Journal of Artificial Intelligence Research 21 (2004) 357-391 Submitted 08/03; published 02/04

Dual Modelling of Permutation and Injection Problems

Brahim Hnich BRAHIM@4C.UCC.IE
Cork Constraint Computation Center
University College Cork, Cork, Ireland

Barbara M. Smith B.M.SMITH@QHUD.AC.UK
School of Computing and Engineering
Huddersfield, U.K

Toby Walsh TW@4C.UCC.IE
Cork Constraint Computation Center
University College Cork, Cork, Ireland.

Abstract

When writing a constraint program, we have to choose which variables should be the
decision variables, and how to represent the constraints on these variables. In many cases,
there is considerable choice for the decision variables. Consider, for example, permutation
problems in which we have as many values as variables, and each variable takes an unique
value. In such problems, we can choose between a primal and a dual viewpoint. In the dual
viewpoint, each dual variable represents one of the primal values, whilst each dual value
represents one of the primal variables. Alternatively, by means of channelling constraints
to link the primal and dual variables, we can have a combined model with both sets of
variables. In this paper, we perform an extensive theoretical and empirical study of such
primal, dual and combined models for two classes of problems: permutation problems
and injection problems. Our results show that it often be advantageous to use multiple
viewpoints, and to have constraints which channel between them to maintain consistency.
They also illustrate a general methodology for comparing different constraint models.

1. Introduction

Constraint programming is a highly successful technology for solving a wide variety of com-
binatorial problems like resource allocation, transportation, and scheduling. A constraint
program consists of a set of decision variables, each with an associated domain of values,
and a set of constraints defining allowed values for subsets of these variables. The efficiency
of a constraint program depends on many factors including a good choice for the decision
variables, and careful modelling of the constraints on these variables. There is often con-
siderable choice as to what the decision variables and their values should represent. For
example, in an exam timetabling problem, the variables could represent the exams, and the
values represent the times. Alternatively, we can use a dual model in which the variables
are the times, and the values are the exams. We always have a choice of this kind in permu-
tation problems. In a permutation problem, we have as many values as variables, and each
variable takes an unique value. We can therefore easily exchange the roles of the variables
and the values in representing the underlying problem. Many assignment, scheduling and

(©2004 AI Access Foundation. All rights reserved.

HN1CH, SMITH, & WALSH

routing problems are permutation problems. For example, sports tournament scheduling
can be modelled as finding a permutation of the games to fit into the time slots, or a per-
mutation of the time slots to fit the games into. The aim of this paper is to compare such
different models both theoretically and empirically.

The paper is structured as follows. In Section 2, we give the formalism and notation
used in the rest of the paper. In Section 3, we present Langford’s problem, which is used
to illustrate the different ways we can model a permutation problem. We then introduce a
formal measure of constraint tightness (Section 4) used to compare theoretically the different
models of permutation problems (Section 5). In Section 6, we compare SAT (Boolean)
models of permutation problems. In Sections 7 and 8, we complement the theoretical results
with some asymptotic and experimental analysis. We then explore the benefits to branching
heuristics of having multiple viewpoints of the permutation (section 9). In Section 10, we
extend our analysis to injective mappings. Finally, we end with related work (Section 11)
and conclusions (Section 12).

2. Formal Background

A constraint satisfaction problem (CSP) is a set of variables, each with a finite domain of
values, and a set of constraints. A constraint consists of a list of variables (the scope) and a
relation defining the allowed values for these variables. A binary constraint is a constraint
whose scope is a pair of variables. A solution to a constraint satisfaction problem is an
assignment of values to variables that satisfies all the constraints.

A permutation problem is a constraint satisfaction problem in which each decision vari-
able takes an unique value, and there is the same number of values as variables. Hence
any solution assigns a permutation of the values to the variables. An important feature of
permutation problems is that we can transpose the roles of the variables and the values in
representing the underlying problem to give a new dual model which is also a permutation
problem. Each variable in the original (primal) CSP becomes a value in the dual CSP, and
vice versa. The primal and the dual CSPs are equivalent since any solution to one can be
translated into a solution to the other.

We can choose either model arbitrarily to be the primal model, although in practice it
might be easier to express the problem constraints in one of the models rather than the
other, so we might tend to think of that model as the primal. We also consider multiple
permutation problems in which the variables divide into a number of (possibly overlapping)
sets, each of which is a permutation problem. This lets us discuss problems like quasigroups.
An order n quasigroup (or Latin square) can be modeled as a multiple permutation problem
containing 2n overlapping permutation problems.

An injection problem is a constraint satisfaction problem in which each decision variable
takes an unique value, but there are now more values than variables. (Obviously, if there
are fewer values than variables, the problem is trivially unsatisfiable.)

Many levels of local consistency have been defined for constraint satisfaction problems
involving binary constraints (for references see Debruyne and Bessiére, 1997). A problem is
(i,7)-consistent iff it has non-empty domains and any consistent instantiation of ¢ variables
can be consistently extended to j additional variables. A problem is arc-consistent (AC)
iff it is (1,1)-consistent. A problem is path-consistent (PC) iff it is (2, 1)-consistent. A

358

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

problem is strong path-consistent (ACPC) iff it is AC and PC. A problem is path inverse
consistent (PIC) iff it is (1,2)-consistent. A problem is restricted path-consistent (RPC)
iff it is AC and if a value assigned to a variable is consistent with just one value for an
adjoining variable then for any other variable there is a compatible value. A problem is
singleton arc-consistent (SAC) iff it has non-empty domains and for any instantiation of a
variable, the resulting subproblem can be made AC.

For non-binary constraints, there has been less work on different levels of local con-
sistency. One exception is generalized arc-consistency. A CSP with binary or non-binary
constraints is generalized arc-consistent (GAC) iff for any value for a variable in a constraint,
there exist compatible values for all the other variables in the constraint. For ordered do-
mains (such as integers), a problem is bounds consistent (BC) iff it has non-empty domains
and an assignment of its minimum or maximum value to any variable in a (binary or non-
binary) constraint can be consistently extended to the other variables in the constraint. In
line with the definitions introduced by Debruyne and Bessieére (1997), we say that a local
consistency property A is as strong as a local consistency property B (written A — B) iff
in any problem in which A holds then B holds, A is stronger than B (written A — B) iff
A — B but not B — A, A is incomparable with B (written A @ B) iff neither A — B
nor B — A, and A is equivalent to B (written A <+ B) iff both A — B and B — A. It
has been shown that: ACPC — SAC — PIC — RPC — AC — BC (Debruyne & Bessiére,
1997).

Backtracking algorithms are often used to find solutions to CSPs. Such algorithms try
to extend partial assignments, enforcing a local consistency after each extension and back-
tracking when this local consistency no longer holds. For example, the forward checking
algorithm (FC) maintains a restricted form of AC that ensures that the binary constraints
between the most recently instantiated variable and any uninstantiated variables are AC.
FC has been generalized to non-binary constraints (Bessiere, Meseguer, Freuder, & Lar-
rosa, 1999). nFCO makes every k-ary constraint with & — 1 variables instantiated AC. nFC1
applies (one pass of) AC to each constraint or constraint projection involving the current
and exactly one future variable. nFC2 applies (one pass of) GAC to each constraint in-
volving the current and at least one future variable. Three other generalizations of FC
to non-binary constraints, nFC3 to nFC5, degenerate to nFC2 on the single non-binary
constraint describing a permutation, so are not considered here. Finally, the maintaining

arc-consistency algorithm (MAC) maintains AC during search, whilst MGAC maintains
GAC.

3. An Example

The n-queens problem is one of the simplest examples of a permutation problem. A common
and natural model has a decision variable for each row, with its value being the column
in which the queen on that row lies. The dual model has a decision variable for each
column, with its value being the row on which the queen in that column lies. However, the
n-queens problem is not combinatorially challenging as it becomes easier as n grows. For
example, Morris (1992) has argued that there are no local maxima so throwing queens at
random onto the board and performing min-conflicts hill-climbing will almost surely find
a solution. We focus therefore on a different permutation problem that is simple like the

359

HN1CH, SMITH, & WALSH

n-queens problem but appears to be more combinatorially challenging. By using a simple
example, the characteristics of permutation problems are hopefully more apparent than in
more complex problems where the other constraints have a larger impact.

Langford’s problem is prob024 in CSPLib (Gent & Walsh, 1999). A comprehensive
history of the problem is given by Miller (2002). The problem is defined as follows:

“A 27-digit sequence includes the digits 1 to 9 three times each. There is one
digit between the first two 1s, and one digit between the last two 1s. There are
just two digits between the first two 2s, and two digits between the last two 2s,
...and so on. Find all possible such sequences.”

The problem can easily be generalized to the (n,m) problem where we have a sequence of
length n * m, containing the integers 1 to m repeated exactly n times. The above problem
is thus the (3,9) problem. It has exactly 6 solutions:

181915267285296475384639743
191218246279458634753968357
191618257269258476354938743
347839453674852962752816191
347936483574692582762519181
753869357436854972642812191

Note that the last three solutions are the reverse of the first three. This symmetry can be
eliminated by adding constraints; for instance, in the (3,9) problem the second 9 cannot be
placed in the second half of the sequence, and if it is in the central position in the sequence,
the second 8 must be placed in the first half of the sequence. Such constraints have been
added in what follows.

The first model of Langford’s problem we will consider, which we shall arbitrarily call
the primal model, has a variable for each occurrence of the digits. The value of this variable
is the position in the sequence of this occurrence. For example, the (3,9) problem has
27 variables, z; with ¢ € [1,27]. The value of z; is the location in the sequence of the
1 div m+1th occurrence of the digit ¢+ mod m. Thus, x1 has as its value the location of
the 1st occurrence of the digit 1, z2 has as its value the location of the 1st occurrence of
the digit 2, ..., zg has as its value the location of the 1st occurrence of the digit 9, x1g
has as its value the location of the 2nd occurrence of the digit 1, and so on. We have a
permutation constraint that ensures that each digit occurrence occurs at a different position
in the sequence. This can be implemented either as a global all-different constraint on all
the z;, or as pairwise not-equals constraints on each possible pair of variables. We call
the former the “primal all-different” model and the later the “primal not-equals” model.
Finally, we have constraints that the digit occurrences occur in order down the sequence
and constraints on the separation of the different occurrences of a digit: that is we have
i < Titm < Tit2m, Titm — T =1 and Tijyom — Tigm = ¢ for ¢ < m.

Table 1 gives the primal representation of the sequence 23421314, a solution to the (2,4)
problem. For clarity, we also indicate the corresponding digit occurrence using the notation
“di” for the kth occurrence of the digit d. For example, 35 is the 2nd occurrence of the
digit “3” and 2; is the 1st occurrence of the digit “2”.

360

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

Tndex (7) 1 2 3 4 5 6 7 8
Value of primal variable (z;) | 5 1 2 3 7 4 6 8
Equivalent digit occurrence 1., 20 31 4 1o 29 39 4o

Table 1: The primal representation of the sequence 23421314, a solution of the (2,4) prob-
lem.

The dual model of Langford’s problem has a variable for each location in the sequence.
The value of this variable represents the digit occurrence at this location. For example, the
(3,9) problem has 27 variables, d; with j € [1,27]. The value ¢ of d; is an integer in the
interval [1, nxm/], representing the fact that the ¢ div m-+1th occurrence of the digit ¢ mod m
occurs at location j. Thus, d3 = 2 represents the fact that the 1st occurrence of the digit 2
occurs at the 3rd location, and d4 = 10 represents the fact that the 2nd occurrence of the
digit 1 occurs at the 4th location, and so on.

In the dual model, we again have a permutation constraint that each location contains a
different digit occurrence. This can again be implemented via a global all-different constraint
on the d; or by pairwise not-equals constraints on each pair of dual variables. We call the
former the “dual all-different” model and the later the “dual not-equals” model. The
separation constraints are not as simple to specify in the dual model. For example, for
¢ < m, we can add constraints of the form: d; = 4 iff dj;;11 = ¢ + m and d; = ¢ iff
dji24(i41) = ¢ + 2% m. Table 2 gives the dual representation of the sequence 23421314, a

j
solution to the (2,4) problem.

