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Abstract

We introduce � CP nets, an extension of the CP net formal-
ism to model and handle the qualitative and conditional pref-
erences of multiple agents. We give a number of different
semantics for reasoning with � CP nets. The semantics are
all based on the idea of individual agents voting. We describe
how to test optimality and preference ordering within a � CP
net, and we give complexity results for such tasks. We also
discuss whether the voting schemes fairly combine together
the preferences of the individual agents.

Introduction and Motivation
In many situations, we need to represent and reason about
the simultaneous preferences of several agents, and to aggre-
gate such preferences (see for example (Yager 2001)). As a
motivating example, suppose you invite three friends round
for dinner. Alice prefers fish to beef. Bob, on the other
hand, prefers beef to fish. Finally, Carol is like Alice and
prefers fish to beef. What do you cook? Both choices are
Pareto optimal. If you cook fish then changing to beef will
be more preferred by Bob, but less preferred by Carol and
Alice. Similarly, changing from beef to fish will be more
preferred by Alice and Carol, but less preferred by Bob.
However, fish is perhaps the “best” choice according to a
majority ordering as it is the preferred choice for both Alice
and Carol, whilst beef is the preferred choice for only Bob.

Which wine do you serve with the main course? Alice,
Bob and Carol are fortunately more consistent here. If it is
fish then they all prefer white wine to red. However, if it
is beef, then they all prefer red wine to white. Finally, do
you serve cheese or dessert? Even though you are happy to
serve everyone their own choice of cheese or dessert, you
must still determine and reason about your friends’ prefer-
ences. For example, if his girlfriend Alice has cheese, Bob
prefers cheese to dessert. However, if his girlfriend Alice
has dessert, he will not be able to resist so he prefers dessert
to cheese.

This example demonstrates that multiple agents may have
some features in common but not all (e.g. the main dish is
common to all but the choice of cheese or dessert is not), that
there may no longer be a single optimal solution, that there
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Figure 1: The dependency graph of the example CP net.

can be several definitions of optimality (e.g. Pareto optimal
versus a majority dominance), that preferences may be con-
ditional (e.g. the preference for wine depends on the choice
of the main course) and dependent on the features of other
agents (e.g. Bob’s preference for dessert or cheese depends
on Alice’s choice for dessert or cheese). We therefore pro-
pose a framework for representing and reasoning with such
preferences.

The paper is structured as follows. We first describe
CP nets, a general purpose framework for representing
and reasoning with qualitative and conditional preferences
(Boutilier et al. 1999). We then introduce partial CP nets,
an extension of the formalism which we use to represent the
preferences of a single agent. By combining together sev-
eral partial CP nets, we obtain a 	 CP net which can repre-
sent the preferences of multiple agents. We give a seman-
tics for 	 CP nets based on the idea of the individual agents
voting. Different voting schemes yield different preference
orderings. We then describe how to test optimality and pref-
erence dominance, and we compute the complexity of such
tasks. We also discuss whether the voting schemes fairly
combine together the preferences of the individual agents.

Background: CP nets
In many applications, it is natural to express preferences via
generic qualitative (usually partial) preference relations over
variable assignments. For example, it is often more intuitive
to say “I prefer red wine to white wine”, rather than “Red
wine has preference 0.7 and white wine has preference 0.4”.
The former statement provides less information, but does not
require careful selection of preference values. Moreover, we
often wish to represent conditional preferences, as in “If it is
meat, then I prefer red wine to white”. Qualitative and con-
ditional preference statements are thus useful components of
many applications.

CP nets (Boutilier et al. 1999) are a graphical model
for compactly representing conditional and qualitative pref-



erence relations. They exploit conditional preferential in-
dependence by structuring an agent’s preferences under the
ceteris paribus assumption (e.g. under the ”ceteris paribus”
or ”all other things being equal” assumption). Informally,
CP nets are sets of conditional ceteris paribus (CP) prefer-
ence statements. For instance, the statement ”I prefer red
wine to white wine if meat is served.” asserts that, given two
meals that differ only in the kind of wine served and both
containing meat, the meal with a red wine is preferable to
the meal with a white wine. Many philosophers and AI re-
searchers (Doyle & Wellman 1994) have argued that many
of our preferences are of this type.

