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1 INTRODUCTION

We consider how to combine the preferences of multiple agent
the presence of incompleteness and incomparability i ireffer-
ence orderings. An agent's preference ordering may be ipt=im
because, for example, we are in the middle of eliciting tipeaf-
erences. It may also contain incomparability since, fomepla, we
might have multiple criteria we wish to optimize.

To combine preferences, we usacial welfare functions, which
map a profile, that is, a sequence of partial orders (one foh ea
agent), to a partial order (the result). For example, thet®asocial
welfare function orderst before B iff every agent ordersi before
B, else if there is some disagreement between agents dedaed
B to incomparable.

Since agents’ preferences may be incomplete, we need to co
plete them to perform preference aggregation. In eachlpessbm-
pletion, we may obtain different optimal elements\{@nners). This
leads to the idea opossible winners (those outcomes which are
winners in at least one possible completion) aedessary winners
(those outcomes which are winners in all possible compisjib].

Possible and necessary winners are useful in many scefiarios
cluding preference elicitation [3]. In fact, elicitatiom@ver when the
set of possible winners coincides with that of the necessamers
[4]. In addition, preference elicitation can focus just b incom-
pleteness concerning those outcomes which are possiblremad-
sary winners. We can ignore completely all other outcomes.

Whilst computing the sets of possible and necessary wirigéns
general a difficult problem, we identify sufficient condit®where
we can obtain the necessary winners and an upper approamtti
the set of possible winners in polynomial time. Such condgicon-
cern either the language for stating preferences, or giprengerties
of the preference aggregation function.

2 FROM THE COMBINED RESULT TO
WINNERS

We would like to compute efficiently the set of possible andese
sary winners, as well as to determine whether a given outdsrae
possible or a necessary winner. In general, even if the lsweifare
function is polynomially computable, incompleteness ia profile
may require us to consider an exponential number of congplgti
As observed in [5], determining the possible winners is in atrl
the necessary winners is in coNP.

We consider a compact representation of all the completiais
is polynomial in size. This necessarily throws away infotioma by
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compacting together results into a single combined re@ien a
social welfare functionf and a possibly incomplete profile, we
consider a complete binary graph, whose nodes are the oetzom
and whose arcs are labeled by non-empty subsef{scof-, =, x},
whereq represents incomparability. Labkls on the arc between
outcomesA and B if there exists a completion in which and B are
related by in the result. We call this structure tiiembined result of

f andip and we denote it witlar (£, ip).

We first consider how to compute the possible and necessary wi
ners given the combined result. We will then consider howaim-c
pute the combined result.

Consider the arc between an outcorh@nd an outcomé in the
combined result. Then, if this arc has the ladek: B, A is not a
necessary winner, since there is an outcdnehich is better thamt

i some result. If this aronly has the labeld < B, thenA is not a

possible winner since we must hade< B in all results. Moreover,
consider all the arcs betweehand every other outcon@. Then, if
no such arc has label < C, then A is a necessary winner. Notice,
however, that, even if none of the arcs connectingave just a single
label A < C, then we cannot be sure thdtis a possible winnerA
could be better than some outcomes in every completion,haeuet
might be no completion where it is better than all of themldwaing
the above considerations, it is thus possible to define thanfimg
algorithm to compute the necessary winners and a supergbae of
possible winners in time quadratic in the number of outcomes

Algorithm 1. Necessary and possible winners

Input: Q: set of outcomes; f: preference aggregation function;
ip: incomplete profile;
Output: P, N: sets of outcomes;
P — Q
N «— Q;
foreach O € Q do
if 30’ € Q suchthat (O < O') € cr(f,ip) then
|l N«—N-=-0;
if 30" € Omega such that (O < O') € cr(f,ip) and
(Or0O") & cr(f,ip) forr € {=,>,x} then P — P — O;
return P, N;

If NW is the set of necessary winners and PW is the set of possi-
ble winners, Algorithm 1 obtain& = NW andP = PW ™, which
is a superset of the set of possible winners, in time quadiatihe
number of outcomesPW* can be different from the set of possible
winners for two reasons. First, since we considers one adiate,
we could not able to recognize global inconsistencies dugadia-
tion of the transitivity property. Second, we starts frora tombined
result where we have already thrown away some information.



The first reason for approximation (that is, non-trangiivcan be
eliminated. In fact, given an outcont®, we can eliminated < O’
from the label of each arc connectiyin the combined result, and
test whether the new structure, which we callpbssibility structure
of outcomeO (or poss(O)) is consistent with transitivity. This test
is equivalent to testing the consistency of a set of bramctémpo-
ral constraints [2], which is NP-hard. Fortunately, howetieere are
many classes of branching temporal constraint problemshndiie
tractable [2], that are likely to occur in our setting. Foample, one
of the tractable classes is defined by restricting the laioelke set
{<,>,=}. That is, we do not permit incomparability<] in the re-
sult. Another tractable case is when we use the Pareto sueltare
function, since we fall in one of the tractable classes ddfind2].