Index () 1 2 3 4 4 6 7 8
Value of dual variable (d;) | 2 3 4 6 1 7 5 8
Equivalent digit occurrence | 2, 31 41 22 17 32 1o 4o

Table 2: Dual representation of the sequence 23421314, a solution of the (2,4) problem.

It is possible to combine primal and dual models by linking the two sets of variables,
using channelling constraints to maintain consistency between the two viewpoints. This
approach is called “redundant modelling” by Cheng et al. (1999). A similar idea was
previously suggested, specifically for permutation problems, by Geelen (1992). In Langford’s
problem, the channelling constraints are z; = j iff d; = ¢, and constraints of the same form
can be used in building a combined primal/dual model of any permutation problem. Many
constraint toolkits support channelling of this kind with efficient global constraints. For
example, ILOG Solver has a constraint, IlcInverse, which can be used to replace a set of
individual constraints of the form z; = j iff d; = ¢, and the Sicstus finite domain constraint
library has an assignment predicate which can be used similarly.

The combined model is clearly redundant as we can delete the constraints of either indi-
vidual model without increasing the set of solutions. For instance, in Langford’s problem,

361

HN1CH, SMITH, & WALSH

we need only express the separation constraints in terms of either the primal or the dual
variables. More surprisingly, the permutation constraints on both the primal and the dual
variables are also redundant. The existence of the dual variables and the channelling con-
straints linking them to the primal variables are sufficient to ensure that the values assigned
to the primal variables are a permutation (and therefore the same must be true of the dual
variables).

Even if constraints are logically redundant (that is, they can be deleted without changing
the set of solutions), they may still be useful during search. Logically redundant constraints
are often called “implied constraints”, and useful implied constraints are frequently added to
a model to increase the amount of constraint propagation (Smith, Stergiou, & Walsh, 2000)).
In the next section, we present a measure of constraint tightness that allows us to determine
when an implied constraint added to a model will improve constraint propagation. In the
following section, we apply this measure of constraint tightness to the different models of
permutation problems introduced in this section. We are able to show, for example, that the
channelling constraints not only make the binary not-equals constraints redundant: they
are tighter and can give more domain pruning.

4. Constraint Tightness

Our definition of constraint tightness assumes that constraints are defined over the same
variables and values or, as in the case of primal and dual models, variables and values which
are bijectively related. In this way, we can always compare like with like. Our definition
of constraint tightness is strongly influenced by the way local consistency properties are
compared by Debruyne and Bessiere (1997). Indeed, the definition is parameterized by
a local consistency property since the amount of pruning provided by a set of constraints
depends upon the level of local consistency being enforced. If we enforce a high level of local
consistency, we may get as much constraint propagation with a loose constraint as a much
lower level of local consistency applied to a tight constraint. Our measure of constraint
tightness would also be useful in a number of other applications (e.g. reasoning about the
impact of different local consistency techniques on a single fixed model).

Consider a set of constraints A defined over a set of variables V4, and another set
of constraints B defined over a set of variables Vp, where there is a bijection between
assignments to V4 and Vg (in the rest of the paper, this bijection is either the identity map,
or that defined by the channelling constraints). We say that the set of constraints A is at
least as tight as the set B with respect to ®-consistency (written ® 4 — ®p) iff, given any
domains for their variables, if A is ®-consistent then the equivalent domains of B according
to the bijection are also ®-consistent. By considering all possible domains for the variables,
this ordering measures the potential for domains to be pruned during search as variables
are instantiated and domains pruned (possibly by other constraints in the problem). Note
that we discuss the equivalent domains so that we can consider primal and dual models
in which the variables and values are different (but are in one to one relation with each
other). We say that a set of constraints A is tighter than a set B wrt ®-consistency (written
oy — ®p) it &4 — Pp but not &g — Py, A is incomparable to B wrt ®-consistency
(written ® 4 ® ®p) iff neither &4 — ®p nor Py — P4, and A is equivalent to B wrt D-
counsistency (written ®4 <> ®p) iff both 4 — ¢ and &5 — 4. We can easily generalize

362

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

these definitions to compare ®-consistency on A with ©-consistency on B. This definition
of constraint tightness has some nice monotonicity and fixed-point properties which we will
use extensively throughout this paper.

Property 1 (monotonicity and fixed-point)

1. ACaup — ACy — ACunpB
2. ACy — ACp implies ACaup < ACH

Similar monotonicity and fixed-point properties hold for BC, RPC, PIC, SAC, ACPC,
and GAC. We also extend these definitions to compare constraint tightness wrt search
algorithms like MAC and FC that maintain some local consistency during search. For
example, we say that A is at least as tight as B wrt algorithm X (written X4 — Xp) iff,
given any fixed variable and value ordering and any domains for the variables of A, X visits
no more nodes to find a solution of A or prove it unsatisfiable than X visits on B with
the equivalent domains, and the equivalent variable and value ordering. Equivalence here
is again with respect to the bijection between the assignments to the variables of A and to
B. We say that A is tighter than B wrt algorithm X (written X4 — Xp) iff X4 — Xp but
not Xp — X 4. Similar monotonicity and fixed-point properties can be given for FC, MAC
and MGAC. Finally, we write X4 = Xp if X4 — Xp and there is a parameterized set of
problems of size n and a fixed variable and value ordering with which X visits exponentially
fewer nodes in n when applied to A than when applied to B. Our results can be extended
to algorithms that find all solutions. In addition, they can also be extended to a restricted
class of dynamic variable and value orderings (Bacchus, Chen, van Beek, & Walsh, 2002).

5. Theoretical Comparison

We now have the theoretical machinery needed to compare the different ways we can model
a permutation problem such as Langford’s problem. The primal not-equals model of a per-
mutation has not-equals constraints between the variables in each permutation. The primal
all-different model has an all-different constraint between the variables in each permutation.
In a dual model, we interchange variables for values. A combined primal and dual model
has both the primal and the dual variables, and channelling constraints linking them, of the
form: x; = j iff d; = ¢ where z; is a primal variable and d; is a dual variable. A combined
model can also have not-equals and/or all-different constraints on the primal and/or dual
variables. There will, of course, typically be other constraints on both sets of variables
which depend on the nature of the permutation problem. For example, in Langford’s prob-
lem we also have the separation constraints. As a second example, in the all-interval series
problem from CSPLib, the variables and the differences between neighboring variables are
both permutations. In what follows, we do not consider directly the contribution of such
additional constraints to pruning. However, the ease with which we can express each addi-
tional constraint in the primal or the dual model and the resulting pruning power of these
constraints may determine our choice of the primal, dual or combined model.

We will use the following subscripts: “#” for the primal not-equals constraints, “c” for
channelling constraints, “#¢” for the primal not-equals and channelling constraints, “#ex”

363

HN1CH, SMITH, & WALSH

for the primal not-equals, dual not-equals and channelling constraints, “v” for the primal
all-different constraint, “v¢” for the primal all-different and channelling constraints, and
“vev” for the primal all-different, dual all-different and channelling constraints. Thus AC,
is AC applied to the primal not-equals constraints, whilst SAC, is SAC applied to the
primal not-equals and channelling constraints.

5.1 Arc-Consistency

We first prove that, with respect to AC, channelling constraints are tighter than the primal
not-equals constraints, but less tight than the primal all-different constraint.

Theorem 1 On a permutation problem:

GACVCV — GACVC Ad GACV — AC#C;& Ad AC#C ~ AC, — AC#

Proof: In this and following proofs, we just prove the most important results. Others
follow quickly, often using transitivity, monotonicity and the fixed-point theorems.

To show GACy — AC,, consider a permutation problem whose primal all-different
constraint is GAC. Suppose the channelling constraint between z; and d; was not AC. Then
either x; is set to j and d; has 7 eliminated from its domain, or d; is set to 4 and z; has j
eliminated from its domain. But neither of these two cases is possible by the construction
of the primal and dual model. Hence the channelling constraints are all AC. To show
strictness, consider a 5-variable permutation problem in which z; = z9 = z3 = {1,2} and
x4 = x5 = {3,4,5}. This is AC, but not GACy.

To show AC. — AC., suppose that the channelling constraints are AC. Consider a
not-equals constraint, z; # x; (¢ # j) that is not AC. Now, z; and x; must have the same
singleton domain, {k}. Consider the channelling constraint between z; and dy. The only AC
value for di is 7. Similarly, the only AC value for dj in the channelling constraint between
zj and di is j. But ¢ # j. Hence, dj has no AC values. This is a contradiction as the
channelling constraints are AC. Hence all not-equals constraints are AC. To show strictness,
consider a 3-variable permutation problem with z; = z9 = {1,2} and z3 = {1,2,3}. This
is AC but is not AC,.

To show AC.x <+ AC,, by monotonicity, AC.x < AC.. To show the reverse, consider
a permutation problem which is AC. but not AC.... Then there exists at least one not-
equals constraint that is not AC. Without loss of generality, let this be on two dual variables
(a symmetric argument can be made for two primal variables). So both the associated (dual)
variables, call them d; and d; must have the same singleton domain, say {k}. Hence, the
domain of the primal variable zj includes ¢ and j. Consider the channelling constraint
between z, and d;. Now this is not AC as the value zy = 7 has no support. This is a
contradiction.

To show GACy.y < GACy, consider a permutation problem that is GACy. For every
possible assignment of a value to a variable, there exist a consistent extension to the other
variables, 1 = dg,,...®, = d, with z; # z; for all 7 # j. As this is a permutation, this
corresponds to the assignment of unique variables to values. Hence, the corresponding dual
all-different constraint is GAC. Finally, the channelling constraints are trivially AC. O

364

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

Using these identities, we can immediately deduce, for instance, that it does not increase
pruning to have both channelling constraints and primal (or dual) not-equals constraints.
Not-equals constraints do not increase the amount of constraint propagation over that
achieved with channelling constraints alone. As our experiments show later on, they only
add overhead to the constraint solver. It is insightful to extract from these proofs the
reasons why arc-consistency performs different amounts of constraint propagation in the
different models. Arc-consistency deletes values in the domains of variables as follows:

primal not-equals constraints: if the domain of any of the primal variables is reduced
to a singleton (either by constraint propagation or by assignment in a backtracking
algorithm), enforcing AC on the primal not-equals constraints removes this value from
all other primal variables.

channelling constraints: as with primal not-equals constraints; in addition, if the do-
main of any dual variable is reduced to a singleton, enforcing AC on the channelling
constraints removes this value from all other dual variables. In particular, if a value
occurs in the domain of just one other primal variable, enforcing AC on the channelling
constraints ensures that no other value can be assigned to that primal variable.

primal all-different constraint: enforcing GAC on a primal all-different constraint will
prune all the values that are removed by enforcing AC on the primal not-equals or
channelling constraints. In addition, enforcing GAC is sometimes able to prune other
values (e.g. if we have two primal variables with only two values between them, these
values will be removed from all other primal variables).

In brief, AC on the primal not-equals constraints detects singleton variables, whilst AC on
the channelling constraints detects both singleton variables and singleton values. GAC on
a primal all-different constraint, on the other hand, determines global consistency which
includes singleton variables, singleton values and many other situations.

5.2 Maintaining Arc-Consistency

These results can be lifted to algorithms that maintain (generalized) arc-consistency during
search. Indeed, the gaps between the primal all-different and the channelling constraints,
and between the channelling constraints and the primal not-equals constraints can be ex-
ponentially large. Note that not all differences in constraint tightness result in exponential
reductions in search. For instance, some differences between models which are only polyno-
mial are identified in Cheng et al. (1999). Recall that we write X4 = Xp iff X4 — Xp and
there is a problem on which algorithm X visits exponentially fewer branches with A than
B. Note that GACy and AC are both polynomial to enforce, so an exponential reduction
in branches translates to an exponential reduction in runtime.

Theorem 2 On a permutation problem:
MGACy = MAC,.x <+ MAC,, <+ MAC, = MAC,

Proof: We give proofs for the most important identities. Other results follow immediately
from the last theorem.