CP nets bear some similarity to Bayesian networks. Both
utilize directed graphs where each node stands for a domain
variable, and assume a set of features ��� �������
	
	�	��
��� �
with finite, discrete domains ��� � ��� ��	
	�	
� ��� � ��� . For each
feature

���
, each user specifies a set of parent features��� � � � � that can affect her preferences over the values of� �

. This defines a dependency graph in which each node���
has
��� � ��� � as its immediate predecessors. Given this

structural information, the user explicitly specifies her pref-
erence over the values of

� �
for each complete outcome on��� � � � � . This preference is assumed to take the form of to-

tal (Boutilier et al. 1999) or partial order over ��� � � .
For example, consider a CP net with the dependency

graph given in Figure 1, whose features are � , � , � , and�
, with binary domains containing � and � if � is the name

of the feature, and with the preference statements as follows:� � �
, ! � ! , � �#" ! �
$ � �%" ! �'&)( � ( , � �#" ! ��$ � �*" ! �'& ( � ( ,(+&-, � ,

,
(.& , � ,

. Here, statement
�/� �

represents
the unconditional preference for �0� � over �1� � , while
statement

(2&), � ,
represents

� � , is preferred to
� � , ,

given that �3� ( .
How do we reason with such CP statements? The seman-

tics of CP nets depends on the notion of a worsening flip. A
worsening flip is a change in the value of a variable to a value
which is less preferred by the CP statement for that variable.
For example, in the CP net of Fig. 1, passing from

� ! (�, to� ! (4, is a worsening flip since
(

is better than
(

given
�

and ! .
We say that one outcome 5 is better than another outcome 6
(written 5 � 6 ) iff there is a chain of worsening flips from5 to 6 . This definition induces a strict partial order over the
outcomes. In general, there may be many optimal outcomes.
However, in acyclic CP nets, there is only one.

Several types of queries can be asked about CP nets. First,
given a CP net, what are the optimal outcomes? For acyclic
CP nets, such a query is answerable in linear time (Boutilier
et al. 1999): we forward sweep through the CP net, start-
ing with the unconditional variables, following the arrows in
the dependency graph and assigning at each step the most
preferred value in the preference table. For instance, in the
CP net of Figure 1 above, we would choose �7� �

and���8! , then �0� ( and then
� � , . The optimal outcome

is therefore
� ! (�, . The same complexity also holds for test-

ing whether an outcome is optimal since an acyclic CP net
has only one optimal outcome. We can find this optimal out-
come (in linear time) and then compare it to the given one
(again in linear time).

The second type of query is a dominance query. Given
two outcomes, is one better than the other? Unfortunately,
this query is NP-hard even for acyclic CP nets (Domshlak
& Brafman 2002), Whilst tractable special cases exist, there
are also acyclic CP nets in which there are exponentially
long chains of worsening flips between two outcomes. In
the CP net of Figure 1,

� ! ( , is worse than
� ! (�, .

Partial CP nets
We first introduce partial CP nets. These will be used to
represent the preferences of the individual agents in a 	 CP
net. A partial CP net is one in which certain features may not
be ranked. Intuitively, this means that the agent is indifferent
to the values of such features. The presence of non ranked
features is needed since an agent’s preferences may depend
on another agent’s preferences (e.g. Bob’s preference for
dessert or cheese depends on Alice’s choice).

Partiality requires us to relax the semantics slightly. A
worsening flip in a partial CP net is the change in the value
of a variable � such that:
9 if � is ranked, the flip is worsening in the CP table of � ;
9 if � is not ranked, it is worsening in the CP tables of all

features that depend on � .

For example, if � is not ranked, and for � we have
� & ! � !

and
� & ! � ! , then passing from

� ! to
� ! is a worsening flip

as we go from the best ranked position to the worst.
In addition to worsening flips, we now also have indif-

ferent and incomparable flips. Indifferent flips are all those
flips of a non-ranked variable such that, for each CP table
of the features that depend on this feature, they are neither
improving nor worsening. Suppose � is not ranked, � has
three values, and we have the CP statement

� & ! � � !4: � !�;
and

� & !4; � !4: � ! � . Then, passing from
� !
: to

� !4: is an
indifferent flip. Incomparable flips are all those flips which
are neither worsening, nor improving, nor indifferent. For
example, if � is not ranked, for � we have

� & ! � ! and� & ! � ! , and for � we have
� &<( � (

and
� & ( � (

,
passing from

� ! ( to
� ! ( is an incomparable flip.

