi
h is GAC8. Supposethe not-equal 
onstraint between di and dj was not AC. Then, in the �rst 
ase, di = dj = k383
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h, Smith, & Walshand k < n + 1, whi
h is impossible be
ause the 
hannelling 
onstraints xk = i i� di = kand xk = j i� dj = k are AC. In the se
ond 
ase, k would be greater than n, whi
his impossible by 
onstru
tion of the primal and dual model. Hen
e all binary not-equal
onstraints on the dual variables are AC. To show stri
tness, 
onsider an inje
tion in whi
hx1 = x2 = x3 = f1; 2g, d1 = d2 = f1; 2; 3; 4; 5g, and d3 = d4 = d5 = f4; 5g. This is AC
2 6=dbut not GAC8.To show AC
2 6= ! AC
2 , by monotoni
ity, we have AC
2 6= ,! AC
2 . To show stri
tness,
onsider an inje
tion problem in whi
h x1 = x2 = x3 = f1; 2g, and d1 = d2 = f1; 2; 3; 4g,and d3 = d4 = f4g. This is AC
2 but not GAC
2 6=.To show AC
2 $ AC6=, suppose that the 
hannelling 
onstraints are AC. Consider anot-equals 
onstraint, xi 6= xj (where i 6= j) that is not AC. Now, xi and xj must have thesame singleton domain, fkg. Consider the 
hannelling 
onstraint between xi and dk. Theonly AC value for dk is i. Similarly, the only AC value for dk in the 
hannelling 
onstraintbetween xj and dk is j. But i 6= j. Hen
e dk has no AC values. This is a 
ontradi
tion asthe 
hannelling 
onstraints are AC. Hen
e all not-equals 
onstraints are AC. To show thereverse, suppose that the not-equals 
onstraints are AC. Consider a 
hannelling 
onstraint,xi = j i� dj = i, that is not AC. Then, either xi is set to j and dj has i eliminated from itsdomain, or dj is set to i and xi has j eliminated from its domain. But, for i to be eliminatedfrom the domain of dj , some other primal variable, say xk where k 6= i, is set to j, whi
hwill eliminate j from the domain of xi (sin
e the not-equals 
onstraints are AC). Hen
e itis not possible to set xi to j and dj has i eliminated from its domain. For dj to be set toi, all the other values must be removed from its domain, but there is no way to removeany of the values bigger than n from the domain of dj , be
ause at most we have n primalvariables. Thus, all 
hannelling 
onstraints are AC. 2Theorem 13 On an inje
tion problem:GAC8 ! AC
3 $ AC6=Proof: To show GAC8 ! AC
3 , 
onsider an inje
tion in whi
h x1 = x2 = x3 = f1; 2g,x4 = f1; 2; 3; 4; 5g, d1 = d2 = f1; 2; 3; 4; 5g, and d3 = d4 = d5 = f4; 5g. This is GAC
3jW j,but not GAC8.To show AC
3 $ AC6=, suppose that the 
hannelling 
onstraints are AC. Consider anot-equals 
onstraint, xi 6= xj (where i 6= j) that is not AC. Now, xi and xj must have thesame singleton domain, fkg. Consider the 
hannelling 
onstraint between xi and dk. Theonly AC value for dk is i. Similarly, the only AC value for dk in the 
hannelling 
onstraintbetween xj and dk is j. But i 6= j. Hen
e dk has no AC values. This is a 
ontradi
tion asthe 
hannelling 
onstraints are AC. Hen
e all not-equals 
onstraints are AC. To show thereverse, suppose that the not-equals 
onstraints are AC. Consider a 
hannelling 
onstraint,xi = j i� dj = i, that is not AC. Then, either xi is set to j and dj has i eliminated from itsdomain, or dj is set to i and xi has j eliminated from its domain. But, for i to be eliminatedfrom the domain of dj , some other primal variable, say xk where k 6= i, is set to j, whi
hwill eliminate j from the domain of xi (sin
e the not-equals 
onstraints are AC). Hen
e itis not possible to set xi to j and dj has i eliminated from its domain. For dj to be set to384
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tion Problemsi, all the other values must be removed from its domain, but there is no way to removeany of the values bigger than n from the domain of dj , be
ause we have at most n primalvariables. Thus, all 
hannelling 
onstraints are AC. 210.2 Asymptoti
 ComparisonThe previous results 
ompare the di�erent models with respe
t to the amount of pruninga
hieved. We 
an, for example, now rule out a model like \6= 
1" when enfor
ing AC sin
ewe get just as mu
h pruning at less 
ost on the model 
1. However, these results do notdistinguish between, say, a model with primal not-equals 
onstraints, or any of the 
ombinedmodels 
1, 
2 or 
3. We get the same pruning in all four. We 
an add some details to theseresults by 