365

HN1CH, SMITH, & WALSH

To show MGACy = MAC,, consider a (n + 3)-variable permutation problem with z; =
{1,...,n}fori <n+1land 2,42 = zp43 = {n+1,n+2,n+3}. Then, given a lexicographical
variable ordering, MGACy immediately fails, whilst MAC, takes n! branches.

To show MAC. = MAC, consider a (n + 2)-variable permutation problem with z; =
{1,2}, and z; = {3,...,n+ 2} for ¢« > 2. Then, given a lexicographical variable ordering,
MAC, takes 2 branches to show insolubility, whilst MAC_ takes 2(n — 1)! branches. O

5.3 Forward Checking

Maintaining (generalized) arc-consistency on large permutation problems can be expensive.
We may therefore decide to use a cheaper local consistency property like that maintained
by forward checking. For example, the Choco finite-domain toolkit in Claire uses just nF'C0
on all-different constraints. The channelling constraints remain tighter than the primal
not-equals constraints wrt FC.

Theorem 3 On a permutation problem:

nFC2 — FCyteyz < FCye <+ FC. — FCx — nFCly

/]\
nFC% — nFCly

Proof: Gent et al. (2000) prove FCx — nFCOy. To show strictness on permutation
problems (as opposed to the more general class of decomposable constraints studied by
Gent, Stergiou, and Walsh, 2000), consider a 5-variable permutation problem with z; =
x9 = x3 = x4 = {1,2,3} and x5 = {4,5}. Irrespective of the variable and value ordering,
FC shows the problem is unsatisfiable in at most 12 branches. nFC0 by comparison takes
at least 18 branches.

To show FC. — FC., consider assigning the value j to the primal variable z;. FC.
removes j from the domain of all other primal variables. FC, instantiates the dual variable
d; with the value ¢, and then removes ¢ from the domain of all other primal variables.
Hence, FC. prunes all the values that FC does. To show strictness, consider a 4-variable
permutation problem with z; = {1,2} and z2 = 23 = z4 = {3,4}. Given a lexicographical
variable and numerical value ordering, FC_ shows the problem is unsatisfiable in 4 branches.
FC. by comparison takes just 2 branches.

Gent et al. (2000) prove nFCly — FC,. To show the reverse, consider assigning the
value j to the primal variable ;. FC. removes j from the domain of all primal variables
except z;. However, nFCly also removes j from the domain of all primal variables except
x; since each occurs in a binary not-equals constraint with x; obtained by projecting out
the all-different constraint. Hence, nFCly < FC_.

To show nFC2y — FC_.», consider instantiating the primal variable x; with the value
J. FCex removes j from the domain of all primal variables except z;, ¢ from the domain
of all dual variables except dj, instantiates d; with the value 4, and then removes ¢ from the
domain of all dual variables except dj. nFC2y also removes j from the domain of all primal
variables except x;. The only possible difference is if one of the other dual variables, say
d; has a domain wipeout. If this happens, z; has one value in its domain, [that is in the
domain of no other primal variable. Enforcing GAC immediately detects that z; cannot

366

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

take the value 7, and must instead take the value k. Hence nFC2y has a domain wipeout
whenever FC_.. does. To show strictness, consider a 7-variable permutation problem with
x1 =x9 =x3 = x4 = {1,2,3} and z5 = 26 = z7 = {4,5,6,7}. Irrespective of the variable
and value ordering, FC_.. takes at least 6 branches to show the problem is unsatisfiable.
nFC2y by comparison takes no more than 4 branches.

Bessiere et al. (1999) prove nFC2y — nFCly. To show strictness on permutation prob-
lems, consider a 5-variable permutation problem with z; = z9 = 23 = z4 = {1,2,3} and
x5 = {4,5}. Irrespective of the variable and value ordering, nFC1 shows the problem is
unsatisfiable in at least 6 branches. nFC2 by comparison takes no more than 3 branches.
O

5.4 Bounds Consistency

Another common method to reduce costs is to enforce just bounds consistency. For example,
bounds consistency is used to prune a global constraint involving a sum of variables and a
set of inequalities (Régin & Rueher, 2000). As a second example, some of the experiments
on permutation problems performed by Smith (2000) used bounds consistency on certain
of the constraints. With bounds consistency on permutation problems, we obtain a very
similar ordering of the models as with AC.

Theorem 4 On a permutation problem:

BCV — BC;,AC;,A — BC;,AC — BCC — BC;,A

/]\
ACy

Proof: To show BC. — BC, consider a permutation problem which is BC. but one of
the primal not-equals constraints is not BC. Then, it would involve two variables, x; and
xj both with identical interval domains, [k, k]. Enforcing BC on the channelling constraint
between z; and dj would reduce dj, to the domain [i,i]. Enforcing BC on the channelling
constraint between z; and dy would then cause a domain wipeout. But this contradicts the
channelling constraints being BC. Hence, all the primal not-equals constraints must be BC.
To show strictness. consider a 3-variable permutation problem with z; = z2 = [1,2] and
x3 = [1,3]. This is BCx but not BC.,.

To show BCy — BC..4, consider a permutation problem which is BCy. Suppose we
assign a boundary value j to a primal variable, z; (or equivalently, a boundary value 7 to
a dual variable, d;). As the all-different constraint is BC, this can be extended to all the
other primal variables using each of the values once. This gives us a consistent assignment
for any other primal or dual variable. Hence, it is BC,... To show strictness, consider a
5-variable permutation problem with z; = zo = z3 = [1,2] and z4 = z5 = [3,5]. This is
BC..x but not BCy.

To show AC — BC,, consider a permutation problem which is BC. but not AC. Then
there must be one constraint, z; # x;, with ; and z; having the same singleton domain,
{k}. But, if this is the case, enforcing BC on the channelling constraints between z; and
dr and between z; and dj would prove that the problem is unsatisfiable. Hence, it is AC.
To show strictness, consider a 3-variable permutation problem with z; = z3 = [1,2] and
x3 = [1,3]. This is ACx but not BC,.. O

367

HN1CH, SMITH, & WALSH

5.5 Restricted Path Consistency

Debruyne and Bessiére (1997) have shown that RPC is a promising filtering technique above
AC. It prunes many of the PIC values at little extra cost to AC. Surprisingly, channelling
constraints are incomparable to the primal not-equals constraints wrt RPC. Channelling
constraints can increase the amount of propagation (for example, when a dual variable has
only one value left in its domain). However, RPC is hindered by the bipartite constraint
graph between primal and dual variables. Additional not-equals constraints on primal
and/or dual variables can therefore help propagation.

Theorem 5 On a permutation problem;
GACy — RPC;,gC;,g — RPC;AC — RPC. ® RPC;A ® AC,

Proof: To show RPC. ® RPCx, consider a 4-variable permutation problem with z; =
zro = x3 = {1,2,3} and x4 = {1,2,3,4}. This is RPC, but not RPC,.. For the reverse
direction, consider a 5-variable permutation problem with z; = z9 = z3 = {1,2} and
x4 = x5 = {3,4,5}. This is RPC, but not RPC.

To show RPC.. — RPC,, consider again the last example. This is RPC. but not
RPC,.

To show RPC_..» — RPC,, consider a 6-variable permutation problem with z1 = x5 =
{1,2,3,4,5,6} and 23 = x4 = x5 = w6 = {4,5,6}. This is RPC,, but not RPC..

To show GACy — RPC. 4, consider a permutation problem which is GACy. Suppose
we assign a value j to a primal variable, z; (or equivalently, a value i to a dual variable,
dj). As the all-different constraint is GAC, this can be extended to all the other primal
variables using up all the other values. This gives us a counsistent assignment for any two
other primal or dual variables. Hence, the problem is PIC.. and thus RPC.... To show
strictness, consider a 7-variable permutation problem with z; = z9 = z3 = z4 = {1,2,3}
and x5 = 26 = 27 = {4,5,6,7}. This is RPC.x but not GACy.

To show AC, ® RPC, consider a 4-variable permutation problem with z; = x5 = 23 =
{1,2,3} and z4 = {1,2,3,4}. Thisis RPC but not AC.. For the reverse direction, consider
a b-variable permutation problem with z; = 29 = 23 = {1,2} and 4 = x5 = {3,4,5}. This
is AC. but not RPC,. O

5.6 Path Inverse Consistency

The incomparability of channelling constraints and primal not-equals constraints remains
when we move up the local consistency hierarchy from RPC to PIC.

Theorem 6 On a permutation problem:
GACy — PIC¢C7£ — PIC;éc — PIC, ® PIC;é ® AC,

Proof: To show PIC. ® PIC., consider a 4-variable permutation problem with z; =
o = 3 = {1,2,3} and x4 = {1,2,3,4}. This is PIC, but not PIC.. Enforcing PIC
on the channelling constraints reduces z4 to the singleton domain {4}. For the reverse
direction, consider a 5-variable permutation problem with z; = z9 = z3 = {1,2} and
x4 = x5 = {3,4,5}. This is PIC. but not PIC.

368

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

To show PIC,. — PIC,, consider a 5-variable permutation problem with z; = zp =
x3 = {1,2} and x4 = x5 = {3,4,5}. This is PIC. but not PIC,,.

To show PIC.., — PICL, consider a 6-variable permutation problem with z; = x5 =
{1,2,3,4,5,6} and 23 = x4 = x5 = w6 = {4,5,6}. This is PIC.. but not PIC..

To show GACy — PIC.x, consider a permutation problem in which the all-different
constraint is GAC. Suppose we assign a value j to a primal variable, x; (or equivalently, a
value ¢ to a dual variable, d;). As the all-different constraint is GAC, this can be extended
to all the other primal variables using up all the other values. This gives us a consistent
assignment for any two other primal or dual variables. Hence, the not-equals and channelling
constraints are PIC. To show strictness, consider a 7-variable permutation problem with
Ty =Ty = x3 = x4 = {1,2,3} and x5 = x5 = x7 = {4,5,6,7}. This is PIC,., but not
GACy.

To show PIC: ® AC,, consider a 4-variable permutation problem with z; = z3 = 23 =
{1,2,3} and x4 = {1,2,3,4}. This is PIC, but not AC.. Enforcing AC on the channelling
constraints reduces z4 to the singleton domain {4}. For the reverse direction, consider a
5-variable permutation problem with z; = x9 = 3 = {1,2} and z4 = x5 = {3,4,5}. This
is AC, but not PIC,. O

5.7 Singleton Arc-Consistency

Debruyne and Bessiere (1997) also showed that SAC is a promising filtering technique
above both AC, RPC and PIC, pruning many values for its CPU time. Prosser et al. (2000)
reported promising experimental results with SAC on quasigroup problems, a multiple per-
mutation problem. Interestingly, as with AC (but unlike RPC and PIC which lie between
AC and SAC), channelling constraints are tighter than the primal not-equals constraints
wrt SAC.

Theorem 7 On a permutation problem:
GACy — SAC,er <+ SAC,. < SAC. — SAC, @ AC,

Proof: To show SAC, — SAC,, consider a permutation problem that is SAC. and any
instantiation for a primal variable z;. Suppose that the primal not-equals model of the
resulting problem cannot be made AC. Then there must exist two other primal variables,
say xj and zj which have at most one other value. Consider the dual variable associated
with this value. Then under this instantiation of the primal variable x;, enforcing AC on the
channelling constraint between the primal variable x; and the dual variable, and between
the dual variable and x; and zj, results in a domain wipeout on the dual variable. Hence the
problem is not SAC,.. This is a contradiction. The primal not-equals model can therefore be
made AC following the instantiation of ;. That is, the problem is SAC_.. To show strictness,
consider a 5-variable permutation problem with domain z1 = z9 = z3 = x4 = {0,1,2} and
x5 = {3,4}. This is SAC, but not SAC..

