
Computing possible and necessary winners from
incomplete partially-ordered preferences

M. S. Pini∗, F. Rossi∗, K. B. Venable∗, T. Walsh∗∗ 1

1 INTRODUCTION

We consider how to combine the preferences of multiple agents in
the presence of incompleteness and incomparability in their prefer-
ence orderings. An agent’s preference ordering may be incomplete
because, for example, we are in the middle of eliciting theirpref-
erences. It may also contain incomparability since, for example, we
might have multiple criteria we wish to optimize.

To combine preferences, we usesocial welfare functions, which
map a profile, that is, a sequence of partial orders (one for each
agent), to a partial order (the result). For example, the Pareto social
welfare function ordersA beforeB iff every agent ordersA before
B, else if there is some disagreement between agents declaresA and
B to incomparable.

Since agents’ preferences may be incomplete, we need to com-
plete them to perform preference aggregation. In each possible com-
pletion, we may obtain different optimal elements (orwinners). This
leads to the idea ofpossible winners (those outcomes which are
winners in at least one possible completion) andnecessary winners
(those outcomes which are winners in all possible completions) [5].

Possible and necessary winners are useful in many scenariosin-
cluding preference elicitation [3]. In fact, elicitation is over when the
set of possible winners coincides with that of the necessarywinners
[4]. In addition, preference elicitation can focus just on the incom-
pleteness concerning those outcomes which are possible andneces-
sary winners. We can ignore completely all other outcomes.

Whilst computing the sets of possible and necessary winnersis in
general a difficult problem, we identify sufficient conditions where
we can obtain the necessary winners and an upper approximation of
the set of possible winners in polynomial time. Such conditions con-
cern either the language for stating preferences, or general properties
of the preference aggregation function.

2 FROM THE COMBINED RESULT TO
WINNERS

We would like to compute efficiently the set of possible and neces-
sary winners, as well as to determine whether a given outcomeis a
possible or a necessary winner. In general, even if the social welfare
function is polynomially computable, incompleteness in the profile
may require us to consider an exponential number of completions.
As observed in [5], determining the possible winners is in NP, and
the necessary winners is in coNP.

We consider a compact representation of all the completionsthat
is polynomial in size. This necessarily throws away information by

1 *: Department of Pure and Applied Mathematics, University of Padova,
Italy. Email: {mpini,frossi,kvenable}@math.unipd.it. **: NICTA and
UNSW, Sydney, Australia. Email: tw@cse.unsw.edu.au

compacting together results into a single combined result.Given a
social welfare functionf and a possibly incomplete profileip, we
consider a complete binary graph, whose nodes are the outcomes,
and whose arcs are labeled by non-empty subsets of{<, >, =, ⊲⊳},
where⊲⊳ represents incomparability. Labell is on the arc between
outcomesA andB if there exists a completion in whichA andB are
related byl in the result. We call this structure thecombined result of
f andip and we denote it withcr(f, ip).

We first consider how to compute the possible and necessary win-
ners given the combined result. We will then consider how to com-
pute the combined result.

Consider the arc between an outcomeA and an outcomeB in the
combined result. Then, if this arc has the labelA < B, A is not a
necessary winner, since there is an outcomeB which is better thanA
in some result. If this arconly has the labelA < B, thenA is not a
possible winner since we must haveA < B in all results. Moreover,
consider all the arcs betweenA and every other outcomeC. Then, if
no such arc has labelA < C, thenA is a necessary winner. Notice,
however, that, even if none of the arcs connectingA have just a single
labelA < C, then we cannot be sure thatA is a possible winner:A
could be better than some outcomes in every completion, but there
might be no completion where it is better than all of them. Following
the above considerations, it is thus possible to define the following
algorithm to compute the necessary winners and a superset ofthe
possible winners in time quadratic in the number of outcomes.

Algorithm 1: Necessary and possible winners

Input: Ω: set of outcomes; f: preference aggregation function;
ip: incomplete profile;
Output: P, N: sets of outcomes;
P ← Ω;
N ← Ω;
foreach O ∈ Ω do

if ∃ O′ ∈ Ω such that (O < O′) ∈ cr(f,ip) then
N ← N −O;

if ∃ O′ ∈ Omega such that (O < O′) ∈ cr(f,ip) and
(OrO′) 6∈ cr(f, ip) for r ∈ {=, >, ⊲⊳} then P ← P −O;

return P , N ;

If NW is the set of necessary winners and PW is the set of possi-
ble winners, Algorithm 1 obtainsN = NW andP = PW ∗, which
is a superset of the set of possible winners, in time quadratic in the
number of outcomes.PW ∗ can be different from the set of possible
winners for two reasons. First, since we considers one arc ata time,
we could not able to recognize global inconsistencies due toviola-
tion of the transitivity property. Second, we starts from the combined
result where we have already thrown away some information.

The first reason for approximation (that is, non-transitivity) can be
eliminated. In fact, given an outcomeO, we can eliminateO < O′

from the label of each arc connectingO in the combined result, and
test whether the new structure, which we call thepossibility structure
of outcomeO (or poss(O)) is consistent with transitivity. This test
is equivalent to testing the consistency of a set of branching tempo-
ral constraints [2], which is NP-hard. Fortunately, however, there are
many classes of branching temporal constraint problems which are
tractable [2], that are likely to occur in our setting. For example, one
of the tractable classes is defined by restricting the labelsto the set
{<, >, =}. That is, we do not permit incomparability (⊲⊳) in the re-
sult. Another tractable case is when we use the Pareto socialwelfare
function, since we fall in one of the tractable classes defined in [2].

Unfortunately, the computation of the combined result requires ap-
plying the social welfare function to an exponential numberof com-
pletions.

