Backbones and Backdoors in Satisfiability

Philip Kilby
ANU
Canberra, Australia
Philip.Kilby@anu.edu.au

John Slaney
NICTA* and ANU
Canberra, Australia

John.Slaney@anu.edu.au

Abstract

We study the backbone and the backdoors of propositional
satisfiability problems. We make a number of theoretical, al
gorithmic and experimental contributions. From a theoret-
ical perspective, we prove that backbones are hard even to
approximate. From an algorithmic perspective, we present
a number of different procedures for computing backdoors.
From an empirical perspective, we study the correlation be-
tween being in the backbone and in a backdoor. Experiments
show that there tends to be very little overlap between back-
bones and backdoors. We also study problem hardness for
the Davis Putnam procedure. Problem hardness appears to
be correlated with the size of strong backdoors, and weakly
correlated with the size of the backbone, but does not appear
to be correlated to the size of weak backdoors nor their num-
ber. Finally, to isolate the effect of backdoors, we look at
problems with no backbone.

Introduction

Many problems in Al like constraint solving, planning and
learning are intractable in general. Propositional satisfi

ity (or SAT) is typical of such problems. It is a problem of
considerable practical and theoretical importancer ®as
the first problem shown to be NP-complete (Cook 1971).
It therefore lies at the heart of the theory of computational
complexity. In addition, many real world problems like
planning have been encoded intaTS Highly optimized
SAT solvers are then used to find solutions.

Due in part to its simplicity, 81 has become a problem
class in which to study search and the causes of intractabil-
ity. A number of fundamental notions have been identi-
fied to explain why search problems are hard. Two such
notions are the backbone of a search problem and a back-
door into a search problem (see next section for their formal
definitions). The first identifies those decisions which are
fixed in all solutions (and so need to be made correctly),
whilst the second identifies those decisions which result in
a polynomial subproblem. Both these notions have been

*National ICT Australia is funded by the Australian Govern-
ment’'s Backing Australia’s Ability initiative, in part tbugh the
Australian Research Council
Copyright © 2005, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

Sylvie.Thiebaux@anu.edu.au

Sylvie Thiébaux
NICTA* and ANU
Canberra, Australia

Toby Walsh
NICTA* and UNSW
Sydney, Australia
tw@cse.unsw.edu.au

connected to problem hardness (Monassoral.
Williams, Gomes, & Selman 2003).

In this paper, we look at the connections between back-
bones, backdoors, and problem hardness. We are interested
as to whether some commonality between backbones and
backdoors explains their connection to problem hardness.
Are backbone literals more or less likely to also likely to
form backdoors? From a practical point of view, we are also
interested in approximations of the backbone set.

1998;

Backbones and backdoors

The backbone of a satisfiable 8 problem is the set of
literals which are true in every satisfying truth assigninen
There are a number of different definitions for the backbone
of an unsatisfiable formula (e.g. the set of literals fixed in
every truth assignment maximizing the number of satisfied
clauses (Monassoet al. 1998)). We will avoid this com-
plication by focusing on satisfiable only formulae. Back-
bone size has been associated with problem hardness (Parkes
1997; Monassoret al. 1998; Achlioptaset al. 2000). If a

SAT problem has a large backbone, there are many opportu-
nities to assign variable incorrectly. Such problems tend t
be hard therefore for systematic methods like Davis-Putnam
A large backbone also means that solutions are clustered.
Such problems therefore can be hard to solve with local
search methods like WalkSAT.

A backdoor into a &1 problem is a (hopefully small)
set of variables which provide a “short cut” into solving
the problem (Williams, Gomes, & Selman 2003).weak
backdoor of a satisfiable &1 problem is the set of literals
which give a simplified formula which is satisfiable and can
be solved in polynomial time. Atrong backdoor of a sat-
isfiable or unsatisfiable 8 problem is the set of variables
which, however they are assigned, give a simplified formula
which can be solved in polynomial time.

The definition of backdoors is inherently algorithm de-
pendent - a backdoor set for one algorithm is not necessarily
a backdoor for another. We use as the definition of nacdoor
branch-free search isatzversion 2.15 (Li 1999). That is,
once the backdoor literals have been assigned, the problem
can be solved essentially through unit propagation.