To show GACy — SAC,, consider a permutation problem that is GACy. Consider any
instantiation for a primal variable. This can be consistently extended to all variables in
the primal model. But this means that it can be consistently extended to all variables
in the primal and dual model, satisfying any (combination of) permutation or channelling

369

HN1CH, SMITH, & WALSH

constraints. As the channelling constraints are satisfiable, they can be made AC. Consider
any instantiation for a dual variable. By a similar argument, taking the appropriate instan-
tiation for the associated primal variable, the resulting problem can be made AC. Hence,
given any instantiation for a primal or dual variable, the channelling constraints can be
made AC. That is, the problem is SAC,, To show strictness, consider a 7-variable permu-
tation problem with =1 = z9 = 23 = z4 = {0,1,2} and z5 = z¢ = 27 = {3,4,5,6}. This
SAC, but is not GACy.

To show SAC: ® AC,, consider a four variable permutation problem in which z; to z3
have the {1,2,3} and x4 has the domain {0,1,2,3}. This is SACx but not AC,. For the
reverse, consider a 4-variable permutation problem with 1 = 29 = {0,1} and z3 = 24 =
{0,2,3}. This is AC. but not SAC,. O

5.8 Strong Path-Consistency

Adding primal or dual not-equals constraints to channelling constraints does not help AC
or SAC. The following result shows that their addition does not help higher levels of local
consistency like strong path-consistency (ACPC).

Theorem 8 On a permutation problem:
GACy ® ACPCyey <+ ACPC,, <+ ACPC, — ACPC: @ AC,

Proof: To show ACPC. — ACPC, consider some channelling constraints that are ACPC.
Now AC. — AC, so we just need to show PC, — PC_. Consider a consistent pair of values,
I and m for a pair of primal variables, z; and z;. Take any third primal variable, z;. As
the constraint between d;, d,;, and z; is PC, we can find a value for z; consistent with
the channelling constraints. But this also satisfies the not-equals constraint between primal
variables. Hence, the problem is PC_.. To show strictness, consider a 4-variable permutation
problem with z; = 2y = 23 = 24 = {1,2,3}. This is ACPC. but not ACPC...

To show ACPCcx <+ ACPCL. <+ ACPC,, we recall that AC. <+ ACx, <+ AC,.. Hence
we need just show that PC.. <+ PC.. <+ PC,. Consider a permutation problem. Enforcing
PC on the channelling constraints alone infers both the primal and the dual not-equals
constraints. Hence, PC,. <+ PCL. <> PCe,.

To show GACy ® ACPC, consider a 6-variable permutation problem with z1 = zo =
3 = x4 = {1,2,3}, and 25 = 26 = {4,5,6}. This is ACPCL.» but not GACy. For the
reverse direction, consider a 3-variable permutation problem with z; = zo = z3 = {1, 2,3},
and the additional binary constraint even(z; + z3). Enforcing GACy prunes the domains
to x1 = w3 = {1,3}, and o = {2}. However, these domains are not ACPC_... Enforcing
ACPC tightens the constraint between z; and z3 from not-equals to z; = 1,23 = 3 or
Ir1 = 3, r3 — 1.

To show ACPC. ® AC,, consider a 5-variable permutation problem with z; = z3 =
3 = {1,2}, and 24 = x5 = {3,4,5}. Thisis AC, but not ACPC. For the reverse direction,
consider again the 4-variable permutation problem with 1 = z9 = 23 = x4 = {1, 2,3}. This
is ACPC but not AC.. O

370

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

5.9 Multiple Permutation Problems

These results extend to multiple permutation problems under a simple restriction that the
problem is triangle preserving (Stergiou & Walsh, 1999). That is, any triple of variables
which are all-different must occur together in at least one permutation. For example, the
three constraints all-diff(z1, z2, 24), all-diff(x1, z3, z5), and all-diff(z9, 23,) are not triangle
preserving as x1, 2 and x3 are all-different but are not in the same constraint. The following
theorem collects together and generalizes many of the previous results.

Theorem 9 On a multiple permutation problem:

GACy ® ACPCuiop <+ ACPCy <+ ACPC, — ACPC4 ® AC,

3 \J 3 3

GACy —SACLer < SAC., < SAC, — SAC. ® AC,
3 \J 3 3

GACV —)PIC?gc;,g — PIC#C — PICC &® PIC;,g & ACC
3 \J 3 3

GACy —>RPC¢C¢ — RPC;AC — RPC. ® RPC;é ® AC,
3 \J 3 3

GACV —)AC#C;& — AC#C — ACC — AC¢ —>BCC
3 3 1 3 3

BCV —>BC¢C¢ — BC;&C — BCC — BC?g

Proof: The proofs lift in a straightforward manner from the single permutation case. Local
consistencies like ACPC, SAC, PIC and RPC consider triples of variables. If these are
linked together, we use the fact that the problem is triangle preserving and a permutation
is therefore defined over them. If these are not linked together, we can decompose the
argument into AC on pairs of variables. Without triangle preservation, GACy, may only
achieve as high a level of consistency as AC.. For example, consider again the non-triangle
preserving constraints in the last paragraph. If 21 = 2o = 23 = {1,2} and z4 = 25 = 26 =
{1,2,3} then the problem is GACy, but it is not RPC., and hence neither PIC,, SAC.
nor ACPC.. O

6. SAT Models

Another solution strategy is to encode permutation problems into SAT and use a fast
Davis-Putnam (DP) or local search procedure. For example, Bejar and Manya (2000)
report promising results for propositional encodings of round robin problems, which include
permutation constraints. We consider here just “direct” encodings into SAT as these have
been used most commonly in the past (Walsh, 2000). An alternative and promising encoding
of CSPs into SAT is the “support encoding”. Recently, Gent (2002) has shown that unit
propagation in the support encoding is equivalent to enforcing arc-consistency in the original
CSP, and this can be achieved in asymptotically optimal time. To compare the support
encodings of the different models of a permutation problem, we simply need therefore to
look at our results on arc-consistency. With the direct encoding, unit propagation enforces
a level of local consistency less than arc-consistency. Indeed, the level of consistency is often
identical to that achieved by the forward checking algorithm.

371

HN1CH, SMITH, & WALSH

In the direct encoding of a CSP into SAT, we have a Boolean variable X;; which is true
iff the primal variable x; takes the value j. In the primal SAT model, there are n clauses to
ensure that each primal variable takes at least one value, O(n?) clauses to ensure that no
primal variable gets two values, and O(n?) clauses to ensure that no two primal variables
take the same value. Interestingly the channelling SAT model has the same number of
Boolean variables as the primal SAT model (as we can use X;; to represent both the jth
value of the primal variable x; and the ith value for the dual variable d;), and just n
additional clauses to ensure each dual variable takes a value. The O(n?) clauses to ensure
that no dual variable gets two values are equivalent to the clauses that ensure no two primal
variables get the same value. The following results show that MAC is tighter than DP, and
DP is equivalent to FC on these different models. In what follows, we assume that the FC
algorithm uses a fail first heuristic that instantiates variables with single values left in their
domains before variables with a choice of values (Haralick & Elliot, 1980).

Theorem 10 On a permutation problem:

MGACy — MACyy + MACy. <> MAC, — MAC,
+ + + +
MGACV d DP¢C7£ g DP#C g DPC d DP#

! ! ! !

MGACv—>FC¢C¢ HFC#C HFCC —>FC¢

Proof: DP. < FC. is a special case of Theorem 14 (Walsh, 2000), whilst MAC. — FC.
is a special case of Theorem 15.

To show DP. <+ FC, suppose unit propagation sets a literal [. There are four cases. In
the first case, a clause of the form X;; V...V Xj;, has been reduced to an unit. That is, we
have one value left for a primal variable. The fail first heuristic in FC picks this last value
to instantiate. In the second case, a clause of the form —X;; V = Xj; for j # k has been
reduced to an unit. This ensures that no primal variable gets two values. The FC algorithm
trivially never tries two simultaneous values for a primal variable. In the third case, a clause
of the form —X;; V =Xy; for ¢ # k has been reduced to an unit. This ensures that no dual
variable gets two values. Again, the FC algorithm trivially never tries two simultaneous
values for a dual variable. In the fourth case, X1; V...V X,,; has been reduced to an unit.
That is, we have one value left for a dual variable. A fail first heuristic in FC picks this
last value to instantiate. Hence, given a suitable branching heuristic, the FC algorithm
tracks the DP algorithm. To show the reverse, suppose forward checking removes a value.
There are two cases. In the first case, the value ¢ is removed from a dual variable d; due to
some channelling constraint. This means that there is a primal variable z; which has been
set to some value [# j. Unit propagation on —Xjy; V —Xy; sets Xj; to false, and then on
—X;; V Xy sets Xj; to false as required. In the second case, the value 4 is removed from a
dual variable dj;, again due to a channelling constraint. The proof is now dual to the first
case.

To show MAC, — DP,, we use the fact that MAC dominates FC and FC. + DP..
To show strictness, consider a 3-variable permutation problem with additional binary con-
straints that rule out the same value for all 3 primal variables. Enforcing AC on the

372

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

channelling constraints causes a domain wipeout on the dual variable associated with this
value. As there are no unit clauses, DP does not immediately solve the problem.

To show DP. — DP, we note that the channelling SAT model contains more clauses.
Hence, it dominates the primal SAT model. To show strictness, consider a four variable
permutation problem with three additional binary constraints that if 1 = 1 then z9 = 2,
x3 = 2 and x4 = 2 are all ruled out. Consider branching on z; = 1. Unit propagation on
both models sets X192, X92, X392, X429, Xo1, X31 and Xy; to false. On the channelling SAT
model, unit propagation against the clause X132 V X292 V X390 V X9 then generates an empty
clause. By comparison, unit propagation on the primal SAT model does no more work. O

7. Asymptotic Comparison

The previous results tell us nothing about the relative cost of achieving these local consis-
tencies. Asymptotic analysis adds detail to the results. We can achieve GACy in O(n?)
time (Régin, 1994). AC on binary constraints can be achieved in O(ed?) where e is the
number of constraints and d is their domain size. As there are O(n?) channelling con-
straints, AC. naively takes O(n*) time. However, by taking advantage of the functional
nature of channelling constraints, we can reduce this to O(n?) using the AC-5 algorithm
(Hentenryck, Deville, & Teng, 1992). AC also naively takes O(n?) time as there are O(n?)
binary not-equals constraints. However, we can take advantage of the special nature of a
binary not-equals constraint to reduce this to O(n?) as each not-equals constraint needs to
be made AC just once. We have proved that GACy — AC. — AC.. and greater pruning
power is reflected in higher worst case complexity (O(n?), O(n?), O(n?) respectively). Thus
we still need to run experiments to see if the additional pruning outweighs the potentially
higher cost.

8. Experimental Comparison

We ran a wide variety of experiments to explore the significance of these theoretical and
asymptotic differences. For example, even though binary not-equals constraints do less
pruning than the channelling constraints, they might still speed up search by pruning
quicker. We limit the first set of experiments to a static variable and value ordering as
we wish to confirm the theoretical results, and these are limited either to static orderings or
to a restricted class of dynamic variable and value orderings in which we make “equivalent”
branching decisions in the different search trees (Bacchus et al., 2002).

As explained before, many constraint toolkits support channelling with efficient global
constraints. For example, ILOG Solver has the I1lcInverse constraint, and the Sicstus finite
domain constraint library has the assignment predicate. Both perform a level of pruning
which appears to be equivalent to enforcing AC on the explicit channelling constraints.
We therefore compared this in our experiments to AC on the binary not-equals constraints
and GAC on the all-different constraint. All the models are implemented in Solver 5.300,
and are available via CSPLib. We lexicographically order the variables and assign the
values in numerical order. We therefore only branch on primal variables. As we observe
very similar results on a range of permutation problems, we only show here results for
Langford’s problem.

373

HN1CH, SMITH, & WALSH

L(3,9) L(3,10)

model | heuristic | fails sec. | fails sec.
A4 static 12 0.001 | 42 0.003
c static 12 0.003 | 43 0.005
static 25 0.001 | 82 0.011
#c | static 12 0.005 | 43 0.013
c# | static 12 0.001 | 43 0.011
Ye static 12 0.001 | 42 0.009
v static 12 0.003 | 42 0.009
#c# | static 12 0.005 | 43 0.015
Ye# | static 12 0.005 | 42 0.011
#cV | static 12 0.007 | 42 0.013
VeV | static 12 0.003 | 42 0.009

Table 3: Number of backtracks (fails) and running time to find the first solution to two in-
stances of Langford’s problem. Runtimes are for ILOG Solver 5.300 on a 1200MHz,
Pentium IIT processor, and 512 MB of RAM.