omparing the asymptoti
 behaviour.The relative 
ost of a
hieving GAC8 is O(n2m2), where n is the number of variablesand m is their domain size. AC
1 , AC
2 , and AC
3 naively take O(nm3) time. However, bytaking advantage of the fun
tional nature of 
hannelling 
onstraints, we 
an redu
e this toO(nm2) for 
2 and 
3 and O(nm) for 
1. We proved in Theorem 11 that GAC8 ! AC
1$ AC6= and their 
osts are O(n2m2), O(nm), and O(n2) respe
tively. Asymptoti
 analy-sis shows that enfor
ing AC
1 has asymptoti
ally slightly more 
ost than enfor
ing AC6=.However, having the dual variables 
ould be advantageous in 
onjun
tion with variable andvalue ordering heuristi
s. We also proved in Theorem 12 that GAC8 ! AC
2 6= ! AC
2$ AC6= and their 
osts are O(n2m2), O(nm2), O(nm2), and O(n2) respe
tively. Asymp-toti
 analysis shows that the 
hannelling 
onstraints are more 
ostly than the not-equals
onstraints and bring no more pruning. When we add not-equals 
onstraints on the dualvariables, the overall asymptoti
 
ost is still the same as the 
hannelling 
onstraints alone,but we a
hieve more pruning. It is therefore a model worth 
onsidering. Finally, in Theo-rem 13 we proved that GAC8 ! AC
3 $ AC6= and their 
osts are O(n2m2), O(nm2), andO(n2) respe
tively. Again, asymptoti
 analysis shows that 
hannelling 
onstraints are more
ostly than the not-equals 
onstraints and bring no more pruning. Maintaining generalisedar
-
onsisten
y on the all-di�erent 
onstraint is again the most 
ostly.To 
on
lude, these results show that, as might be expe
ted, we in general get morepruning if we in
rease the asymptoti
 
ost. Models worth 
onsidering are the primal not-equals model, 
2 6=, and the primal all-di�erent model. Ea
h gives a di�erent amount ofpruning at a di�erent asymptoti
 
ost. We might also 
onsider 
1 instead of the primalnot-equals model sin
e, whilst it is asymptoti
ally slightly more expensive, it lets us bran
hon dual variables.10.3 Experiments With Stati
 OrderingsWe again ran some experiments to explore the signi�
an
e of these theoreti
al and asymp-toti
 di�eren
es. Table 11 gives results on some instan
es of the Golomb rulers problemusing a stati
 variable ordering. The experiments are again 
onsistent with the theoreti
alresults. First, enfor
ing GAC on an all-di�erent 
onstraint a
hieves the most pruning andhas the smallest runtimes. Se
ond, on these problems instan
es, enfor
ing AC on the binarynot-equals 
onstraints a
hieves the same amount of pruning as maintaining AC on the 
han-nelling 
onstraints. In addition, enfor
ing AC on the 
hannelling 
onstraints takes longer385
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hieve. Third, adding the 
hannelling 
onstraints to the primal all-di�erent 
onstraintdoes not in
rease pruning, and merely adds overhead to the runtime.Golomb(8,34) Golomb(9,44) Golomb(10,55) Golomb(11,72)model heuristi
 fails se
. fails se
. fails se
. fails se
.8 stati
 82 0.02 724 0.26 3461 2.08 18493 13.63
2 stati
 104 0.03 1110 0.38 7122 3.46 37404 23.026= stati
 104 0.03 1110 0.34 7122 3.03 37404 20.328
2 stati
 82 0.03 724 0.36 3461 2.76 18493 17.97Table 11: Number of ba
ktra
ks (fails) and running time to �nd the �rst solution to fourinstan
es of the Golomb rulers problem. Runtimes are for ILOG Solver 5.300 on1200MHz, Pentium III pro
essor, and 512 MB of RAM.10.4 Dynami
 Variable And Value Ordering Heuristi
sGolomb(8,34) Golomb(9,44) Golomb(10,55) Golomb(11,72)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 326 0.06 3810 0.96 50526 16.67 800169 352.88 SD(p) 238 0.04 2629 0.75 32705 13.12 563011 266.52
2 SD(p+d) 11 0.00 2010 0.57 2288 0.86 982 0.48
2 SD(p) 326 0.07 3810 1.13 50526 20.42 800169 418.03
2 SD(d) 12 0.00 2333 0.61 2822 0.90 1254 0.52
2 SD2(p+d) 12 0.01 2033 0.58 2374 0.86 984 0.48
2 SD2(p) 335 0.06 4244 1.18 57158 21.54 898457 441.15
2 SD2(d) 12 0.00 2342 0.60 2911 0.91 1247 0.518
2 SD(p+d) 10 0.00 904 0.44 1076 0.66 598 0.438
2 SD(p) 238 0.07 2629 1.10 32705 19.32 563011 419.458
2 SD(d) 11 0.00 906 0.44 1087 0.64 605 0.448
2 SD2(p+d) 10 0.00 914 0.43 1125 0.69 588 0.448
2 SD2(p) 254 0.07 3054 1.17 39143 21.21 663896 456.758
2 SD2(d) 11 0.01 909 0.43 1131 0.70 592 0.44Table 12: Number of ba
ktra
ks (fails) and running time to �nd the �rst solution to fourinstan