We will typically consider backdoors that areinimal
that is, no strict subset of the backdoor is itself a backdoor
Note also that the concept of weak and strong backdoor is

parameterized by a polynomial class of subformulae. This
class may be defined syntactically (e.g. Horn formulae)
or algorithmically (e.g. those formulae polynomially de-
cided by a Davis Putnam procedure). Empirical studies have
shown that many structurech® problems have small back-
doors, whilst random 3-& problems do not. Gomes et al.
argue this may explain why we can typically solve random
3-SAT problems with a only few hundred variables but can
often solve structured problems with thousands of vargable
(Williams, Gomes, & Selman 2003). Small backdoors also
help to explain the heavy-tailed behaviour of backtracking
search algorithms (Williams, Gomes, & Selman 2003).

Computational complexity

Computing the backbone or a backdoor ofar problem is
intractable in general. To be more precise, finding the back-
bone of a 8T problem is both NP-hard and NP-easy. It is
NP-hard as we can determine the satisfiability of a formula
with a polynomial number of calls to a procedure to find the
backbone (as argued in the proof of Theorem 1). It is NP-
easy as deciding if a literal is in the backbone can be solved
with a single call to a 81 decision procedure. Garey and

Johnson suggest that problems which are both NP-hard and

NP-easy might be called NP-equivalent (Garey & Johnson
1979). Although this class contains problems which do not
belong to NP, the class has the property of NP-complete de-
cision problems that: unless P=NP, no problem in the class
can be solved in polynomial time, and if P=NP then all prob-
lems in the class can be solved in polynomial time. In other
words, the problem of deciding thea$ backbone is poly-
nomial if and only if P=NP.

Finding the backdoor into aAS$ problem is also in-
tractable in general (assuming#ANP). However, if we can
bound the size of the backdoor, it can be tractable in cer-
tain cases. In particular, finding a strong backdoor seb (int
either Horn or 2-cnf polynomial subformulae) is tractable
if the size of the backdoor is bounded, but finding a weak
backdoor set is not (Nishimura, Ragde, & Szeider 2004).

Approximation
We now show that even approximating the backbone is in-

The same argument shows that, i##PNP then no sound
approximation procedure can exist that is guaranteed to re-
turn at least one backbone literal when the backbone is non-
empty in polynomial time.

Suppose instead that we have an unsound approximation
procedure. That is, literals returned by the procedure are
not guaranteed to be in the backbone. If we do not limit the
number of literals incorrectly assigned to the backboren th
there exists a polynomial time approximation that meets any
approximation ratio. For example, consider the procedure
that returns all literals. We therefore consider unsound ap
proximation procedures which limit the number of literals
falsely assigned to the backbone. An approximation proce-
dure is a “majority-approximation” iff, when the backbone
is non-empty, the ratio of the number of literals falsely as-
signed to the backbone compared to the number returned is
strictly less than 1/2. If the backbone is empty, any number
of literals can be falsely returned as being in the backbone.

Theorem 2 If P £ NP then no majority-approximation pro-
cedure can be guaranteed to return a fixed fractioror
greater of the literals in the backbone in polynomial time.

Proof: Suppose there was such a polynomial time approx-
imation procedure. We show how such a procedure can be
used to decide the satisfiability of a set of clausées poly-
nomial time, contradicting the assumption that RIP. Letk

be [é]. We construck copies of>: augmenting the clauses
as follows. In theith copy, we add the disjunat; to each
clause, where; is a new variable not ik. We denote these
modified clauses by;. Even if ¥ is unsatisfiable, we can
always satisfy}; by settingz; to true. We now consider
the satisfiable set of clause$z} U (lJ,-;«, Xi) where

z is again a new variable. Note that, ads fixed, this set

of clauses is polynomial in the size &f. If 3 is satisfi-
able, ther: is the unique backbone literal. ¥ is unsatisfi-
able, then the backbone{s, ..., zx, z}. We now use our
approximation procedure to compute the backbone of the
constructed formula. If the formulg is satisfiable then the
majority approximation procedure must return justf the
formulaX: is unsatisfiable then the majority approximation
procedure must return at least one literglfrom the back-
bone. Hence, the backbone literals returned can be used to

tractable in general. Suppose we have a sound approxima-decide the satisfiability af. O

tion procedure that returns some subset of the backbone.
That s, any literal returned by the procedure is guarartteed
be in the backbone, but it may not return all of the backbone.