L(3,9) L(3,10) L(3,11) L(3,12)
model | heuristic | fails sec. fails sec. fails sec. fails sec.
v static 2006 0.22 | 10051 1.13 | 49118 5.86 | 279468 35.36
c static 2282 0.28 | 11336 1.45 | 56234 7.41 | 312926 41.89
#* static 6062 0.59 | 29018 3.15 | 167624 20.59 | 949878 131.04
#c | static 2282 041 | 11336 2.26 | 56234 11.91 | 312926 72.85
c# static 2282 0.41 | 11336 2.25 | 56234 11.94 | 312926 72.2
Ve static 2006 0.32 | 10051 1.72 | 49118 8.61 | 279468 50.53
oy static 2006 0.33 | 10051 1.76 | 49118 8.77 | 279468 51.41
#c#£ | static 2282 0.53 | 11336 3.21 56234 18.21 | 312926 114.44
VYc#£ | static 2006 0.43 | 10051 2.38 | 49118 12.32 | 279468 76.77
#cV | static 2006 0.66 | 10051 2.49 | 49118 12.92 | 279468 78.95
VeV static 2006 0.39 | 10051 2.09 | 49118 10.56 | 279468 62.49

Table 4: Number of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of Langford’s problem. Runtimes are for
ILOG Solver 5.300 on 1200MHz, Pentium III processor, and 512 MB of RAM.

374

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

In Table 3, we compare the various models of a permutation when finding the first
solution to two instances of Langford’s problem. In Table 4, we compare the same mod-
els when finding all solutions or proving that there are no solutions, for four instances of
Langford’s problem. Ounly L(3,9) and L(3,10) in this table have any solutions. The exper-
imental results confirm our theoretical findings. First, enforcing GAC on an all-different
constraint does the most pruning, whilst enforcing AC on the binary not-equals constraints
does the least, and enforcing AC on the channelling constraints is in between. Runtimes
are similarly ordered. Second, adding the primal or dual binary not-equals constraints to
the channelling constraints does not bring any more pruning, and merely adds overhead to
the runtime. Third, adding extra constraints to the primal or dual all-different constraint
achieves the same amount of pruning as the all-different constraint on its own, and again
just adds overhead to the runtime.

9. Dynamic Variable And Value Ordering

The experimental results in the last section might seem to have settled the matter of how
to model permutation problems. Enforcing GAC on a single all-different constraint always
gave the smallest search trees and runtimes. However, this ignores a significant potential
advantage of channelling into a dual model. Dynamic variable and value ordering heuristics
may be able to exploit the primal and dual viewpoints of a permutation to make better
decisions. This is not a topic that can be easily addressed theoretically. However, the
experimental results given in this section show that variable and value ordering heuristics
can profit greatly from multiple viewpoints.

A variable ordering heuristic like smallest domain is usually justified in terms of a fail-
first principle: we have to pick eventually all the variables, so it is wise to choose one that is
hard to assign, giving us hopefully much constraint propagation and a small search tree. A
value ordering heuristic like maximum promise (Geelen, 1992) is usually justified in terms
of a succeed-first principle: we pick a value likely to lead to a solution, so reducing the risk
of backtracking and trying one of the alternative values. In a permutation problem, we can
branch on the primal or the dual variables or on both. We shall show here that fail-first
on one viewpoint is compatible with succeed-first on the dual. To do so, we consider the
following heuristics.

Smallest domain, SD(p+d) : choose the primal or the dual variable with the smallest
domain, and choose the values in numeric order.

Primal smallest domain, SD(p) : choose the primal variable with the smallest domain,
and choose the values in numeric order.

Dual smallest domain, SD(d) : choose the dual variable with the smallest domain, and
choose the values in numeric order.

Double smallest domain, SD?(p+d) : choose the primal/dual variable with the small-
est domain, and choose the value whose dual/primal variable has the smallest domain.

Primal double smallest domain, SD?(p) : choose the primal variable with the small-
est domain, and choose the value whose dual variable has the smallest domain.

375

HN1CH, SMITH, & WALSH

Dual double smallest domain, SD?(d) : choose the dual variable with the smallest
domain, and choose the value whose primal variable has the smallest domain.

The smallest domain heuristic on the dual has been used as a value ordering heuristic
in a number of experimental studies (Jourdan, 1995; Cheng et al., 1999; Smith, 2000). The
following argument shows that the double smallest domain heuristics are compatible with
the fail first principle for variable ordering and succeed first for value ordering. Suppose we
assign the primal value j to the primal variable z; (an analogous argument can be given if
we branch on a dual variable). Constraint propagation will prune the primal value j from
the other primal variables, and the dual value 7 from the other dual variables. Constraint
propagation may do more than this if we have an all-different constraint or channelling
constraints. However, to a first approximation, this is a reasonable starting point. The
succeed first value ordering heuristic computes the “promise” of the different values by
multiplying together the domain sizes of the uninstantiated variables (Geelen, 1992). Any
term in this product is unchanged if 5 or i, depending on whether this is a primal or dual
variable, does not occur in the domain and is reduced by 1 if j or ¢ occurs. The product is
likely to be maximized by ensuring we reduce as few terms as possible. That is, by ensuring
J and 4 occur in as few domains as possible. That is d; and x; have the smallest domains
possible. Hence double smallest domain will branch on the variable with smallest domain
and tend to assign it the value with most promise.

We now compare these heuristics in an extensive set of experiments. The hypothesis we
wish to test is that branching heuristics can profit from multiple viewpoints. We use the
following collection of permutation problems in addition to Langford’s problem:

Quasigroup existence problem: An order m quasigroup is a Latin square of size m, that
is, an m X m multiplication table in which each element occurs in every row and every
column. Quasigroup existence problems determine the existence or non-existence of
quasigroups of a given size with additional properties:

e QG3(m): denotes quasigroups of order m for which (a * b) * (b a) = a.

e QG4(m): denotes quasigroups of order m for which (bx*a) * (a x b) = a.

We additionally demand that the quasigroup is idempotent, i.e. a x a = a for every
element a. The problem is prob003 in CSPLib.

Golomb rulers problem: A Golomb ruler consists of n marks arranged along a ruler of
length m such that the distances between any pair of marks form a permutation. The
problem is prob006 at CSPLib. In our experiments we specify the known optimal
length and find all optimal solutions.

Sport scheduling problem: The problem consists of scheduling games between n teams
over n — 1 weeks when n is even (n weeks when n is odd). Each week is divided into
n/2 periods when n is even ((n — 1)/2 when n is odd). Each game is composed of
two slots, ”home” and ”"away”, where one team plays home and the other team plays
away. The objective is to schedule a game for each period of every week such that:
every team plays against every other team; a team plays exactly once a week when
we have an even number of teams, and at most once a week when we have an odd

376

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

number of weeks; and a team plays at most twice in the same period over the course
of the season. The problem is prob026 in CSPLib.

Magic squares problem: An order n magic square is an n by n matrix containing the
numbers 1 to n?, with the sum of each row, column, and diagonal being equal. The
problem is prob019 in CSPLib.

9.1 Langford’s Problem

L(3,12) L(3,13) L(3,14) L(3,15)
model | heuristic fails sec. fails sec. fails sec. fails sec.
SD(p) 62016 10.27 | 300800 53.72 | 1368322 272.03 | 7515260 1601.00
v SD(p) 20795 3.59 | 93076 16.95 | 405519 78.18 | 2072534 414.71
c SD(p+d) 11683 2.16 | 45271 8.66 | 184745 36.46 | 846851 171.97
c SD(p) 21148 3.68 | 94795 16.84 | 412882 74.99 | 2112477 389.69
c SD(d) 15214 2.64 | 59954 10.73 | 249852 46.39 | 1144168 221.01
c SD?(p+d) | 11683 2.2 45271 9.04 | 184745 38.32 | 846851 180.00
c SD?(p) 20855 3.89 | 93237 17.07 | 406546 75.38 | 2077692 393.21
c SD2(d) 14314 2.62 | 56413 10.61 | 234770 45.68 | 1076352 213.51
Ve SD(p+d) 11449 284 | 44253 11.47 | 180611 48.71 | 827564 231.80
Ve SD(p) 20795 4.93 | 93076 22.61 | 405519 102.45 | 2072534 537.14
Ve SD(d) 14459 3.44 | 56701 13.94 | 234790 60.13 | 1069249 282.42
Ve SD?(p+d) | 11451 2.91 | 44254 11.72 | 180631 49.71 | 827605 235.56
Ve SD?(p) 20488 4.98 | 91513 22.86 | 399092 103.09 | 2037159 540.04
Ve SD2(d) 13639 3.38 | 53483 13.78 | 221307 59.33 | 1009250 278.32

Table 5: Number of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of Langford problem. Runtimes are for
ILOG Solver 5.300 on 1200MHz, Pentium III processor, and 512 MB of RAM.

The results are given in Table 5. We make a number of observations. Enforcing AC
on the primal not-equals model (“#”) gives the worst results (as it does in almost all the
subsequent problem domains). We will not therefore discuss it further. The best runtimes
are obtained with the ¢ model, heuristic SD(p+d), i.e. from enforcing a permutation by
the channelling constraints alone and choosing the variable with smallest domain, whether
primal or dual. Using just the primal or just the dual variables as decision variables tends to
increase runtimes. The branching heuristic does indeed profit from the multiple viewpoints.
Note that the ¥V model is no longer the best strategy, in terms of either failures or runtimes,
as it was in Table 4. This is despite the fact that it has the strongest propagator. This
model has only one viewpoint and this hinders the branching heuristic. Note also that the
smallest search trees (but not runtimes) are obtained with the Ve model that combines the
all-different constraint on the primal with the channelling constraints between the primal
and dual, when we use both primal and dual variables as decision variables. This combina-
tion gives the benefits of the strongest propagator and a dual viewpoint for the branching
heuristic.

377

HN1CH, SMITH, & WALSH

9.2 Quasigroups

QG3(6) QG(7) QG3(8) QG3(9)
model | heuristic fails sec. | fails sec. | fails sec. fails sec.
SD(p) 8 0.01 | 100 0.22 | 1895 8.46 | 83630 600.61
A4 SD(p) 7 0.01] 59 0.17 | 955 5.76 | 35198 385.57
c SD(p+d) 7 0.02 | 63 0.16 | 1117 5.81 | 53766 463.40
c SD(p) 7 0.02 | 59 0.17 | 1039 5.70 | 38196 373.38
c SD(d) 6 0.01 | 54 0.19 | 888 5.40 | 46539 418.96
c SD?(p+d) 7 0.02 | 63 0.17 | 1117 5.83 | 53785 461.05
c SD?(p) 7 0.01| 58 0.17 | 1043 5.68 | 38198 372.41
c SD?(d) 6 0.01 | 54 0.18 | 887 542 | 46741 419.94
Ve SD(p+d) 7 0.02 | 54 0.16 | 999 6.00 | 49678 474.82
Ve SD(p) 7 0.02 | 59 0.18 | 955 5.85 | 35198 376.06
Ve SD(d) 5 0.02 | 52 0.2 824 5.73 | 43278 438.81
Ve SD?(p+d) 7 0.03 | 54 0.17 | 999 6.05 | 49702 477.04
Ve | SD%(p) 7 002] 58 0.18 | 959 5.84 | 35201 368.87
Ve SD?(d) 5 0.02 | 52 0.19 | 823 5.80 | 43452 432.89

Table 6: Number of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of QG3 problem. Runtimes are for ILOG
Solver 5.300 on 1200MHz, Pentium III processor, and 512 MB of RAM.