es of the Golomb rulers problem. Runtimes are for ILOG Solver 5.300 on1200MHz, Pentium III pro
essor, and 512 MB of RAM.We also explored the advantage of multiple viewpoints of inje
tion problems for dy-nami
 variable and value ordering heuristi
s. In Table 12, we give results for Golomb ruler386
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tion Problemsproblems. We observe that the primal all-di�erent model is not 
ompetitive on the largerproblems. The best runtimes are obtained with the 
hannelling 
onstraints (and a primalall-di�erent 
onstraint) using the smallest domain or the double smallest domain heuristi
on both sets of variables or on the dual variables. Being for
ed to bran
h on just the primalvariables hurts the bran
hing heuristi
. A dual viewpoint appears to o�er the bran
hingheuristi
 very signi�
ant advantages on this problem.Sport(7) Sport(9) Sport(11)model heuristi
 fails se
. fails se
. fails se
.6= SD(p) 14 0.00 140287 15.33 { {8 SD(p) 14 0.00 138643 16.12 { {
2 SD(p+d) 3 0.00 34 0.01 43877 8.04
2 SD(p) 14 0.00 140294 17.21 { {
2 SD(d) 0 0.00 33 0.01 1829954 268.73
2 SD2(p+d) 3 0.00 4535 0.67 910362 185.63
2 SD2(p) 14 0.00 143989 17.71 { {
2 SD2(d) 2 0.00 11424 1.36 12536523 1787.218
2 SD(p+d) 3 0.00 28 0.01 38555 9.058
2 SD(p) 14 0.01 138643 20.27 { {8
2 SD(d) 0 0.00 31 0.02 374829 78.538
2 SD2(p+d) 3 0.00 2013 0.34 600686 151.198
2 SD2(p) 14 0.00 142313 20.31 { {8
2 SD2(d) 2 0.00 3238 0.52 1854082 431.19Table 13: Number of ba
ktra
ks (fails) and running time to �nd the �rst solution to threeinstan
es of sport s
heduling problem. Runtimes are for ILOG Solver 5.300 on1200MHz, Pentium III pro
essor, and 512 MB of RAM. A dash means no solutionis found after 1 hour.In Table 13, we give results for the sport s
heduling problem when there are an oddnumber of weeks. Despite the fa
t that it has the strongest propagator, the primal all-di�erent model is not 
ompetitive on the larger problems. The best runtimes are obtainedwith the 
hannelling 
onstraints and bran
hing on the primal or dual variable with smallestdomain. As with the Golomb ruler problem, being for
ed to bran
h on just the primalvariables hurts the bran
hing heuristi
. A dual viewpoint appears to o�er the bran
hingheuristi
 very signi�
ant advantages on this problem. Note also that on the largest instan
e,the smallest sear
h tree is obtained with the 
hannelling and the all-di�erent 
onstraints,bran
hing on the primal or dual variable with smallest domain. To 
on
lude, dynami
bran
hing heuristi
s 
an again be signi�
antly more e�e
tive when they look at both theprimal and dual viewpoint. 387
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h, Smith, & Walsh11. Related WorkCheng et al. (1999) studied modelling and solving the n-queens problem, and a nurse roster-ing problem using 
hannelling 
onstraints. They show that 
hannelling 
onstraints in
reasethe amount of 
onstraint propagation. They 
onje
ture that the overheads asso
iated with
hannelling 
onstraints will pay o� on problems whi
h require large amounts of sear
h, orlead to thrashing behaviour. They also show that 
hannelling 
onstraints open the door tointeresting value ordering heuristi
s. For permutation problems, a similar idea was previ-ously proposed by Geelen (1992).Choi and Lee (2002) fo
used on the study of 
ombined models of permutation problems.Their study in
luded not only the permutation 
onstraints, but also all the other 
onstraintsof the problem. Their 
omparison measure is an extension of the propagator 
omparisonapproa
h of S
hulte and Stu
key (2001), whi
h measures the di�erent 
ombined models withrespe
t to their ability to prune the sear
h spa
e with 
onstraint propagation. However,their measure is independent of the level of 
onsisten
y maintained on the 
onstraints anddepends upon the set of 
orre
t propagators instead. They theoreti
ally dis
over the 
riteriaunder whi
h minimal 
ombined models have the same pruning power as full 
ombinedmodels and empiri
ally demonstrate the results on di�erent permutation problems.Ba

hus et al. (2002) formally studied the e�e
tiveness of two modelling te