Theorem 1 If P # NP then no sound approximation pro-
cedure can return a fixed fractiom or greater of the SAT
backbone in polynomial time.

Proof: Suppose there was such a polynomial time approx-
imation procedure. Since the approximation procedure re-
turns a fixed fraction of the backbone (rounded up) it must
return at least one backbone literal if the backbone is non-
empty. We set this literal to true and simplify the formula.
If the backbone is empty, we set an arbitrary literal to true
and simplify. We then call the approximation procedure and
repeat. This procedure will find a satisfying assignment if
one exists in polynomial time, contradicting the assumptio
that P NP.O

Note that in the proof, we just computed the backbone of
satisfiable formulae. Hence, the same result holds however
we define the backbone of unsatisfiable formulae.

Algorithms

A series of algorithms was developed to conduct empirical
tests on backdoors and backbones. Algorithms and tests are
based on a modified version etz version 2.15. These
modifications were required to ensure backdoors were ro-
bust to renaming of variables. That is, if the same problem
is presented with variables in a different order, the backslo
discovered remains the same.

Algorithm M INWEAK BACKDOOR

This is a simple routine used by all the other algorithms to
reduce an initial weak backdoor into a minimal weak back-

door. It maintains a set of variableB/) which must form
part of a minimal weak backdoor. It selects literals from the
initial set I and tests them for inclusion iW. The algo-
rithm also returns a model consistent with the backdoor set
returned. The backdoor set is minimal in that no proper sub-
set is also a weak backdoor. However, the algorithm is not
guaranteed to return the backdoor set of minimal cardinalit
from a given input. A sequential version of this algorithm

Three constants are used in the algorithm: Iteration-limit
(the number of iterations per restart); Restart-limit (tien-
ber of restarts); and Card-mult (the multiplier for the nianb
of literals added to the incumbent backdoor). For the runs
reported here the following values were chosen after some
initial experimentation: lteration-limit is/n * 3, Restart-
limitis 2. and Card-multis 2.

Algorithm 3 SatzLS1 ¢, W, M)

Algorithm 1 MinWeakBackdoor ', I)

Input: FormulaF, Initial weak backdoor sef - i.e. run-
ning satzon F' U I requires no branching.

Output: A set of literalsiW forming a minimal backdoor,
and a modelM consistent with the backdoor

1. W—0;: M—10

2. while I # ()

3. Choose literal € I randomly

4. T —T1\{l}

5. RunsatzonFUW uUlI

6. if satzrequires branching,

7. thenW — W U {l} ; M « satzsolution
8. endwhile

9. return W, M

treats! as a list rather than a set, and chooses the literal
step 3 sequentially.

Algorithm S ATz WEAK

This algorithm creates a weak backdoor set using branch-
ing variables selected bgatz It then reduces the set to a
minimal backdoor using M\WEAKBACKDOOR. It returns

a minimal weak backdoor, and a consistent model.

Algorithm 2 SatzWeak [")
Input: FormulaF’

Output: A minimal weak backdoo#V and a consistent
modelM

1. SolveF usingsatz, saving branching literals ifs
2. W,M «— MINWEAKBACKDOOR (F, B)
3. return W, M

Algorithm SATzLS1

We are interested in weak backdoors of minimum cardinal-

ity. SATZWEAK does not always find the smallest backdoor,

so we use local search to explore “neighbouring” backdoors.
The algorithm maintains an incumbent backddBr It

Input: FormulaF, Initial backdooi¥’, Model M
Output: A set of minimal weak backdoos

1. S—0:B—W

W is current backdoor,

B is an example of smallest backdoor seen.
2. Restart-court— 0
3. while Restart-counk Restart-limit

