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Abstract. We introduce the weighted CFG constraint and propose a propaga-
tion algorithm that enforces domain consistency in O(n?|G|) time. We show that
this algorithm can be decomposed into a set of primitive arithmetic constraints
without hindering propagation.

1 Introduction

One very promising method for rostering and other domains is to specify constraints
via grammars or automata that accept some language. We can specify constraints in
this way on, for instance, the number of consecutive night shifts or the number of days
off in each 7 day period. With the REGULAR constraint [4], we specify the acceptable
assignments to a sequence of variables by a deterministic finite automaton. One limita-
tion of this approach is that the automaton may need to be large. For example, there are
regular languages which can only be defined by an automaton with an exponential num-
ber of states. Researchers have therefore looked higher up the Chomsky hierarchy. In
particular, the CFG constraint permits us to specify constraints using any context-
free grammar. In this paper, we consider a further generalization to the weighted CFG
constraint. This can model over-constrained problems and problems with preferences.

2 The Weighted CFG Constraint

In a context-free grammar, rules have a left-hand side with just one non-terminal, and
aright-hand side consisting of terminals and non-terminals. Any context-free grammar
can be written in Chomsky form in which the right-hand size of a rule is just one termi-
nal or two non-terminals. The weighted WCFG(G, W, z, [ X1, ..., X,,]) constraint holds
iff an assignment X forms a string belonging to the grammar G and the minimal weight
of a derivation of X less than or equal to z. The matrix W defines weights of produc-
tions in the grammar . The weight of a derivation is the sum of production weights
used in the derivation. The WCFG constraint is domain consistent iff for each variable,
every value in its domain can be extended to an assignment satisfying the constraint.
We give a propagator for the WCFG constraint based on an extension of the C'Y K
parser to probabilistic grammars [3]]. We assume that GG is in Chomsky normal form
and with a single start non-terminal S. The algorithm has two stages. In the first, we
construct a dynamic programing table Vi, j| where an element A of Vi, j] is a poten-
tial non-terminal that generates a substring [ X, ..., X, ;]. We compute a lower bound
l[i, 4, A] on the minimal weight of a derivation from A. In the second stage, we move
from V'[1,n] to the bottom of table V. For an element A of Vi, j|, we compute an
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upper bound uli, j, A] on the maximal weight of a derivation from A of a substring
[Xi....,Xit;]. We mark the element A iff [[i, j, A] < ui, j, A]. The pseudo-code is
presented in Algorithm [Il Lines PH3l initialize I and w. Lines [6HI6 compute the first
stage, whilst lines 2OH29] compute the second stage. Finally, we prune inconsistent val-
ues in lines30H3T] Algorithm [[lenforces domain consistency in O(|G|n?) time.

Algorithm 1. The weighted CYK propagator
1: procedure WCYK-ALG(G, W, z, [X1, ..., Xn])

2: for j = 1ton do

3: fori =1ton —j + 1do

4: for each A € G do

5: i, 4, Al = z + L uli, 4, A] = —1;

6: fori = 1ton do

7 V0i,1] = {A|A - a € G,a € D(X;)}

8: for A€ V[i,1]stA — a € G,a € D(X;)do

9: 1[i, 1, A] = min{i[i, 1, A], W[A — a]};

10: for j = 2ton do

11: fori =1ton — j+ 1do

12: Vi, j] = 0;

13: fork =1toj — 1do

14: Vii,j] = V[i,jl]U{A|A — BC € G,B € V[i,k],C € V[i+ k,j — k|}
15: foreach A — BC € Gs.t. B€ V[i,k|,C € V[i+ k,j — k] do

16: 1[i, 4, A] = min{l[s, j, A], W[A — BC] + [i, k, Bl + 1[i + k,j — k, C]};
17:  ifS ¢ V[1,n]then

18: return 0;

19:  mark (1,7, S5);u[l,n, S| = z;
20: for j = n downto 2 do

21: fori=1ton —j+ 1do

22: for A such that (4, j, A) is marked do

23: fork =1toj — 1do

24 foreach A — BC € Gst. B € V[i,k],C € V[i+ k,j — k] do

25: if W[A — BC| +1[i,k, B] +[i + k,j — k, C] > uli, j, A] then

26: continue;

27: mark (4, k, B);mark (i + k,j — k, C);