hniques thattransform a non-binary CSP into an equivalent binary CSP, namely, the dual transformationand the hidden one. An original model of the problem, its dual and its hidden transfor-mations are 
ompared with respe
t to the performan
e of a number of lo
al 
onsisten
yte
hniques in
luding ar
-
onsisten
y, and with respe
t to the 
hronologi
al ba
ktra
kingalgorithm, FC, and MAC.Borret and Tsang (1999) developed a framework for systemati
 model sele
tion. Theydemonstrated their approa
h on the evaluation of adding a 
ertain 
lass of implied 
on-straints to an original model. The evaluation heuristi
 used is based on an extension ofthe theoreti
al 
omplexity estimates proposed by Nadel (1990). Their experimental resultsshow that the approa
h is promising. However, with this approa
h one needs the instan
edata to be an expli
it input to the methods.12. Con
lusionsWe have performed an extensive study of dual modelling on permutation and inje
tionproblems. To 
ompare models, we de�ned a measure of 
onstraint tightness parameterizedby the level of lo
al 
onsisten
y being enfor
ed. For permutation problems and enfor
-ing ar
-
onsisten
y, we proved that a single primal all-di�erent 
onstraint is tighter than
hannelling 
onstraints, but that 
hannelling 
onstraints are tighter than primal not-equals
onstraints. The reason for this di�eren
e is that the primal not-equals 
onstraints dete
tsingleton variables (i.e. those variables with a single value), the 
hannelling 
onstraints de-te
t singleton variables and singleton values (i.e. those values whi
h o

ur in the domain of asingle variable), whilst the primal all-di�erent 
onstraint dete
ts global 
onsisten
y (whi
hin
ludes singleton variables, singleton values and many other situations). For lower lev-els of lo
al 
onsisten
y (e.g. that maintained by forward 
he
king), 
hannelling 
onstraintsremain tighter than primal not-equals 
onstraints. However, for 
ertain higher levels of388
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tion Problemslo
al 
onsisten
y like path inverse 
onsisten
y, 
hannelling 
onstraints are in
omparable toprimal not-equals 
onstraints. For inje
tion problems, we proved that, with respe
t to ar
-
onsisten
y, a single primal all-di�erent 
onstraint is tighter than 
hannelling 
onstraintstogether with the dual not-equals 
onstraints, but that the 
hannelling 
onstraints alone areas tight as the primal not-equals 
onstraints. The asymptoti
 analysis allowed us to redu
efurther the number of models that might be worth 
onsidering. Experimental results on awide range of problems supported these theoreti
al results. For example, adding binary not-equals 
onstraints to the 
hannelling 
onstraints does not in
reasing pruning, and merelyadds overhead to the runtimes. However, the experimental results also demonstrated thevery signi�
ant bene�ts of being able to bran
h on both primal and dual variables. In many
ases, we obtained the best runtimes with just 
hannelling 
onstraints and a bran
hingheuristi
 that looked at both primal and dual viewpoints.What general lessons 
an be learnt from this study? First, there are many possiblemodels of even a simple problem like �nding a permutation or an inje
tion. In addition,no one model is best in all situations. We therefore need to support the user in modellingeven simple problems. Se
ond, it often pays to 
onstru
t redundant models with multipleviewpoints of the same problem. Despite the overheads, the ability to bran
h on dualvariables 
an be very bene�
ial. Bran
hing heuristi
s that 
onsider multiple viewpoints
an be very e�e
tive. Third, the additional 
onstraint propagation provided by global
onstraints like all-di�erent may not justify their 
ost. We often saw better performan
ewhen we threw out the all-di�erent 
onstraint. Fourth, our measure of 
onstraint tightness
an be used to 
ompare di�erent 
onstraint models. However, this measure 
an only reje
t
ertain models on the basis that they add overhead. We still must run experiments todetermine if the additional 
onstraint propagation provided by tighter models is worth the
ost of this 
onstraint propagation. Ultimately, the question being addressed is 
entral tomany problems in arti�
ial intelligen
e: the trade-o� between sear
h and inferen
e.A
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