The quasigroup existence problem can be modelled as a multiple permutation problem
with 2n intersecting permutation constraints. We introduce a variable for each entry in
the multiplication table of the quasigroup. We then post permutation constraints on the
variables of each row and each column. In Tables 6 and 7, we give results for two families
of problems. As before, the # model gives the worst performance, and by a considerable
margin for the larger instances. For QG3, all the other models and branching heuristics
give broadly similar performance. A dual viewpoint, either by itself or in combination with
the primal viewpoint, does not offer any advantage, but does not hurt much either. For
QG4, in Table 7, all the models and branching heuristics are competitive, except for the #
model and the heuristics that branch only on the dual variables.

9.3 Golomb Rulers

To model the Golomb rulers problem as a permutation problem, we introduce a variable
for each pairwise distance between marks. Since we may have more values than variables,
we introduce additional variables to ensure that there are as many variables as values, as
suggested by Geelen (1992). We can then post a permutation constraint on this enlarged
set of variables. In Table 8, we give results for finding all optimal length rulers for four
instances: Golomb(n,m) means the problem of finding a Golomb ruler of (minimal) length
m with n marks. Despite the fact that it has the strongest propagator, the V model is not

378

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

QG4(6) QG4(7) QG4(8) QG4(9)
model | heuristic fails sec. | fails sec. | fails sec. fails sec.
#* SD(p) 6 0.01| 8 0.23 |1779 8.29 | 116298 843.26
v SD(p) 4 0.01| 57 0.19 | 892 5.12 | 52419 496.24
c SD(p+d) 6 0.02 | 59 0.20 | 935 4.99 | 55232 489.89
c SD(p) 6 0.01| 59 0.20 | 931 4.92 | 55397 485.72
c SD(d) 6 0.02 | 74 0.21 | 1266 7.59 | 83316 772.17
c SD?(p+d) | 6 0.02 | 59 0.19 | 940 4.81 | 55264 476.66
c SD?(p) 6 0.01| 59 0.19| 936 4.87 | 55442 478.48
c SD?(d) 6 0.01| 73 0.22 | 1267 7.37 | 82916 766.33
Ve SD(p+d) 4 0.02 | 57 0.19 | 900 5.19 | 52045 486.72
Ve SD(p) 4 0.02 | 57 0.20 | 892 5.29 | 52419 491.54
Ve SD(d) 4 0.02 | 67 0.21 | 1102 7.04 | 73997 745.09
Ve SD?(p+d) | 4 0.01 | 57 0.19 | 905 5.24 | 52077 491.45
Ve SD?(p) 4 0.01 | 57 0.20 | 897 5.23 | 52463 493.70
Ve SD?(d) 4 0.01 | 66 0.23 | 1104 7.02 | 73714 745.86

Table 7: Number of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of QG4 problem. Runtimes are for ILOG
Solver 5.300 on 1200MHz, Pentium III processor, and 512 MB of RAM.

competitive on the larger instances. Model ¢ and heuristic SD(p+d) gives the best runtimes
for the larger instances, whereas adding the all-different constraint (model Ve, heuristic
SD(p+d)) gives the least search. Being forced to branch on just the primal variables hurts
the branching heuristic.

9.4 Sport Scheduling

Unlike the previous problems, we find only the first solution to the sports scheduling prob-
lem. This leads to much greater variation in performance between the different models. We
report results in Table 9. Good runtimes are obtained with the ¢ and V¢ models, using the
dual variables as decision variables, either on their own or in combination with the primal
variables.

9.5 Magic Squares

We model the order n magic square problem with a n by n matrix of variables which
take values from 1 to n?. We then post a permutation constraint on all the variables in the
matrix, and sum constraints on the rows, columns and diagonals. Results are given in Table
10. Again, finding just the first solution leads to wide variation in performance between the
models. Using only the dual variables as decision variables is a bad choice, but the dual
variables are helpful if used as decision variables in combination with the primal variables.
For the largest instance solved, the best strategy is the double smallest domain heuristic

379

HN1CH, SMITH, & WALSH

Golomb(7,25) | Golomb(8,34) | Golomb(9,44) | Golomb(10,55)
model | heuristic | fails sec. fails sec. fails sec. fails sec.
SD(p) 912 0.15 5543 1.12 - - - -
vV | SD(p) 500 0.11 | 2949 0.81 - - - -

c SD(p+d) 606 0.12 3330 1.01 17002 7.54 | 72751 49.14
c SD(p) 890 0.15 5343 1.25 - - - -
c SD(d) 626 0.12 3390 1.02 17151 7.55 | 73539 49.25
c SD?(p+d) | 608 0.12 3333 1.03 | 17022 7.63 | 72853 49.37
c SD?(p) 928 0.17 | 5648 1.27 —~ —~ —~ -
c SD?(d) 626 0.12 3390 1.03 | 17179 7.59 | 73628 49.59
Ve SD(p+d) | 493 0.12 2771 1.10 | 14313 8.29 | 61572 54.63
Ve | SD(p) 500 0.13 | 2049 1.08 - - - -
Ve SD(d) 495 0.13 2782 1.10 14325 8.28 | 61616 54.46
Ve | SD?(p+d) | 504 0.14 | 2787 1.1 | 14392 8.38 | 61898 54.94
Ve | SD%(p) 542 0.14 | 3258 1.12 - - - -
Ve SD?(d) 495 0.13 2794 1.11 14400 8.39 | 61893 54.97
Table 8: Number of backtracks (fails) and running time to find all optimal solutions to

four instances of the Golomb rulers problem, where the optimal length is given.
Runtimes are for ILOG Solver 5.300 on 1200MHz, Pentium III processor, and 512
MB of RAM. A dash means that no results were returned after 1 hour.

on model ¢ or model Vc. The former explores a larger search tree, but does so very slightly
quicker than the latter.

To conclude, these results show that dynamic branching heuristics can be significantly
more effective when they look at both viewpoints of a permutation. Indeed, branching on
primal or dual variables was often more important to our results than using a stronger
propagator. For example, enforcing GAC on an all-different constraint, and searching just
on the primal variables, often gave worse performance than enforcing AC on the chan-
nelling constraints, and thus being able to branch on both sets of variables. In addition,
in some problem classes, the double smallest domain branching heuristic offered the best
performance. As we have argued, this heuristic is consistent with the fail first principle for
variable ordering and the succeed first principle for value ordering.

It is worth noting that the results of our experiments run counter to the usual expecta-
tions of value ordering. We found that double smallest domain (that is, smallest domain for
both variable ordering and value ordering) gave different numbers of backtracks to small-
est domain variable ordering, even when finding all solutions. It is generally thought that
value ordering makes no difference to the overall search effort when finding all solutions, if
chronological backtracking is used. Indeed, the argument given earlier for succeed first as a
value ordering principle is based on finding only one solution: if we choose the right value,

380

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

Sport(6) Sport(8) Sport(10) Sport(12)

model | heuristic fails sec. | fails sec. fails sec. fails sec.

#* SD(p) 0 0.00 | 1248 0.22 | 1863275 397.70 | 5777382 1971.92

v SD(p) 0 0.01 | 566 0.15 | 1361686 350.92 | 3522705 1444.44

c SD(p+d) | 624 0.09 4 0.01 7 0.03 5232 1.78

c SD(p) 0 0.00| 566 0.14 | 1376143 355.99 | 3537447 1368.84

c SD(d) 589 0.07 3 0.01 336 0.07 6368 1.9

c SD?(p+d) 7 0.00 9 0.01 1112 0.30 46122 18.4

c SD?(p) 113 0.02 | 6601 0.94 | 820693 168.91 - -

c SD?(d) 514 0.06 | 43 0.01 7028 1.58 6252 2.29

Ve |SD(p+d) | 624 010 | 4 0.01 7 0.03 | 5190 1.98
Ve | SD(p) 0 001 | 566 0.16 | 1361686 372.10 | 3522705 1495.41
Ve | SD(d) 589 0.09 | 3 0.01| 329 0.08 | 6262 2.18
Ve |SD%(p+d)| 7 0.00| 9 0.01| 1102 035 | 45125 20.98
Ve | SD%(p) 113 0.02 | 6563 1.09 | 812696 186.23 - -
Ve | SD%(d) 514 0.07 | 43 002 | 6920 1.76 | 6129 2.55

Table 9: Number of backtracks (fails) and running time to find the first solution to four
instances of the sports scheduling problem. Runtimes are for ILOG Solver 5.300
on 1200MHz, Pentium III processor, and 512 MB of RAM.

we can avoid backtracking to choose another one. If we want to find all solutions, we shall
have to backtrack to try all the alternative values anyway. Smith (2000) shows how value
ordering can make a difference to the search in Langford’s problem, even when finding all
solutions. In brief, when we backtrack having tried the assignment Var = wvalue, we can
post the constraint Var # value. In some cases, propagation may now lead to immediate
failure. A good ordering for the values can therefore save search.

10. Injective Mappings

In many problems, variables may be constrained to take unique values, but we have more
values than variables. That is, we are looking for an injective mapping from the variables
to the values. For example, an optimal 5-tick Golomb ruler has ticks at the marks 0, 1, 4,
9, and 11. The 10 inter-tick distances are all different but do not form a permutation as
the distance 6 is absent. Finding a 5-tick Golomb ruler of length 11 can be modelled as a
permutation problem by introducing an additional 11th variable to take on the missing value
6. Indeed, this is the method we use to model the problem in the last section. However,
there are a number of alternative ways to model an injection from n variables into m values
which we explore here.

For example, there are two simple primal models of an injection. In each we have n
primal variables which take one of m possible values. In the primal all-different model
(denoted by “¥”), we simple post a single all-different constraint on the primal variables.

381

HN1CH, SMITH, & WALSH

Magic(3) Magic(4) Magic(5) Magic(6)
model | heuristic fails sec. | fails sec. fails sec. fails sec.
* SD(p) 6 0.00| 20 0.00 | 1576 0.11 - -
v SD(p) 4 0.00] 19 0.00| 1355 0.11 | 2748609 196.45
c SD(p+d) 5 0.00| 18 0.00 | 4637 0.37 - -
c SD(p) 4 0.00 | 20 0.00 | 1457 0.14 | 3448162 249.84
c SD(d) 5 0.00 | 37 0.01 | 49312 4.61 - -
c SD?(p+d) 5 0.00 10 0.00 555 0.06 463865 37.41
c SD?(p) 4 0.00| 11 0.00 495 0.05 | 1648408 132.35
c SD?(d) 5 0.00| 18 0.00 | 928217 86.07 - -
Ve SD(p+d) 5 0.01 | 18 0.00 | 4436 0.48 - -
Ve SD(p) 4 0.00| 19 0.00| 1355 0.17 - -
Ve SD(d) 5 0.00 5 0.00 | 42426 5.33 - -
Ve SD?(p+d) 5 0.02 | 10 0.01 435 0.07 | 290103 39.01
Ve SD?(p) 4 0.00| 11 0.00| 355 0.05 | 1083993 148.73
Ve SD?(d) 5 0.00| 16 0.00 | 919057 106.55 - -

Table 10: Number of backtracks (fails) and running time to find the first solution to four
instances of magic square problem. Runtimes are for ILOG Solver 5.300 on
1200MHz, Pentium III processor, and 512 MB of RAM. A dash means that no
results were returned after 1 hour.

In the primal not-equals model (denoted by “#”) we post binary not-equals constraints
between every two distinct primal variables. We can also use dual models. For example,
in the dual not-equals model, we have m dual variables, each with a domain of m possible
values (m — n of these are dummy values), and binary not-equals constraints between each
pair of dual variables.

We will consider three different combined models which channel between primal and dual
models. In the first combined model (denoted by “c;”), we have channelling constraints
of the form x; = j implies d; = ¢ and no additional dummy values for the dual variables.
In the second combined model (denoted by “cy”), the dual variables have m — n extra
dummy values, and we have channelling constraints of the form z; = j iff d; = 4. In
the third combined model (denoted by “c3”), the dual variables have just a single extra
dummy value, and we have channelling constraints of the form z; = j iff d; = 4 but only
when j is not equal to the dummy value. Note that any of these channelling constraints
alone (without additional constraints on the primal or dual variables) is enough to define
an injection.