4. Restart-count— Restart-count + 1
5. W«B
6. lteration-count— O;
7. while Iteration-countk lteration-limit
8. Iteration-count— lteration-count + 1
9. Z —| W | x Card-mult literals chosen
randomly fromi/ \ W
10. W «— MINWEAKBACKDOOR (F, W U 2)
(sequential version)
11. S—SuUuw
12. if | W |<| B |
13. then B «— W ; Restart-count- 0
14. endwhile
15. endwhile
16. return S

When a new, smaller backdoor is found at line 12 the
restart counter is reset to give the procedure an oppoytunit
to find more examples of backdoors of this size. The proce-
dure is called withV and M returned by 8TzZWEAK(F).

Algorithm SATZLS?2

SATzLS1 tends to generate backdoor sets from a single
model. As there are often many models for a formula, the
procedure needs to be forced to explore new modeds- S
zL S2 was developed to accomplish this.

SATZLS2 uses repeated calls oA&ZLS1. The neigh-
bourhood of the backdoor created from setzbranching
variables is explored first. The algorithm then explorekbac
doors generated using a number of randomly chosen models.
An advantage of the algorithm is that initial weak backdoors
for second and subsequent models are created in a way that
does not rely on theatzalgorithm. This helps to ensure the

adds literals chosen randomly to that set, and then reducesbackdoors are not biased by thatzbranching rules.

it to a minimal backdoor again. The algorithm periodically
restarts with the smallest backdoor found so far. Using the
sequential version of MIWEAK BACKDOOR, the literals in

the current incumbent are tested first for exclusion from the
set. This helps to drive the algorithm to discover new weak
backdoors. The algorithm returgs— all distinct minimal
weak backdoors discovered.

The initial backdoor for a model is created by simply
adding literals chosen at random from the model until the
set forms a weak backdoor. It is reduced usingtM/EAK-
BACKDOOR.

In tests reported here, the list of moddlsis 9 models
chosen randomly from all possible models i6f giving a
total of 10 models tested.

Algorithm 4 SatzLS2F, L) size 3. Compared to the default orderingg, 3,...), the
Input: FormulaF, and a list of modelg . improved order found a strong backdoor in 40% fewer iter-
ations per problem on average. In problems of size 50 we
used the list of weak backdoors found bytT@LS2. The

Output: A set of minimal weak backdoos

1. S « SATZLS1 (F, SATZWEAK(F)). new ordering required 25% fewer iterations per problem.

2. while L #£ 0

3. Choosel! from L Empirical comparisons

L5L ﬁ;j_lb\ M To study the connection between backbones, backdoors and

6. do problem hardness, we ran a number of experiments. For
' strong backdoors, we were computationally limited to prob-

;' I(/:Vh(fsl/?/ B??fmly froma \ W lems with up to 50 variables. For weak backdoors, we were

9 SolveF U W usingsatz able to study larger problems with up to 225 variables, both

random and more structured. The problem sets used are

10 until no branching required listed in Table 1. All problems in all sets are satisfiable,

11. W «— MINWEAKBACKDOOR (F, W)

except uuf50. Correlation between statistics is measwsed u
g engw<—hili U SATZLS1(F, W, M) ing Pearson’s r-value, and the corresponding coefficient of
14' return S determination (c.o.d.).
Abbrev Description n m Number of Inst.
) RTI Random 3-sat 100 429 500
Algorithm S TRONGBACKDOOR uf20 Random 3-sat 20 91 1000
A simple algorithm to calculate strong backdoors was writ- UUJ?500 E:ﬂggm gzgtt gg ﬁg iggg
ten which simply tests every combination of literals up to a (unsatisfiable)
fixed cardinality. The algorithm has the advantage that for ;100 Random 3-sat 100 430 1000
small p_rob_lems, every weak and strong backdoor up to the 125 Random 3-sat 125 538 100
given size is generated. However, this procedure can onlybe ufl50 Random 3-sat 150 645 100
ufl75 Random 3-sat 175 753 100
Algorithm 5 StrongBackdoor¥, Max-card) 3%22 Ezgggm 322{ ggg 828 188
Input: FormulaF’, the maximum cardinality Max-card. flat30 SAT-encoded 90 300 100
Output: A set of strong backdoors, and a set of weak graph colouring
backdoorsh. flat50 SAT-encoded 150 545 100
1S—Wf graph colouring
. — —
2. for each subsetX of the problem variables of size Table 1: Problem Sets