Each agent represents their preferences by a partial CP
net. An agent prefers outcome 5 to outcome 6 (written5 � 6 ) iff, in their partial CP net, there is a chain of flips
from 5 to 6 where each flip is worsening or indifferent, and
there is at least one worsening flip. This ordering is again
a strict partial ordering. However, outcomes can now also
be incomparable and indifferent. An agent is indifferent be-
tween outcomes 5 and 6 (written 51=>6 ) iff at least one
chain of flips between them consists only of indifferent flips.
This requires the outcomes to differ only for the values of
non-ranked features (e.g.

� ! : =@?� ! : ). Similarly one out-
come 5 is incomparable to another 6 (written 5BADCE6 ) iff it
is not the case that 5 � 6 , 6 � 5 or 5+=F6 (e.g.

� !
;GADC � ! � ).
Partial CP nets can have more than one optimal outcome

even if their dependency graphs are acyclic: there is one for
each possible outcome of the non-ranked features. Finding
one of the optimal outcomes in an acyclic partial CP net is
linear: it is enough to choose any value for the non-ranked



features, and to perform the forward sweep for the remain-
ing features. Optimality testing in acyclic partial CP nets is
also linear since, given an outcome, it is enough to set the
non-ranked features to the values given by the outcome, and
then perform the forward sweep from here. If the resulting
outcome is the same as the given one, it is optimal, otherwise
it is not.

Given a partial CP net and two outcomes, checking if one
dominates another is as difficult as for CP nets. Checking
indifference is instead �E����� � , where � is the size of the net
and � is the number of non-ranked features, assuming a con-
stant time to access a CP table. For each non-ranked feature,
we need to check whether flipping it is indifferent for all
features depending on it (there may be �E��� � of them).

� CP nets
We now put together several partial CP nets to represent the
preferences of multiple agents. A 	 CP net is a set of 	
partial CP nets which may share some features, such that
every feature is ranked by at least one of the partial CP
nets. Graphically, an 	 CP net is obtained by combining the
graphs of the partial CP nets so we have one occurrence of
each shared feature. For simplicity, we assume that the par-
tial CP nets in a 	 CP net are acyclic. We leave it as future
work to see what happens when we relax this assumption.
The “ 	 ” in 	 CP net stands for both multiple agents and the
number of agents. Thus, a 3CP net is a 	 CP net in which

	 ��� . Note that a CP net is a 1CP net. Hence, 	 CP nets
(with 	 �
	 ) immediately inherit all the complexity results
for regular CP nets.

Each feature in a partial CP net � of an 	 CP net is
shared, visible or private. Private features are ranked in� only, and are not visible to other partial CP nets. Vis-
ible features for � are those used in the conditions of �
but not ranked there. Shared features are ranked in � and
also in at least one other of the partial CP nets. For ex-
ample, Bob’s conditional preference on cheese or dessert
can be represented within Bob’s partial CP net as follows:( � &*( � � ( � and

( � & ( � � ( � where � � is the private
feature in Bob’s partial CP net representing his preference
for cheese or desert, and � � is the visible feature for Bob
from Alice’s partial CP net representing her preference for
cheese or desert.

An outcome for an 	 CP net is an assignment to all the
features in all the partial CP nets to values in their domains.
This outcome induces an outcome for each single partial CP
nets forming the overall 	 Cp net, by eliminating all the fea-
tures which do not belong to the partial CP net.

Voting semantics
We will reason about a 	 CP net by querying each partial
CP net in turn and collecting together the results. We can
see this as each agent “voting” whether an outcome domi-
nates another. We can obtain different semantics by collect-
ing these votes together in different ways. Many of these
semantics may be useful in a distributed setting, or when
there are privacy issues. We do not need to know all the

preferences of each partial CP net. We may just have to ask
if anyone votes against a particular outcome.

The semantics we propose are based on known concepts,
like Pareto optimality, lexicographic ordering, and quantita-
tive ranking. Therefore the value of our proposal is more
in the embedding of such semantics in the context of 	 CP
nets, where indifference and incomparability coexist, rather
than in their concept.

Given a 	 CP net and two outcomes 5 and 6 , let ��
 , ��� ,��� and ����� be the sets of agents who say, respectively, that5 � 6 , 5�� 6 , 5 =>6 , and 50ADC 6 . Note that it is not
possible for � ��
�� �
� �����)��� � ��� �)��� (i.e. for every agent to
be indifferent). Given any two outcomes, some agent must
order them or say they are incomparable.