We can also model an injection by introducing m — n dummy primal variables and
ensuring that this extended set of variables forms a bijection. This case is, however, covered
by our earlier results on permutations.

382

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

10.1 Arc-Consistency

We first prove that, with respect to arc-consistency, the first type of channelling constraints
are as tight as the primal not-equals constraints, but less tight than the primal all-different
constraint. Then, we prove that the second type of channelling constraints are as tight
as the primal not-equals constraints, but less tight than the channelling and dual not-
equals constraints, which are less tight than the primal all-different constraint. Finally, we
prove that the third type of channelling constraints are as tight as the primal not-equals
constraints but less tight than the primal all-different constraint. This means that the three
types of channelling counstraints give the same pruning when we enforce arc-consistency as
the primal not-equals constraints. Note, however, that we get more pruning when we add
the dual not-equals constraints (but not the primal not-equals constraints). This is different
to permutations where neither the addition of the primal nor the dual not-equals constraints
to the channelling constraint gave more pruning.

Theorem 11 On an injection problem:

GACV — AC;écl Ad ACcl g AC#

Proof: To show GACy — AC,,, consider an injection problem whose primal all-different
constraint is GAC. Suppose the channelling constraint between z; and d; was not AC.
Then z; is set to j and d; has ¢ eliminated from its domain. But this is not possible by
the construction of the primal and dual model. Hence the channelling constraints are all
AC. To show strictness, consider an injection problem in which z; = z9 = 23 = {1,2} and
d1 = d2 = d3 = d4 = {1, 2, 3}. This is ACcl but not GACV

To show AC., <> AC., suppose that the channelling constraints are AC. Consider a
not-equals constraint, z; # =; (where ¢ # j) that is not AC. Now, z; and x; must have the
same singleton domain, {k}. Consider the channelling constraint between z; and dj. The
only AC value for dj, is 4. Similarly, the only AC value for dj in the channelling constraint
between x; and dj, is j. But ¢ # j. Hence, dj, has no AC values. This is a contradiction as
the channelling constraints are AC. Hence all not-equals constraints are AC. Now suppose
that the not-equals constraints are AC. Consider a channelling constraint between x; and
d; that is not AC. Then z; is set to j and d; has 7 eliminated from its domain. But for ¢
to be eliminated from the domain of d;, some other primal variable, say z; where k # 1, is
set to j, which eliminate j from the domain of x; (since the not-equals constraints are AC).
Hence, it is not possible to set z; to j and d; has ¢ eliminated from its domain. Thus, all
channelling constraints are AC. O

Theorem 12 On an injection problem:

GACV — AC;écz;é — ACC# — AC’C2 — AC¢

Proof: To show GACy — AC,,+, consider an injection problem which is GACy. Suppose
the not-equal constraint between d; and d; was not AC. Then, in the first case, d; = d; =k

383

HN1CH, SMITH, & WALSH

and k£ < n + 1, which is impossible because the channelling constraints =y = ¢ iff d; = k
and 7 = j iff dj = k are AC. In the second case, k would be greater than n, which
is impossible by construction of the primal and dual model. Hence all binary not-equal
constraints on the dual variables are AC. To show strictness, consider an injection in which
Il = T2 = T3 = {1,2}, d1 = d2 = {1,2,3,4,5}, and d3 = d4 = d5 = {4,5}. This is ACCQ#d
but not GACy.

To show AC,,~ — AC,,, by monotonicity, we have AC.,» — AC,,. To show strictness,
consider an injection problem in which z; = z9 = 23 = {1,2}, and d; = dy = {1, 2, 3,4},
and d3 = d4 = {4}. This is AC., but not GAC,, ».

To show AC., <+ AC., suppose that the channelling constraints are AC. Consider a
not-equals constraint, z; # x; (where ¢ # j) that is not AC. Now, z; and z; must have the
same singleton domain, {k}. Consider the channelling constraint between z; and di. The
only AC value for dj, is 4. Similarly, the only AC value for dy in the channelling constraint
between z; and dj, is j. But 7 # j. Hence dj has no AC values. This is a contradiction as
the channelling constraints are AC. Hence all not-equals constraints are AC. To show the
reverse, suppose that the not-equals constraints are AC. Consider a channelling constraint,
x; = j iff dj = i, that is not AC. Then, either z; is set to j and d; has 4 eliminated from its
domain, or dj is set to 7 and x; has j eliminated from its domain. But, for 4 to be eliminated
from the domain of d;, some other primal variable, say x; where k # 4, is set to j, which
will eliminate j from the domain of z; (since the not-equals constraints are AC). Hence it
is not possible to set z; to j and d; has 7 eliminated from its domain. For d; to be set to
1, all the other values must be removed from its domain, but there is no way to remove
any of the values bigger than n from the domain of d;, because at most we have n primal
variables. Thus, all channelling constraints are AC. O

Theorem 13 On an injection problem:

GACy — AC; + ACL

Proof: To show GACy — AC,,, consider an injection in which z; = 22 = z3 = {1,2},
Ty ={1,2,3,4,5}, d = dy = {1,2,3,4,5}, and d3 = dy = d5 = {4,5}. This is GAC,,),
but not GACy.

To show AC., +» AC., suppose that the channelling constraints are AC. Consider a
not-equals constraint, ; # z; (where ¢ # j) that is not AC. Now, z; and z; must have the
same singleton domain, {k}. Consider the channelling constraint between z; and di. The
only AC value for dj, is 4. Similarly, the only AC value for dy in the channelling constraint
between z; and dj, is j. But 7 # j. Hence dj has no AC values. This is a contradiction as
the channelling constraints are AC. Hence all not-equals constraints are AC. To show the
reverse, suppose that the not-equals constraints are AC. Consider a channelling constraint,
x; = j iff dj = i, that is not AC. Then, either z; is set to j and d; has 4 eliminated from its
domain, or d; is set to 7 and x; has j eliminated from its domain. But, for 4 to be eliminated
from the domain of d;, some other primal variable, say z; where k # i, is set to j, which
will eliminate j from the domain of z; (since the not-equals constraints are AC). Hence it
is not possible to set z; to j and d; has 7 eliminated from its domain. For d; to be set to

384

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

1, all the other values must be removed from its domain, but there is no way to remove
any of the values bigger than n from the domain of d;, because we have at most n primal
variables. Thus, all channelling constraints are AC. O

10.2 Asymptotic Comparison

The previous results compare the different models with respect to the amount of pruning
achieved. We can, for example, now rule out a model like “#¢;” when enforcing AC since
we get just as much pruning at less cost on the model ¢;. However, these results do not
distinguish between, say, a model with primal not-equals constraints, or any of the combined
models ¢q, co or c¢3. We get the same pruning in all four. We can add some details to these
results by comparing the asymptotic behaviour.

The relative cost of achieving GACy is O(n?m?), where n is the number of variables
and m is their domain size. AC,,, AC,,, and AC,, naively take O(nm3) time. However, by
taking advantage of the functional nature of channelling constraints, we can reduce this to
O(nm?) for ¢z and c3 and O(nm) for ¢;. We proved in Theorem 11 that GACy — AC,,
+ AC and their costs are O(n?m?), O(nm), and O(n?) respectively. Asymptotic analy-
sis shows that enforcing AC,, has asymptotically slightly more cost than enforcing AC...
However, having the dual variables could be advantageous in conjunction with variable and
value ordering heuristics. We also proved in Theorem 12 that GACy — AC,,». — AC,,
+ AC and their costs are O(n*m?), O(nm?), O(nm?), and O(n?) respectively. Asymp-
totic analysis shows that the channelling constraints are more costly than the not-equals
constraints and bring no more pruning. When we add not-equals constraints on the dual
variables, the overall asymptotic cost is still the same as the channelling constraints alone,
but we achieve more pruning. It is therefore a model worth counsidering. Finally, in Theo-
rem 13 we proved that GACy — AC,, <> AC_ and their costs are O(n?m?), O(nm?), and
O(n?) respectively. Again, asymptotic analysis shows that channelling constraints are more
costly than the not-equals constraints and bring no more pruning. Maintaining generalised
arc-consistency on the all-different constraint is again the most costly.

To conclude, these results show that, as might be expected, we in general get more
pruning if we increase the asymptotic cost. Models worth considering are the primal not-
equals model, ¢z #, and the primal all-different model. Each gives a different amount of
pruning at a different asymptotic cost. We might also consider ¢; instead of the primal
not-equals model since, whilst it is asymptotically slightly more expensive, it lets us branch
on dual variables.

10.3 Experiments With Static Orderings

We again ran some experiments to explore the significance of these theoretical and asymp-
totic differences. Table 11 gives results on some instances of the Golomb rulers problem
using a static variable ordering. The experiments are again consistent with the theoretical
results. First, enforcing GAC on an all-different constraint achieves the most pruning and
has the smallest runtimes. Second, on these problems instances, enforcing AC on the binary
not-equals constraints achieves the same amount of pruning as maintaining AC on the chan-
nelling constraints. In addition, enforcing AC on the channelling constraints takes longer

385

HN1CH, SMITH, & WALSH

to achieve. Third, adding the channelling constraints to the primal all-different constraint
does not increase pruning, and merely adds overhead to the runtime.

Golomb(8,34) | Golomb(9,44) | Golomb(10,55) | Golomb(11,72)
model | heuristic | fails sec. fails sec. fails sec. fails sec.
v static 82 0.02 724 0.26 | 3461 2.08 | 18493 13.63
cy static 104 0.03 1110 0.38 7122 3.46 37404 23.02
* static 104 0.03 1110 0.34 7122 3.03 37404 20.32
Yo static 82 0.03 724 0.36 | 3461 2.76 18493 17.97
Table 11: Number of backtracks (fails) and running time to find the first solution to four

instances of the Golomb rulers problem. Runtimes are for ILOG Solver 5.300 on
1200MHz, Pentium III processor, and 512 MB of RAM.

10.4 Dynamic Variable And Value Ordering Heuristics

Golomb(8,34) | Golomb(9,44) | Golomb(10,55) | Golomb(11,72)
model | heuristic fails sec. fails sec. fails sec. fails sec.
SD(p) 326 0.06 3810 0.96 | 50526 16.67 | 800169 352.8
v SD(p) 238 0.04 2629 0.75 | 32705 13.12 | 563011 266.52
Co SD(p+d) 11 0.00 | 2010 0.57 2288 0.86 982 0.48
Co SD(p) 326 0.07 3810 1.13 | 50526 20.42 | 800169 418.03
Co SD(d) 12 0.00 | 2333 0.61 2822 0.90 1254 0.52
Co SD?(p+d) | 12 0.01 2033 0.58 2374 0.86 984 0.48
Co SD?(p) 335 0.06 4244 1.18 | 57158 21.54 | 898457 441.15
Co SD?(d) 12 0.00 | 2342 0.60 2911 0.91 1247 0.51
Ve SD(p+d) 10 0.00 904 0.44 1076 0.66 598 0.43
Yy SD(p) 238 0.07 2629 1.10 | 32705 19.32 | 563011 419.45
Veo SD(d) 11 0.00 906 0.44 1087 0.64 605 0.44
Yy SD?(p+d) | 10 0.00 914 0.43 1125 0.69 588 0.44
Veo SD?(p) 254 0.07 3054 1.17 | 39143 21.21 | 663896 456.75
Yy SD?(d) 11 0.01 909 0.43 1131 0.70 592 0.44
Table 12: Number of backtracks (fails) and running time to find the first solution to four

instances of the Golomb rulers problem. Runtimes are for ILOG Solver 5.300 on
1200MHz, Pentium III processor, and 512 MB of RAM.

We also explored the advantage of multiple viewpoints of injection problems for dy-
namic variable and value ordering heuristics. In Table 12, we give results for Golomb ruler

386

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

problems. We observe that the primal all-different model is not competitive on the larger
problems. The best runtimes are obtained with the channelling constraints (and a primal
all-different constraint) using the smallest domain or the double smallest domain heuristic
on both sets of variables or on the dual variables. Being forced to branch on just the primal
variables hurts the branching heuristic. A dual viewpoint appears to offer the branching
heuristic very significant advantages on this problem.