28: uli, k, B] = max{ul[s, k, B, u[i, j, A] — l[i + k,j — k,C] — W[A — BCl};
29: uli+k, j—k, C] = max{uli+k,j—k, C], uli, 5, A] —[i, k, B| - W[A — BC|};
30:  fori=1tondo

31: D(X;)={a € D(X;)|A — a € G,(i,1,A) is marked and W[A — a] < u[i, 1, A]};

32: return 1;

3 Decomposition of the Weighted CFG Constraint

As an alternative to this monolithic propagator, we propose a simple decomposition
with which we can also enforce domain consistency. A decomposition has several ad-
vantages. For example, it is easy to add to any constraint solver. As a second exam-
ple, decomposition gives an efficient incremental propagator, and opens the door to
advanced techniques like nogood learning and watched literals. The idea of the decom-
position is to introduce arithmetic constraints to compute ! and u. Given the table V'
obtained by Algorithm[l we construct the corresponding AN D/OR directed acyclic
graph (DAG) as in [7]. We label an OR node by n(i,j, A), and an AN D node by
n(i, j, k, A — BC'). We denote the parents of a node nd as PRT'(nd) and the children
as C'HD(nd). For each node two integer variables are introduced to compute [ and .
For an O R-node nd, these are lp(nd) and up(nd), whilst for an AN D-node nd, these
are [ 4 (nd), ua(nd).
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For each AN D node nd = n(i,j,k, A — BC) we post a constraint to connect nd
to its children C H D(nd):

la(nd) = > lo(ne)+ W[A — BC] (1)
n.€CHD(nd)

For each OR node nd = n(i, j, A) we post constraints to connect nd to its children
CHD(nd):

lO (nd) - nCGCI'Ill"Ii%(nd){lA(nC)} (2)
uo(nd) =ua(ne), ne € CHD(nd) 3)

For each OR node nd = n(i, j, A) we post a set of constraints to connect nd to its
parents P RT'(nd) and siblings:

uo(nd) = mazy,cprr(nag)iua(ng) —lo(ns) — WP}, (€))

where P = B — AC or B — CA, n, = n(r,q,t, P) is the parent of nd = n(i, j, A)
and Nsp = n(il,jl, C)

Finally, we introduce constraints to prune X;. For each leaf of the DAG that is an
OR node nd = n(i, 1, a), we introduce:

a€ DX;)=0<lp(nd) <z 5)
a¢ D(X;)<lond) >z (6)
lo(nd) > uo(nd) = a ¢ D(X;) )

As the maximal weight of a derivation is less than or equal to z we post:
uo(n(l,n,S)) <z (8)

Bounds propagation will set the lower bound of I (n(i, j, A)) to the minimal weight
of a derivation from A, and the upper bound on uo (n(7, j, A)) to the maximum weight
of a derivation from A. We forbid branching on variables [ 4|0 and u 4| as branching on
I 410 would change the weights matrix 1¥ and branching on v 40 would add additional
restrictions to the weight of a derivation. Bounds propagation on this decomposition
enforces domain consistency on the WCFG constraint. If we invoke constraints in the
decomposition in the same order as we compute the table V, this takes O(n3|G|) time.
For simpler grammars, propagation is faster. For instance, as in the unweighted case, it
takes just O(n|G|) time on a regular grammar.

We can speed up propagation by recognizing when constraints are entailed. If Io (nd)
> 10 (nd) holds for an O R node nd then constraints () and @) are entailed. If | 4 (nd) >
u4(nd) holds for an AN D node nd then constraints (1)) and (3) are entailed. To model
entailment we augmented each of these constraints in such a way that if lp(nd) >
uo(nd) or l4(nd) > ua(nd) hold then corresponding constraints are not invoked by
the solver.
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4 The Soft CFG Constraint

We can use the WCFG constraint to encode a soft version of CFG constraint which
is useful for modelling over-constrained problems. The soft CFG(G, z, [X1, . .., X}])
constraint holds iff the string [X7, ..., X,,] is at most distance z from a string in G.
We consider both Hamming and edit distances. We encode the soft CFG(G, z, [ X7, . . .,
X,]) constraint as a weighted CFG(G', W, z,[X7, ..., X,,]) constraint. For Hamming
distance, for each production A — a € G, we introduce additional unit weight produc-
tions to simulate substitution:

{A=bW[A—-Db=1A—-acGA—-b¢EG b X}

Existing productions have zero weight. For edit distance, we introduce additional pro-
ductions to simulate substitution, insertion and deletion:

{A—=bW[A—-Db=1A—-acGA—-b¢ G be XU
{A—e,WA—¢|=1A—acG,ac X}V
{A — Aa, W[A — Aa] = 1]a € Z}U
{A— aA, WA — aA] =1la € X}

To handle ¢ productions we modify Alg.[]so loops in lines (13),(23) run from 0 to j.