up to Max-card
3. for eachdistinct set of literald. corresponding

to the variables in¥ Strong and weak backdoors

L5L ?E?:r?ézh?rr: Fisunf)t required Of the 1000 random 3-& problems with 20 variables from
and the f(?rmula is sqatisfia’ble SATLIB, 275 can be solved bgatzin pre-processing, and

6 then W — WU L hence can be said to have a zero length strong and weak

7. if no literal set required branching backdoors. We ran the systematic prqcedumcS\IG-

8. thens — SU X BACKDOOR that looks for backdoors of size up to 3. All

9 return S W problems have a weak backdoor of length 3 or less. Of

the 725 non-trivial problems, 214 have a strong backdoor
of length greater than 3.

used on small problems. The search for a strong backdoorin Each formulaF' can have a large number of backdoors,
a satisfiable formula can be sped up considerably using fre- both strong and weak, of various sizes. The cardinality off
guency information gatherexdpriori during local search. A the smallest strong and weak backdoor sets are of particu-
score representing the number of times the variable appearslar interest. Let the cardinality of the smallest weak (resp
in small weak backdoors is calculated in the following way. strong) backdoor for a formul& be wr (resp.sg). Strong
First, run TZLS2 or similar procedure to generate a set backdoors in the test set were only slightly larger than weak

S of weak backdoors. Examine each backdoafinFor a ones. Over the 1000 instancesy averaged 0.76 literals,
backdoor of sizev, and for each variable corresponding to whilst s averaged 1.1 variables. The set of literals that are
a literal in the backdoor, add/to the score fow. During members of smallest weak backdoors are also of interest. In
the search for a strong backdoor, the variables are examinedthe following, we uséV}; to denote the set of literals that are
at line 2 above in order of decreasing score. members of at least one weak backdoor of size Simi-

We tested the ordering algorithm on problems with 20 larly S}. is the set of variables that appear in at least one
variables, using a§ the list of all weak backdoors up to strong backdoor of sizer.

Backboneversusbackdoor Problem set Statistic r-value c.o.d.

. . . . uf20 SF 0.71 0.50
It is not hard to show that there is no logical connection be- o0 sp + guess 078 061
tween backbones and backdoors. There are problem classes yf20 wr 058 0.00
which are NP-complete in which the backbone and backdoor uf20 Backbone size -0.88 0.78
variables are disjoint. We can, however, see if there is-a sta
tistical connection. Are backbones likely to be backdoors, uufS0 SF 0.74 054
and vice versa? The answer appears to be, not very likely.
In the 1000 tests on problems of size 2@,literals in 1 ”]‘:58 SF 06376 06131
were also backbone literals. That is, no backbone literal wa 3ng °r *guess 0 2'2 0.07
. - F . .
'?’!ast())lénza smallest weak backdoor. Results are presented in '« Backbone size 046 021
RTI wWE 0.03 0.00
ufl00 w -0.01 0.00
Weak backdoors uf125 wp -0.03 0.00
Mean back- Mean Mean Mean uf150 wp 0.07 0.01
Problemset bonesize wp |Wj| Overlap uf175 wr 0.01 0.00
uf20! 13.7 0.76 4.4 0 uf200 wr -0.13 0.02
uf50! 30.8 1.6 18.8 6.5 uf225 Wr -0.05 0.00
uf100? 53.6 4.6 10.2 2.7
RTI2 53.8 45 98 25 RTI Backbone size 0.16 0.03
)))) uf100 Backbone size 0.25 0.06
uf125 Backbone size 0.32 0.10
Strong backdoors uf150 Backbone size 0.28 0.08
Meanback- Mean Mean Mean uf175 Backbone size 0.25 0.06
Problemset bonesize sg | S;.| Overlap uf200 Backbone size 0.34 0.12
uf20!-3 15.5 1.1 3.1 0 uf225 Backbone size 0.48 0.23
ufs0t-3 43.4 2.0 16.4 13.0
flat30 Num weak back- -0.31 0.09
doors overall
I These entries are based on systematic search flat50 Num weak back- -0.37 0.14
2 These entries are based on local search doors overall
3 Only problems where a strong backdoor of sizet was found.
(Hence mean backbone size differs from weak backdoor table) flat30 Num models 042 0.18
flat50 Num models 0.54 0.
Table 2: Overlap between backbones and backdoors Table 3: Correlations with problem hardness