Sport(7) Sport(9) Sport(11)
model | heuristic fails sec. fails sec. fails sec.

* SD(p) 14 0.00 | 140287 15.33 - -

4 SD(p) 14 0.00 | 138643 16.12 - -

Co SD(p+d) 3 0.00 34 0.01 43877 8.04
Co SD(p) 14 0.00 | 140294 17.21 - -

co SD(d) 0 0.00 33 0.01 | 1829954 268.73
Co SD?(p+d) 3 0.00| 4535 0.67 910362 185.63
co | SD?(p) 14 0.00 | 143989 17.71 - —

¢ | SD2(d) 2 0.00 | 11424 1.36 | 12536523 1787.21
Ve, |SD(p+d) | 3 0.00| 28 0.01 | 38555 9.05
Veo SD(p) 14 0.01 | 138643 20.27 - -
Veo SD(d) 0 0.00 31 0.02 374829 78.53
Veo SD?(p+d) 3 0.00| 2013 0.34 600686 151.19
Veo SD?(p) 14 0.00 | 142313 20.31 - -
Veo SD?(d) 2 0.00 | 3238 0.52 | 1854082 431.19

Table 13: Number of backtracks (fails) and running time to find the first solution to three
instances of sport scheduling problem. Runtimes are for ILOG Solver 5.300 on
1200MHz, Pentium III processor, and 512 MB of RAM. A dash means no solution
is found after 1 hour.

In Table 13, we give results for the sport scheduling problem when there are an odd
number of weeks. Despite the fact that it has the strongest propagator, the primal all-
different model is not competitive on the larger problems. The best runtimes are obtained
with the channelling constraints and branching on the primal or dual variable with smallest
domain. As with the Golomb ruler problem, being forced to branch on just the primal
variables hurts the branching heuristic. A dual viewpoint appears to offer the branching
heuristic very significant advantages on this problem. Note also that on the largest instance,
the smallest search tree is obtained with the channelling and the all-different constraints,
branching on the primal or dual variable with smallest domain. To counclude, dynamic
branching heuristics can again be significantly more effective when they look at both the
primal and dual viewpoint.

387

HN1CH, SMITH, & WALSH

11. Related Work

Cheng et al. (1999) studied modelling and solving the n-queens problem, and a nurse roster-
ing problem using channelling constraints. They show that channelling constraints increase
the amount of constraint propagation. They conjecture that the overheads associated with
channelling constraints will pay off on problems which require large amounts of search, or
lead to thrashing behaviour. They also show that channelling constraints open the door to
interesting value ordering heuristics. For permutation problems, a similar idea was previ-
ously proposed by Geelen (1992).

Choi and Lee (2002) focused on the study of combined models of permutation problems.
Their study included not only the permutation constraints, but also all the other constraints
of the problem. Their comparison measure is an extension of the propagator comparison
approach of Schulte and Stuckey (2001), which measures the different combined models with
respect to their ability to prune the search space with constraint propagation. However,
their measure is independent of the level of consistency maintained on the constraints and
depends upon the set of correct propagators instead. They theoretically discover the criteria
under which minimal combined models have the same pruning power as full combined
models and empirically demonstrate the results on different permutation problems.

Bacchus et al. (2002) formally studied the effectiveness of two modelling techniques that
transform a non-binary CSP into an equivalent binary CSP, namely, the dual transformation
and the hidden one. An original model of the problem, its dual and its hidden transfor-
mations are compared with respect to the performance of a number of local consistency
techniques including arc-consistency, and with respect to the chronological backtracking
algorithm, FC, and MAC.

Borret and Tsang (1999) developed a framework for systematic model selection. They
demonstrated their approach on the evaluation of adding a certain class of implied con-
straints to an original model. The evaluation heuristic used is based on an extension of
the theoretical complexity estimates proposed by Nadel (1990). Their experimental results
show that the approach is promising. However, with this approach one needs the instance
data to be an explicit input to the methods.

12. Conclusions

We have performed an extensive study of dual modelling on permutation and injection
problems. To compare models, we defined a measure of constraint tightness parameterized
by the level of local consistency being enforced. For permutation problems and enforc-
ing arc-consistency, we proved that a single primal all-different constraint is tighter than
channelling constraints, but that channelling constraints are tighter than primal not-equals
constraints. The reason for this difference is that the primal not-equals constraints detect
singleton variables (i.e. those variables with a single value), the channelling constraints de-
tect singleton variables and singleton values (i.e. those values which occur in the domain of a
single variable), whilst the primal all-different constraint detects global consistency (which
includes singleton variables, singleton values and many other situations). For lower lev-
els of local consistency (e.g. that maintained by forward checking), channelling constraints
remain tighter than primal not-equals constraints. However, for certain higher levels of

388

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

local consistency like path inverse consistency, channelling constraints are incomparable to
primal not-equals constraints. For injection problems, we proved that, with respect to arc-
consistency, a single primal all-different constraint is tighter than channelling constraints
together with the dual not-equals constraints, but that the channelling constraints alone are
as tight as the primal not-equals constraints. The asymptotic analysis allowed us to reduce
further the number of models that might be worth considering. Experimental results on a
wide range of problems supported these theoretical results. For example, adding binary not-
equals constraints to the channelling constraints does not increasing pruning, and merely
adds overhead to the runtimes. However, the experimental results also demonstrated the
very significant benefits of being able to branch on both primal and dual variables. In many
cases, we obtained the best runtimes with just channelling constraints and a branching
heuristic that looked at both primal and dual viewpoints.

What general lessons can be learnt from this study? First, there are many possible
models of even a simple problem like finding a permutation or an injection. In addition,
no one model is best in all situations. We therefore need to support the user in modelling
even simple problems. Second, it often pays to construct redundant models with multiple
viewpoints of the same problem. Despite the overheads, the ability to branch on dual
variables can be very beneficial. Branching heuristics that consider multiple viewpoints
can be very effective. Third, the additional constraint propagation provided by global
constraints like all-different may not justify their cost. We often saw better performance
when we threw out the all-different constraint. Fourth, our measure of constraint tightness
can be used to compare different constraint models. However, this measure can only reject
certain models on the basis that they add overhead. We still must run experiments to
determine if the additional constraint propagation provided by tighter models is worth the
cost of this constraint propagation. Ultimately, the question being addressed is central to
many problems in artificial intelligence: the trade-off between search and inference.

Acknowledgements

B. Hnich and T. Walsh are currently supported by Science Foundation Ireland (SFI) and
an ILOG software grant. T. Walsh was also supported by an EPSRC advanced research
fellowship. We thank the other members of the APES research group (http://www.dcs.st-
and.ac.uk/"apes) for helpful discussions, and especially Ian Gent who encouraged us to
write this paper.

References

Bacchus, F., Chen, X., van Beek, P., & Walsh, T. (2002). Binary vs. Non-Binary Constraints.
Artificial Intelligence, 140(1-2), 1-37.

Bejar, R., & Manya, F. (2000). Solving the round robin problem using propositional logic.
In Proceedings of 17th National Conference on Artificial Intelligence, pp. 262-266.
AAATI Press/The MIT Press.

Bessiere, C., Meseguer, P., Freuder, E., & Larrosa, J. (1999). On forward checking for non-
binary constraint satisfaction. In Jaffar, J. (Ed.), Proceedings of Fifth International

389

HN1CH, SMITH, & WALSH

Conference on Principles and Practice of Constraint Programming (CP99), pp. 88—
102. LNCS 1713. Springer.

Borrett, J., & Tsang, E. (1999). A context for constraint satisfaction problem formulation
selection. Constraints, 6, 299-327.

Cheng, B., Choi, K., Lee, J., & Wu, J. (1999). Increasing constraint propagation by redun-
dant modeling: an experience report. Constraints, 4, 167-192.

Choi, C., & Lee, J. (2002). On the pruning behaviour of minimal combined models for
permutation CSPs. In Proceedings of CP-2002 Workshop on Reformulating Constraint
Satisfaction Problems: Towards Systematisation and Automation.

Debruyne, R., & Bessiere, C. (1997). Some practicable filtering techniques for the constraint
satisfaction problem. In Proceedings of the 15th IJCAI pp. 412-417. International
Joint Conference on Artificial Intelligence.

Geelen, P. (1992). Dual viewpoint heuristics for binary constraint satisfaction problems. In
Proceedings of the 10th ECAIL pp. 31-35. European Conference on Artificial Intelli-
gence. Wiley.

Gent, 1. (2002). Arc consistency in SAT. In van Harmelen, F. (Ed.), Proceedings of ECAI-
2002, pp. 121-125. 1OS Press.

Gent, L., Stergiou, K., & Walsh, T. (2000). Decomposable constraints. Artificial Intelligence,
123(1-2), 133-156.

Gent, 1., & Walsh, T. (1999). Csplib: a benchmark library for constraints. Tech. rep.,
Technical report APES-09-1999. Available from http://dcs.st-and.ac.uk/"apes.
A shorter version appears in Jaffar, J. (Ed.), Proceedings of Fifth International Con-
ference on Principles and Practice of Constraint Programming (CP99), pp. 480-481.
LNCS 1713. Springer.

Haralick, R., & Elliot, G. (1980). Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14, 263-313.

Hentenryck, P. V., Deville, Y., & Teng, C. (1992). A Generic Arc Consistency Algorithm
and its Specializations. Artificial Intelligence, 57, 291-321.

Jourdan, J. (1995). Concurrent Constraint Multiple Models in CLP and CC Languages:
Toward a Programming Methodology by Modeling. Ph.D. thesis, Denis Diderot Uni-
versity, Paris VII. Available as CMU-CS-91-120.

Miller, J. (2002). Langford’s problem.. Online description available at
http://www.lcark.edu/"miller/langford.html.

Morris, P. (1992). On the density of solutions in equilibrium points for the queens prob-
lem. In Proceedings of the 10th National Conference on Al pp. 428-433. American
Association for Artificial Intelligence.

Nadel, B. (1990). Representation selection for constraint satisfaction: A case study using
n-Queens. IEEE Expert, 5, 16-23.

Prosser, P., Stergiou, K., & Walsh, T. (2000). Singleton consistencies. In Dechter, R. (Ed.),
6th International Conference on Principles and Practices of Constraint Programming
(CP-2000), pp. 353-368. LNCS 1894. Springer-Verlag.

390

DuAL MODELLING OF PERMUTATION AND INJECTION PROBLEMS

Régin, J. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of
the 12th National Conference on Al pp. 362-367. American Association for Artificial
Intelligence.

Régin, J., & Rueher, M. (2000). A global constraint combining a sum constraint and dif-
ference constraints. In Dechter, R. (Ed.), Proceedings of 6th International Conference
on Principles and Practice of Constraint Programming (CP2000), pp. 384-395. LNCS
1894. Springer.

Schulte, C., & Stuckey, P. (2001). When do bounds and domain propagation lead to the same
search space. In Sondergaard, H. (Ed.), Proceedings of 3rd International Conference
on Principles and Practice of Declarative Programming (PPDP 2001), pp. 115-126.
ACM Press.

Smith, B., Stergiou, K., & Walsh, T. (2000). Using auxiliary variables and implied con-
straints to model non-binary problems. In Proceedings of the 16th National Conference
on AL pp. 182-187. American Association for Artificial Intelligence.

Smith, B. (2000). Modelling a Permutation Problem. In Proceedings of ECAI’2000 Work-
shop on Modelling and Solving Problems with Constraints. Also available as Research
Report from http://scom.hud.ac.uk/staff/scombms/papers.html.

Stergiou, K., & Walsh, T. (1999). The difference all-difference makes. In Proceedings of
16th IJCAI pp. 414-419. International Joint Conference on Artificial Intelligence.

Walsh, T. (2000). SAT v CSP. In Dechter, R. (Ed.), 6th International Conference on
Principles and Practices of Constraint Programming (CP-2000), pp. 441-456. LNCS
1894. Springer-Verlag.

391