5 Experimental Results

We evaluated these propagation methods on shift-scheduling benchmarks [2/1]]. A per-
sonal schedule is subject to various regulation rules, e.g. a full-time employee has to
have a one-hour lunch. This rules are encoded into a context-free grammar augmented
with restrictions on productions [[7I5]. A schedule for an employee has n = 96 slots
represented by n variables. In each slot, an employee can work on an activity (a;), take
a break (b), lunch (1) or rest (). These rules are represented by the following grammar:

S — RPR, fp(i,j) =13 < j <24, P — WbW, L — IL|l, fr(i,j) = j = 4
S — RFR, fr(i,j) =30 <j <38, R—rRlr, W — A;, fw(i,j)=j >4
Ai - aiAi‘ai7fA(i7j) = Open(i)a F — PLP

where functions f (i, j) are restrictions on productions and open(i) is a function that
returns 1 if the business is opened at ith slot and 0 otherwise. To model labour de-
mand for a slot we introduce Boolean variables b(i, j, ax), equal to 1 if jth employee
performs activity ay, at sth time slot. For each time slot 7 and activity a; we post a con-
straint Z;ﬂd x(i,j,ar) > d(i,ar), where m is the number of employees. The goal is
to minimize the number of slots in which employees worked.

We used Gecode 2.0.1 for our experiments and ran them on an Intel Xeon 2.0Ghz
with 4Gb of RAM. In the first set of experiments, we used the weighted CFG(G, z;, X),
j =1,...,m with zero weights. Our monolithic propagator gave similar results to the
unweighted CFG propagator from [[7]. Decompositions were slower than decomposi-
tions of the unweighted CFG constraint as the former uses integers instead of Booleans.

! We would like to thank Claude-Guy Quimper for his help with the experiments.
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Table 1. All benchmarks have one-hour time limit. |A| is the number of activities,m is the num-
ber of employees, cost shows the total number of slots in which employees worked in the best
solution, time is the time to find the best solution, bt is the number of backtracks to find the best
solution, BT is the number of backtracks in one hour, Opt shows if optimality is proved, Imp
shows if a lower cost solution is found by the second model.

Monolithic Decomposition Decomption+entailment
|A| # m cost time bt BT cost time bt BT cost time bt BT Opt Imp
1 2 4 107 5 0 8652 107 7 0 5926 107 7 0 11521
1 3 6 148 7 1 5917 148 34 1 1311 148 9 1 8075
1 4 6 152 1836 5831 11345 152 1379 5831 14815 152 1590 5831 13287
1 55 9% 6 0 8753 96 6 0 2660 96 3 0 45097
1 6 6 — — — 10868 132 3029 11181 13085 132 2367 11181 16972
1 7 8 19 16 16 10811 196 18 16 6270 196 15 16 10909
1 8 3 8 11 9 66 82 13 9 66 82 5 9 66 v
1109 - — — 10871 — — - 9627 — - — 18326
2 1 5 100 523 1109 7678 100 634 1109 6646 100 90 1109 46137
2 210 - — — 11768 — — - 10725 — — — 6885
2 3 6 165 3517 9042 9254 168 2702 4521 6124 165 2856 9042 11450 Vv
2 411 - — — 80227 — — - 6200 — — — 5579
2 5 4 92 37 118 12499 92 59 118 6332 92 49 118 10329
2 6 5107 9 2 6288 107 22 2 1377 107 14 2 7434
2 8 5 126 422 1282 12669 126 1183 1282 3916 126 314 1282 16556 Vv
2 9 3 76 1458 3588 8885 76 2455 3588 5313 76 263 3588 53345 Vv
2 108 - — — 3223 — — - 3760 — — — 8827

In the second set of experiments, we assigned weight 1 to activity productions, like
A;j — a;, and post an additional cost function > z; that is minimized. Y7 | z; is
the number of slots in which employees worked. Results are presented in Tabldl We
improved on the best solution found in the first model in 4 benchmarks and proved op-
timality in one. The decomposition of the weighted CFG constraint was slightly slower
than the monolithic propagator, while entailment improved performance in most cases.
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