Pareto. This semantics is one of consensus. We say that
one outcome 5 is better than another 6 (written 5 �! 6 ) iff
every agent says that 5 � 6 or 5 =36 . That is, 5 �" 6 iff� � � � �#� ���������$� . Two outcomes are incomparable iff they
are not ordered either way. An outcome is Pareto optimal iff
no other outcome is better. Consensus is a stringent test (see
(Ephrati & Rosenschein 1996) for the properties of a con-
sensus approach in a multi-agent scenario), and outcomes
will often be incomparable as a consequence.

Majority. An alternative criterion is just that a majority
of the agents who are not indifferent vote in favor. We say
that one outcome 5 is majority better than another 6 (written5 �&%!')( 6 ) iff � � 
 �+*,� � � �.-/� ������� . Two outcomes are ma-
jority incomparable iff they are not ordered either way. An
outcome is majority optimal iff no other outcome is majority
better.

Max. A weaker criterion is that more agents vote in favor
than against or for incomparability. We say that one out-
come 5 is max better than another 6 (written 5 � %!'10 6 ) iff� � 
 ��*325476#�)� � � � � � ������� � . Two outcomes are max incompa-
rable iff they are not ordered either way. An outcome is max
optimal iff no other outcome is max better.

Lex. The next semantics we consider assumes the agents
are ordered in importance. If the first agent orders two out-
comes then this is reflected in the final outcome. However,
if they are indifferent between two outcomes, we consult the
second agent, and so on. We say that one outcome 5 is lex-
icographically better than another 6 (written 5 �98�: 0 6 ) iff
there exists some distinguished agent such that all agents
higher in the order say 5 =�6 and the distinguished agent
says 5 � 6 . Two outcomes are lexicographically incom-
parable iff there exists some distinguished agent such that
all agents higher in the ordered are indifferent between the
two outcomes and the outcomes are incomparable to the dis-
tinguished agent. Finally, an outcome is lexicographically
optimal iff no other outcome is lexicographically better.

Rank. The last semantics eliminates incomparability.
Each agent ranks each outcome. Given a partial CP net, the



rank of an outcome is zero if the outcome is optimal, other-
wise it is the length of the shortest chain of worsening flips
between one of the optimal outcomes and it. We say that one
outcome 5 is rank better than another 6 (written 5 ��� 6 ) iff
the sum of the ranks assigned to 5 is smaller than that as-
signed to 6 . Two outcomes are rank indifferent iff the sum
of the ranks assigned to them are equal. Either two outcomes
are rank indifferent or one must be rank better than the other.
Finally, an outcome is rank optimal iff no other outcome is
rank better.

Basic properties
The Pareto, Lex and Rank semantics define strict orderings.
By comparison, neither the Majority or Max semantics in-
duce a strict ordering. More precisely, the following proper-
ties can be proved.

Theorem 1
�� 

,
� 8�: 0

and
� �

are transitive, irreflexive, and
antisymmetric. Thus they induce strict partial orders.

� %"' (
and

� %!'10
are irreflexive and antisymmetric but may be not

transitive.

The five relations are closely related. We say that one
binary relation

�
subsumes another � iff � ��� implies � � � .

We say that one binary relation
�

strictly subsumes another� iff
�

subsumes � but not vice versa. Finally, we say that
two binary relations are incomparable iff neither subsumes
the other.

Theorem 2
�  

strictly subsumes
� %"' (

,
�!8�: 0

and
���

. Sim-
ilarly,

� %!')(
strictly subsumes

� %!'10
. Any other pair of re-

lations is incomparable.

Figure 2 shows the subsumption schema over the five re-
lations.

< lex < r

< p

< maj

< max

Figure 2: Implications among the six relations correspond-
ing to the voting semantics.

Given two outcomes, we can therefore first try to compare
them with

�� 
. If they are incomparable, we have three op-

tions: either we try to compare them with
� %"' (

and if they
remain incomparable with

� %"' 0
, or we try to compare them

with
� 8�: 0

, or we try to compare them with
� �

. All options
enlarge the set of pairs of outcomes which are comparable.
However, only the last option (comparing them with

���
) is

guaranteed to order any two outcomes.
Notice that in all the five relations, except Rank, it is not

possible for two outcomes to be indifferent, since we assume
that each feature is ranked by at least one of the partial CP
nets, while indifference in the qualitative relations (Pareto,
Max, Majority, and Lex) means indifference for everybody.