In larger problems, the smallest weak backdoor and the))
backbone do overlap, but not to a great extent. Strong back- variation in strong backdoor length. This strong correlati
doors cannot be compared directly to backbones, as strongWas also present in the unsatisfiable, size 50 problems in
backdoors are expressed in terms of variables, while back- Uuf50 (all of which had a strong backdoor of sizet).
bones are sets of literals. However, we can say a backbone The correlation with strong backdoor size was not as
literal of F' is in the overlap set if its corresponding variable strong with satisfiable problems of size 50. Only 395 of
is in S.. Even with this fairly loose definition, there was no these had a strong backdoor of size4. The correlation
overlap between backbone and smallest strong backdoors inwith problem hardness was not as marked as for the pre-
the size 20 problems. Again, as problem size grew, more vious problem sets. We have been able to examine only

backbone variables appear in the strong backdoor. a few larger problems to see if the effect is evident. The
pigeon-hole problems from SATLIB are very hard &atz
Problem hardness The number of search nodes required is typically one or two

Problem hardness is taken to be the log of the number of orders of magnitude larger than similar-sized random prob-
search nodes required Isatz We present the most inter- lems. For example the 6-pigeon-hole problem has 42 vari-
esting correlations with problem hardness in Table 3, and ables and requires 14,604 search nodes, and has a strong
discuss them in the text following. backdoor of size at least 5. The average number of search
The strongest correlation with problem hardness we found nodes for random 50-node problems is 380, and the average
was the size of the smallest strong backdoors. The size of strong backdoor size for non-trivial problems is 2. The hard
S correlated with problem hardness for the problems with Problem therefore has a comparatively large strong back-
strong backdoors of size 4. Guessing that the remaining door. Unfortunately, computation cost prohibited us from
problems had a strong backdoor length of 4 increased the r- €xamining any other larger problems.
value to 0.78. The corresponding c.o.d. tells us that about For the smallest problems, the size of the weak back-
60% of the variation in problem hardness is accounted for by doors is weakly correlated with problem hardness. However,

the effect reduces for the larger problems sizes, so that the Conclusion

statistic is uncorrelated for problems of size 100 and above \yg have studied the backbone and the backdoors of propo-
Surprisingly, problem hardnessnggativelycorrelated with gjtional satisfiability problems. We proved that backbones

backbone size in the smallest problems. The larger problems 4re hard even to approximate, and gave a number of proce-
exhibit the positive correlation observed elsewhere @tan qyres for computing backdoors. Our experiments showed

& Walsh 2001). that there is very little overlap between backbones and-back
doors. In addition, they demonstrated that problem haines
Number of backdoors appears to be correlated with the size of strong backdoors,

The number of distinct smallest strong backdoors was not and weakly correlated with the size of the backbone, but
a significant predictor of hardness. Basically all the predi does not appear to be correlated to the size of weak back-
tive power was in the 0/1 test “How many O-length strong doors nor their number.

backdoors are there?”, which is equivalent to “Is this prob- Probably the most significant finding of this study is that
lem trivial?”. Adding length 1, 2, or 3 strong backdoors did backbones and backdoors do not overlap to a great extent.
not increase the correlation. The number of distinct small- Backbone-guided heuristics have been demonstrated to be
est weak backdoors, and the number of distinct weak back- effective in solving SAT problems (Zhang 2004). However,
doors seen overall, were also not well correlated with prob- our results show that such algorithms are probably not iden-
lem hardness. This is surprising, as the existence of a small tifying backdoor sets. Heuristics based on identifyingkbac
backdoor, or even many small backdoors, would seem to door literals will likely identify different literals, antiave