Unfortunately, the computation of the combined result hexpap-
plying the social welfare function to an exponential numdlecom-
pletions.

3 TRACTABLE COMPUTATION OF POSSIBLE
AND NECESSARY WINNERS

We identify some properties of preference aggregation tfons

which allow us to compute an upper approximation to the coetbi
result in polynomial time, assuming that the social welf@amction

is polynomially computable. This can then be used to compage

sible and necessary winners again in polynomial time.

Let us denote the set of labels of an arc betwdeand B in the
combined result asel( A, B).

The first property we consider isdependence to irrelevant alter-
natives (I1A). A social welfare function is said to be IIA when, for
any pair of outcomesl and B, the ordering betweeA and B in the
result depends only on the relation betweérand B given by the
agents. Many preference aggregation functions are 1A thisds a
desirable property which is related to the notion of faimi@svoting
theory [1].

Given a function which is IIA, to compute the seti(A, B), we
just need to ask each agent its preference over thepand B,
and then usef to compute all possible results betwednand B.
However, if agents have incompleteness betwdeand B, f has
to consider all the possible completions, which is expadagiit the
number of such agents.

Assume now thaif is alsomonotonic. We say that an outcome
B improves with respect to another outcomMeif the relationship
betweenA and B does not move left along the following sequence:
>, >, (= or =), <, <. Asocial welfare functiory is monotonic if,
given any two profilep andp’ and any two outcomed and B, if
passing fronp to p’ B improves with respect td in one agent and
p; = p; forall j # 4, then in passing fronf(p) to f(p") B improves
with respect toA.

To computerel(A, B) under IIA and monotonicity, again, since
fis 1A, we just need to consider the agents’ preferences ther
pair A and B. However, now we don't need to consider all possible
completions for all agents with incompleteness betwdeand B,
but just two completionsA < B and B > A. Function f will
return a result for each of these two completions, 4ay3 and Ay B,
wherez,y € {<,>,=,1<}. Sincef is monotonic, the results of all
the other completions will necessarily be betweeandy in the
ordering>, >, (1 or =), <, <.

By taking all such relations, we obtain a supersetdf( A, B),
that we callrel™ (A, B). In fact, monotonicity off assures that, if we
consider profiled < B and we get a certain result, then considering
profiles whereA is in a better position w.r.tB (that is,A > B,

(3]

(4]
(5]

A = B, or A x B), will give an equal or better situation fot in
the result.

Notice that we have obtained set* (A, B) in time polynomial in
the number of agents as we only needed to consider two cdonset
Under the IIA and monotonicity assumptions, we can thusiobta
in polynomial time a labeled graph similar to the combinesute
but with possibly more labels on the arcs. Then, we can apmy t
same reasoning as in the previous section to this labelgzhgia
is important to notice that the additional labels do not deathe
necessary and possible winners computed by the algoritiomveS
can obtainNW and PW ™ in polynomial time.

4 PREFERENCEELICITATION

At each stage in eliciting agents’ preferences, there ig afsgos-
sible and necessary winners. Whaii/’ = PW, preference elici-
tation can be stopped since we have enough information tardec
the winners, no matter how the remaining incompletenegsisved
[4]. At the beginning N is empty andPW contains all outcomes.
As preferences are declared W grows andPW shrinks. At each
step, an outcome i’V can either pass t& T/ or become a loser.

In those steps wher@W is still larger thanNW, we can use
these two sets to guide preference elicitation and avoilgssevork.
In fact, to determine if an outcomé ¢ PW — NW is a loser or a
necessary winner, it is enough to ask agents to declarephefier-
ences over all pairs involving and another outcome, s@j in PW.

In fact, any outcome outsidBTV is a loser, and thus is dominated
by at least one possible winner.

If the preference aggregation function is llA, then all thqeirs
(A, B) with a defined preference for all agents can be avoided, since
they will not help in determining the status of outcomeMoreover,
IIA allows us to consider just one profile when computing takar
tions betweend and B in the result, and assures that the result is
a precise relation, that is, either, or >, or =, or . In the worst
case, we need to consider all such pairs. To determine aivite
ners, we thus need to know the relations betwdeand B for all
A€ PW - NW andB € PW.

During preference elicitation, we can also use the consigteest
defined in the previous section to test the consistency optéger-
ences of each agent. In particular, if the agent declareomés to
be ordered or incomparable, testing the consistency of geats’
preferences is tractable. If the consistency test is sefidesve can
exploit the information deduced by the consistency enfoe# to
avoid asking for preferences which are implied by previpeticited
ones. If instead we detect inconsistency, then we can helpgént to
make their preferences consistent by providing one or mianegles
where consistency fails.
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