Optimality
From these subsumption results, the following relationships
immediately hold between the various optimal outcomes.
For example:9 a majority, lexicographical or rank optimal outcome is

necessarily Pareto optimal. However, the reverse is not
true. For instance, a Pareto optimal outcome is not neces-
sarily rank optimal.9 A max optimal outcome is necessarily majority optimal,
but the reverse is not true.

Similarly, from the incomparability results, we can de-
duce incomparability also for the respective optimal out-
comes.

A fundamental question is whether any optimal outcomes
exist. While this is obvious for relations which induce a fi-
nite strict order like Pareto, it is not immediately obvious for
all of the relations. Nevertheless, optimal outcomes always
exist for them. The main reason for this result is that all rela-
tions are antisymmetric (see Theorem 1), and thus there can
be no cycles in the ordering.

Notice that the set of Pareto optimal outcomes does not
necessarily coincide with the set of outcomes which are op-
timal for all the CP nets. In fact, if an outcome is optimal
for all, then it is Pareto optimal. However, the converse is
not true in general. For example, consider the set of optimal
outcomes of a single partial CP net. If they are all incom-
parable (no matter if they are not optimal for the other CP
nets), then they are also Pareto optimal for the 	 CP net.

We will now give several results on testing optimality and
finding optimal outcomes. We assume that there are � binary
features in the 	 CP net, � in the largest partial CP net, and�

maximum number of visible features in a partial CP net.
To test if an outcome is Pareto optimal, we need to com-

pare ( �E�	��
 � ) the given outcome with all other outcomes
( �E���

�
)) in all partial CP nets ( 	 ). Similarly for Max and

Majority. For lexicographical optimality, we check if the
given outcome is optimal for the first agent ( �E��� � ). If it is
not, it is not lexicographically optimal. If it is, then, for any
optimal outcome of the first agent to which it is indifferent
(there may be �

8
of them), we must ask the second agent if

the given outcome is better ( �E��� 
 � ). If also the second agent
is always indifferent, we must turn to the next agent and so
on ( 	 agents). Finally, for rank optimality, we need to first
rank all outcomes for each partial CP net. To do this, we start
with the optimal ones, which are �E���

8 �
and have rank 0, and

for each of them we build the flipping sequence to any other
of the outcomes (which are � 
 ). Then, for each outcome
( �
�
), we compute the global rank by summing the ranks in

each partial CP net (the rank tables have � 
 elements) and
we check that the rank of the given outcome is minimal.

Summarizing, testing optimality is easy for Lex if the size
of the partial CP nets ( � ) is bounded, and it is difficult for
Pareto, Majority, Max and Rank.

Theorem 3 Testing optimality has the following complex-
ity:9 for Pareto, Majority and Max: �E� 	
�

���

 � time;



9 for Lex: �E� 	 �
8 �

 � ;9 for Rank: �E� 	 �
8 �

 - �

�
	
� 
 � = �E� 	 �

���

 � .

We now consider the problem of finding an optimal out-
come. For Majority, we need to compare ( �E�	� 
 � ) all out-
comes ( �

�
) to all other outcomes ( �E���

�
) in all partial CP

nets ( 	 ). To find a max optimal outcome, we must do the
same steps as for Majority. To find a lexicographically opti-
mal outcome, we compute all the optimal outcomes for the
first agent ( �E� � �

8 �
), and then we do the same steps as for

testing optimality ( �E� 	 �
8
� 
 � ) for each one of them (they

can be �
8
). For Pareto optimality, since lexicographically op-

timals are also Pareto optimals, the complexity is the same
as for Lex. To find a rank optimal outcome, we need to per-
form the same steps as for testing optimality, except that we
don’t have to compare with the given outcome. However,
this does not change the overall complexity. To summarize,
finding an optimal outcome is easy for Pareto and Lex if the
size of the partial CP nets ( � ) is bounded, and it is difficult
for Majority, Max and Rank. Thus, with respect to optimal-
ity testing, Pareto now falls into the easy category.