3 TRACTABLE COMPUTATION OF POSSIBLE
AND NECESSARY WINNERS

We identify some properties of preference aggregation functions
which allow us to compute an upper approximation to the combined
result in polynomial time, assuming that the social welfarefunction
is polynomially computable. This can then be used to computepos-
sible and necessary winners again in polynomial time.

Let us denote the set of labels of an arc betweenA andB in the
combined result asrel(A,B).

The first property we consider isindependence to irrelevant alter-
natives (IIA). A social welfare function is said to be IIA when, for
any pair of outcomesA andB, the ordering betweenA andB in the
result depends only on the relation betweenA andB given by the
agents. Many preference aggregation functions are IIA, andthis is a
desirable property which is related to the notion of fairness in voting
theory [1].

Given a function which is IIA, to compute the setrel(A, B), we
just need to ask each agent its preference over the pairA and B,
and then usef to compute all possible results betweenA and B.
However, if agents have incompleteness betweenA and B, f has
to consider all the possible completions, which is exponential in the
number of such agents.

Assume now thatf is alsomonotonic. We say that an outcome
B improves with respect to another outcomeA if the relationship
betweenA andB does not move left along the following sequence:
>,≥, (⊲⊳ or =),≤,<. A social welfare functionf is monotonic if,
given any two profilesp andp′ and any two outcomesA andB, if
passing fromp to p′ B improves with respect toA in one agenti and
pj = p′

j for all j 6= i, then in passing fromf(p) to f(p′) B improves
with respect toA.

To computerel(A, B) under IIA and monotonicity, again, since
f is IIA, we just need to consider the agents’ preferences overthe
pair A andB. However, now we don’t need to consider all possible
completions for all agents with incompleteness betweenA andB,
but just two completions:A < B and B > A. Functionf will
return a result for each of these two completions, sayAxB andAyB,
wherex, y ∈ {<, >, =, ⊲⊳}. Sincef is monotonic, the results of all
the other completions will necessarily be betweenx and y in the
ordering>,≥, (⊲⊳ or =),≤, <.

By taking all such relations, we obtain a superset ofrel(A,B),
that we callrel∗(A,B). In fact, monotonicity off assures that, if we
consider profileA < B and we get a certain result, then considering
profiles whereA is in a better position w.r.t.B (that is,A > B,

A = B, or A ⊲⊳ B), will give an equal or better situation forA in
the result.

Notice that we have obtained setrel∗(A, B) in time polynomial in
the number of agents as we only needed to consider two completions.
Under the IIA and monotonicity assumptions, we can thus obtain
in polynomial time a labeled graph similar to the combined result,
but with possibly more labels on the arcs. Then, we can apply the
same reasoning as in the previous section to this labeled graph. It
is important to notice that the additional labels do not change the
necessary and possible winners computed by the algorithm. So we
can obtainNW andPW ∗ in polynomial time.

4 PREFERENCE ELICITATION

At each stage in eliciting agents’ preferences, there is a set of pos-
sible and necessary winners. WhenNW = PW , preference elici-
tation can be stopped since we have enough information to declare
the winners, no matter how the remaining incompleteness is resolved
[4]. At the beginning,NW is empty andPW contains all outcomes.
As preferences are declared,NW grows andPW shrinks. At each
step, an outcome inPW can either pass toNW or become a loser.

In those steps wherePW is still larger thanNW , we can use
these two sets to guide preference elicitation and avoid useless work.
In fact, to determine if an outcomeA ∈ PW −NW is a loser or a
necessary winner, it is enough to ask agents to declare theirprefer-
ences over all pairs involvingA and another outcome, sayB, in PW .
In fact, any outcome outsidePW is a loser, and thus is dominated
by at least one possible winner.

If the preference aggregation function is IIA, then all those pairs
(A,B) with a defined preference for all agents can be avoided, since
they will not help in determining the status of outcomeA. Moreover,
IIA allows us to consider just one profile when computing the rela-
tions betweenA andB in the result, and assures that the result is
a precise relation, that is, either<, or >, or =, or ⊲⊳. In the worst
case, we need to consider all such pairs. To determine all thewin-
ners, we thus need to know the relations betweenA andB for all
A ∈ PW −NW andB ∈ PW .

During preference elicitation, we can also use the consistency test
defined in the previous section to test the consistency of theprefer-
ences of each agent. In particular, if the agent declares outcomes to
be ordered or incomparable, testing the consistency of the agents’
preferences is tractable. If the consistency test is successful, we can
exploit the information deduced by the consistency enforcement to
avoid asking for preferences which are implied by previously elicited
ones. If instead we detect inconsistency, then we can help the agent to
make their preferences consistent by providing one or more triangles
where consistency fails.

REFERENCES
[1] K. J. Arrow, A. K. Sen, and K. Suzumara,Handbook of Social Choice

and Welfare., North-Holland, Elsevier, 2002.
[2] M. Broxvall and P. Jonsson, ‘Point algebras for temporalreasoning:

Algorithms and complexity’,Artifcial Intelligence, 149(2), 179–220,
(2003).

[3] L. Chen and P. Pu, ‘Survey of preference elicitation methods’, Technical
Report IC/200467, Swiss Federal Institute of Technology inLausanne
(EPFL), (2004).

[4] V. Conitzer and T. Sandholm, ‘Vote elicitation: Complexity and strategy-
proofness’, inProc. AAAI/IAAI 2002, pp. 392–397, (2002).

[5] K. Konczak and J. Lang, ‘Voting procedures with incomplete prefer-
ences’, inProc. IJCAI-05 Multidisciplinary Workshop on Advances in
Preference Handling, (2005).