suggest the problem may not be hard. the potential to be very effective. Second, no one general
statistic appears able to predict problem hardness wedinEv
Backbone free problems the size of the strong backdoor, which showed the best corre-
What if we eliminate the influence of the backbone by en- lation, only explained about 60% of the variation in problem
suring problems do not have any backbone? The useml S Nardness.
encoding of a graph coloring problem lacks any backbone
References

since we can permute any coloring of the graph. Such en- _

codings showed interesting results. There was a slight, neg Achlioptas, D.; Gomes, C.; Kautz, H.; and Selman, B. 2000.

ative correlation between problem hardness and the number Generating satisfiable problem instances.Phoc. of 17th Nat.

of weak backdoors (i.e., weak backdoors of size 1, 2 and Conf-on Al . .

3 combined). Approximately 10% of the variation in hard- Beacham, A. 2000. The complexity of problems without back-
. . bones. Master’s thesis, Dept. of Computing Science, Usityer

ness is explained by the number of weak backdoors overall. of Alberta

The negative correl_a'qon is as expected, bUt_ Fhe effecttls_ NO ook, S.1971. The complexity of theorem proving procedures

very strong. Surprisingly, there was a positive correlatio Proc. 3rd Annual ACM Symposium on the Theory of Computation

between problem hardness and the total number of models. 151-15s.

As the number of models increases, one would expect the Garey, M., and Johnson, D. 197@omputers and intractability :

problem to become easier. For random problems, the corre- a guide to the theory of NP-completenegéH. Freeman.

lation was negative in all problem groups, but very weak. Li, C. M. 1999. A constrained-based approach to narrow searc
trees for satisfiabilitylnformation processing lettersl: 75-80.
Related Work Monasson, R.; Zecchina, R.; Kirkpatrick, S.; Selman, B.d an

. . . Troyansky, L. 1998. Determining computational complexdy
Beacham has considered the complexity of computing the characteristic ‘phase transitiondlature400:133-137.

backbone for a range of decision problems like the satisfia- Nishimura, N.; Ragde, P.; and Szeider, S. 2004. Detectink-ba
bility and Hamiltonian path problem (Beacham 2000). He door sets with respect to horn and binary clausesrtt. of 7th
considers a slightly modified definition of backbone: the Int. Conf. on Theory and Applications of Satisfiability Tregt
set of decisions whose negation give an unsatisfiable sub- Parkes, A. 1997. Clustering at the phase transitionPrc. of
problem. This definition is equivalent to the usual one for the 14th Nat. Conf. on AB40-345.
satisfiable problems but gives every decision for unsatisfi- Ruan, Y.; Kautz, H.; and Horvitz, E. 2004. The backdoor key: A
able problems. He shows that determining if the backbone Path to understanding problem hardnessPiac. of the 19th Nat.
is empty is NP-complete (Beacham 2000). Conf. on Al o

Zhang has demonstrated experimentally that there is a S'an€¥: J.. and Walsh, T. 2001. Backbones in optimizatiah an
sharp transition in the size of the backbone of random MAX approximation. IrProc. of 17th NCAI

. Williams, R.; Gomes, C.; and Selman, B. 2003. Backdoors to

3.SAT pmb'em? (Zhang 2001). This appears.to be correlated typical case complexity. IRroc. of the 18th 1JCAI
with the transition in the random 3SAT decision problem. Zhang, W. 2001. Phase transitions and backbones of 3-SAT and

Ruanet al. (Ruan, Kautz, & Horvitz 2004) look at the Maximum 3-SAT. InProc. of 7th Int. Conf. on Principles and
backdoor keythe set of dependent variables within a weak Practice of Constraint Programming (CP200pringer.
backdoor. They find that the ratio of the size of backdoor zhang, W. 2004. Configuration landscape analysis and baekbo
key to the size of whole backdoor set is strongly correlated guided local search for satisfiability and maximum satisffistb
with problem hardness. An interesting open question is the Artificial Intelligence158(1):1-26.
relationship between the backdoor key and the few variables
we observed that are both in the backbone and the backdoor.