Theorem 4 Finding an optimal outcome has the following
complexity:9 for Majority and Max: �E� 	 � :

���

 � ;9 for Lex and Pareto: �E� 	
� :

8 �

 � ; the same complexity

holds also to find all optimal outcomes, not just one;9 for Rank: �E� 	
�
���

 ) (for the first optimal outcome, lin-

ear for the others).

Dominance
We again assume that there are � binary features in the 	 CP
net, � in the largest partial CP net, and

�
visible features.

Theorem 5 Given two outcomes, testing if one dominates
the another has the following complexity:9 for Pareto, Majority, Max, and Lex: �E� 	 � 
 � ;9 for Rank: �E� 	 �

� �

 � .

To determine if � � �� � : , we must test whether � � �� : or � � =/� : for all 	 partial CP nets. Each of these tests
takes at most �E�	� 
 � time. To determine if � � � %"' ( � : ,
we must also test whether � � � � : for all 	 partial CP
nets. Only the last test may give us the required major-
ity. Similarly, to determine if � � �&%!'10 � : , we must test
whether � � � � : for all 	 partial CP nets. Even for Lex,
in the worst case, we must check dominance or indifference
in all CP nets, since it may be that they are indifferent for
all partial CP nets except the last one. For Rank, a brute
force algorithm would rank all outcomes and then compare
the ranks of the given two. This takes �E� 	 �

���

 � as ex-

plained above for testing Rank optimality. Thus, although
Rank gives us a quantitative ordering, it is easier to test dom-
inance in the qualitative semantics (Pareto, Majority, Max,
and Lex). In fact, if the number and size of the partial CP
nets are bounded, it takes constant time.

The fact that Majority and Max may be not transitive im-
plies that for such semantics we cannot optimize any domi-
nance test exploiting the transitive property. Thus, while in
the worst case the complexity is the same as for Pareto and
Lex, in practice dominance testing can be much easier for
such two semantics.

Fairness
Having cast our semantics for 	 CP nets in terms of voting, it
is appropriate to ask if Arrow’s theorem (Arrow 1986) about
the impossibility of a fair electoral system applies. Are we
fairly combining together the preferences of the individual
agents? Observe that, a 	 CP net (and its constituent partial
CP nets) can represent preference, indifference and incom-
parability. By comparison, the votes in an election only ex-
press preference and indifference, whilst the election result
only expresses society’s preference. In addition, partial CP
nets can only represent orderings which decompose into in-
dependent conditional CP statements, whereas voters in an
election can order their votes in any way. As a result, Ar-
row’s theorem does not immediately apply to 	 CP nets.

In short, Arrow’s theorem states that no voting system
which totally orders three or more candidates can be fair.
That is, no voting system cam be free, transitive, indepen-
dent to irrelevant alternatives, monotonic and non-dictatorial
(Arrow 1986). We will adapt these terms to our scenario.
We say that a voting semantics for 	 CP nets is free iff it
is possible to represent any possible ordering of the out-
comes. Note that 1CP nets cannot directly represent all
possible orderings. For instance, no CP net can represent� ! � � ! � � ! � � ! . However, by combining together
features, CP nets can represent any ordering. To return to
the last example, we would have to replace the two binary
features by a single feature with four values. We say that
a voting semantics is transitive iff the ordering it defines is
transitive. Note that the ordering within each partial CP net
in a 	 CP net is transitive by construction. We say that a
voting semantics is independent to irrelevant alternatives
iff the ordering between two outcomes only depends on how
the partial CP nets vote on these two outcomes; their votes
on other outcomes do not matter. We say that a voting se-
mantics is monotonic iff if one agent changes from 6 � 5
or 6 = 5 to 5 � 6 then 5 cannot become less preferred.
Finally, we say that a voting semantics is non-dictatorial
iff the ordering depends on more than one particular agent.
Note that, in assessing if there is a dictator, we ignore incom-
parability and only consider outcomes which are ordered or
indifferent. For example, if one agent says that all outcomes
are incomparable, then according to the Pareto semantics,
all outcomes are incomparable. However, we do not con-
sider this agent to be a dictator as she does not force any of
her preferences on the rest. We will say that a semantics for

	 CP nets is fair iff it satisfies all five definitions above.
It is possible for 	 CP nets to be fair. For example,

the Pareto semantics satisfies all five of these properties.
The Pareto semantics is transitive, since it is a strict order.
Whether one outcome is better, indifferent or incomparable
to another only depends on how each agent votes on these



two outcomes. Hence, the Pareto semantics is independent
to irrelevant alternatives. The Pareto semantics is also mono-
tonic since improving the preference for an outcome in one
partial CP net can only move this up the ordering or leave
it in the same place. Finally, the Pareto semantics is non-
dictatorial as the ordering clearly depends on more than one
particular agent.

On the other hand, none of the other semantics are fair.
Majority and Max may be not transitive (see Theorem 1).
Proofs that the Majority and Max semantics are free, in-
dependent to irrelevant alternatives monotonic and non-
dictatorial are similar to those for the Pareto semantics. To
show that the Lex semantics may be dictatorial, suppose that
the first agent orders all her outcomes. Then this agent will
dictate the final outcome. Proofs that the Lex semantics
are free, transitive, independent to irrelevant alternatives and
monotonic are similar to those for the Pareto semantics.

To show that the Rank semantics may not be independent
to irrelevant alternatives, suppose 5 ��� 6 . That is, the sum
of the ranks assigned to 5 is less than that assigned to 6 . By
introducing irrelevant alternatives, we can increase the rank
of 5 so that its rank is larger than 6 . Proofs that the Rank
semantics are free, transitive, monotonic and non-dictatorial
are similar to those for the Pareto semantics.

The following theorem summarizes these results over the
five semantics.

Theorem 6 The Pareto semantics is free, transitive, in-
dependent to irrelevant alternatives, monotonic and non-
dictatorial. The Majority and Max semantics are free, in-
dependent to irrelevant alternatives, monotonic and non-
dictatorial, but may not be transitive. The Lex semantics
is free, transitive, independent to irrelevant alternatives and
monotonic, but may be dictatorial. The Rank semantics is
free, transitive, monotonic, and non-dictatorial but may not
be independent to irrelevant alternatives.

Whilst the Pareto semantics is fair, this comes at a price.
The Pareto semantics orders fewer outcomes than the Ma-
jority, Max, Lex or Rank semantics. If we wish to order two
outcomes, we may therefore have to sacrifice some aspect of
fairness.

Comparison
The following table summaritzes the main properties of the
semantics considered in this paper for 	 CP nets. In par-
ticular, we show whether the semantics yields a strict order
or not, we compare the complexity of testing optimality and
dominance, and of finding an optimum. Finally, we also in-
dicate whether the semantics is fair or not. This table lets us
compare the five semantics easily.

For example, Lex is the semantics to choose if we don’t
care about fairness and it is reasonable to order the agents.
On the other hand, Pareto is the best in terms of complex-
ity (except for optimum testing). However, as it looks for
a consensus among all agents, it orders the fewest pairs of
outcomes. Max and Majority ordering are less desirable in
terms of complexity, since only dominance testing is easy
(under certain assumptions). Moreover, they are equal with

Pareto Maj Max Lex Rank
S.O. yes no no yes yes

Test opt. diff diff diff e-k diff
Find opt. e-k diff diff e-k diff

Dominance e-k e-k e-k e-k diff
c-m c-m c-m c-m

Fairness yes no no no no

Table 1: Comparison among the five semantics. Legenda:
S.O. = strict order, diff = difficult, e-k = easy if k bounded,
c-m = constant if m bounded).

respect to fairness criteria. Since Majority subsumes Max,
Majority has more optimal outcomes and a weaker order-
ing. Finally, the Rank semantics has bad complexity, and is
not fair. This bad complexity seems a result of merging the
qualitative nature of CP nets with the quantitative spirit of
a rank. Note that this complexity is only seen the first time
two outcomes are ordered, and subsequent queries can be
answered in linear time.

Conclusions and Future Work
We have introduced 	 CP nets, an extension of the CP net
formalism to represent the qualitative and conditional pref-
erences of multiple agents. We have given a number of dif-
ferent semantics for reasoning with 	 CP nets. The seman-
tics are all based on the idea of individual agents voting. We
then described how to test optimality and preference. We
also discussed whether the voting schemes fairly combine
together the preferences of the individual agents.

We would like to explore distributed 	 CP nets. We have
assumed so far that decision making is coordinated in some
central place. However, in many applications, decision mak-
ing is more distributed. An additional direction for further
research is the extension of our work to CP nets where it is
possible to partially order the values of a feature. In this pa-
per we have considered the case in which one either totally
orders the values or it does not order them at all.
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