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Symmetry
• Symmetry is bijection, σ on 

assignments that preserves 
solutions/constraints

• In armies of queens problem, 
swap colours!

• X[1,3]=white queen, X[6,2]
=black queen ..

• X[1,3]=black queen, X[6,2]
=white queen ..



Types of symmetry

• Which part of the assignment does the 
bijection act upon?

• Variable symmetry

• Value symmetry

• Variable/value symmetry



Value symmetry

• Only values are changed

• E.g. white queen => black queen

• E.g. blue => red, red => green, ..

• E.g.  AvB => AvC,  CvD => BvD

• (Z[1],Z[2],..) => (σ(Z[1]),σ(Z[2]),..)



Symmetry breaking
• General method for variable symmetries 

[Crawford, Ginsberg, Luks and Roy KR96]

• Look for lexicographically least 
assignment

• (Z[1],Z[2],...) ≤lex (Z[σ(1)],Z[σ(2)],...)

• reversal symmetry:                               
(X[1],X[2],...,X[n-1],X[n])  ≤lex            
(X[n],X[n-1],...,X[2],X[1])



Adding constraints

• Same method works with value symmetries 
[Walsh CP06]

• Look for lex least assignment

• (Z[1],Z[2],...) ≤lex (σ(Z[1]),σ(Z[1]),...)

• Simple propagator for this global constraint 
based on a ternary decomposition



Adding constraints

• Same method works with symmetries in 
general [Walsh CP06]

• Including those that act both on variables 
and values simultaneously

• Look for assignment that is lex smaller 
than all its symmetries

• So, we’re done? Symmetry solved problem?



Adding constraints

• No! Too many constraints in general

• For instance, m interchangeable values 
gives m! symmetry breaking constraints

• Look for special cases where we can do 
better



Special cases

• Value symmetry

• Interchangeable values

• Variable symmetry

• Row and column symmetry



Interchangeable values

• Often we have some (sub)set of values 
which can be freely interchanged

• {golfer1, golfer2,...}

• {white queen, black queen}

• Given m values, m! symmetries

• Cannot post LEX LEADER constraints 
for every symmetry! 



Generator symmetries

• Post just LEX LEADER for generator of 
symmetry group

• Suppose 1 to m are interchangeable

• One set of generators are permutations (1 i)

• Posting just these LEX LEADER constraints 
leaves symmetry

• Consider: X1=1, X2=2 and X1=1,X2=3



Generator symmetries

• Post just LEX LEADER for generator of 
symmetry group

• Suppose 1 to m are interchangeable

• Another set of generators are permutations    
(i i+1)

• Think bubble sort!

• Posting just these LEX LEADER constraints 
breaks all symmetry



Generator symmetries

• Post just LEX LEADER for generator of           
symmetry group

• Suppose 1 to m are interchangeable

• Another set of generators are permutations                
(i i+1)

• Enforcing GAC on these LEX LEADER constraints 
does not prune all symmetric values

• X1=1, X2∈{1,2}, X3∈{1,3}, X4∈{1,4}, X5=5



Value precedence

• Order 1st time we use a value [Law & Lee CP04]

• 1,1,2,1,3,2,1,2,4 .... satisfies value 
precedence

• 1,1,2,1,4,2,1,2,3 .... does not

• Breaks all symmetry due to interchangeable 
values



Enforcing value 
precedence

• Puget’s method

• Introduce Zi for position at which i first used

• If Xi=j then Zj≤i

• If Zj=i then Xi=j

• Order Zi

• Zi < Zi+1



Enforcing value 
precedence

• Puget’s method

• Introduce Zi for position at which i first used

• Order Zi

• Decomposes problem into binary constraints

• Hinders propagation

• Consider: X1=1, X2∈{1,2}, X3∈{1,3}, X4∈{3,4}, 
X5=2, X6=3, X7=4



Value precedence

• Linear time method to ensure value 
precedence [Walsh ECAI06]

• Introduce sequence of variables, Y[i] for 
largest value used so far by X[i]

• X[i]: 1,1,2,1,3,2,1,..

• Y[i]:  1,1,2,2,3,3,3,..



Value precedence

• Linear time method to ensure value 
precedence [Walsh ECAI06]

• Introduce sequence of variables, Y[i] for 
largest value used so far by X[i]

• X[i+1] ≤ Y[i+1]+1

• Y[i+1] = max(X[i],Y[i])



Value precedence

• Linear time method to ensure value 
precedence [Walsh ECAI06]

• X[i+1] ≤ Y[i+1]+1

• Y[i+1] = max(X[i],Y[i])

• Consider: X1=1, X2∈{1,2}, X3∈{1,3}, X4∈
{1,4}, X5=5



Value precedence

• Value precedence implies lex least 
assignment

• Consider assignment:1,1,2,1,3,2,..

• Take any permutation, σ of 1 to n

• Suppose σ(1)=1, σ(2)=2, σ(3)=5

• (1,1,2,1,3,2,..) ≤lex                                          

(1,1,2,1,5,2,..)



Value precedence

• Lex least assignment implies value 
precedence

• X[1]=1 otherwise suppose X[1]=2,  & 
consider σ(2)=1 and (2,...) ≤lex   (1,...)

• X[2]=1 or 2 otherwise consider             
σ(1)=1, σ(3)=2 and (1,3,..) ≤lex (1,2,..)

• ...



Value precedence

• Lex least assignment equivalent to value 
precedence

• One value precedence constraint 
equivalent to exponential number of lex 
ordering constraints

• Very effective means to break symmetry 
of interchangeable values



Value precedence
• Map value symmetry into variable symmetry

• X[i]=j iff Z[i,j]=1

• Value precedence iff cols lex ordered

• Consider (1,1,2,1,3,2)

• Why not use lex chain?

• Rows also must sum to 1

• Consider X[1]=1, X[2]∈{1,2,3,4},         
X[3]∈{1,2,3,4},X[4]=4



Dynamic methods

• Relatively easy to expand tree so we don’t 
visit symmetric nodes

• GE-tree, SBDD, ..

• Basic rule: only use one new value

• X1=1

• X2=1 or 2

• X3=1 or 2 or 3 ..



Dynamic methods

• Dynamic methods can be exponentially 
slower than static methods

• Consider pigeonhole problem:

• X1, .. Xn ∈ {1,..,n+1}

• ∀i . 1≤i≤n+1 ⇒ X1=i v .. v Xn=i



Dynamic methods

• Dynamic methods can be exponentially slower 
than static methods

• Dynamic methods essentially only do forward 
checking on next variable

• Do not prune deeper variables

• No interaction between problem constraints 
and symmetry breaking constraints



Extensions to value 
precedence

• Disjoint sets of interchangeable values

• E.g. car assembly line sequencing

• values 1,2,.. cars with sunroofs

• values a,b,.. cars without

• 1,1,a,2,a,b,1,a,c,3,.. satisfies value precedence 
as both 1,1,2,1,3,.. and a,a,b,a,c do



Extensions to value 
precedence

• Two sets of interchangeable values

• O(nd^2) time method to ensure value 
precedence [Walsh ECAI06]

• Introduce sequence of variables, Y[i] for 
largest pair of values used so far by X[i]

• X[i]: 1,      1,       a,      2,     b,      1, .. 

• Y[i]: (1,_),  (1,_), (1,a), (2,a), (2,b), (2,b) ..



Extensions to value 
precedence

• k sets of interchangeable values

• O(nd^k) time method to ensure value 
precedence [Walsh ECAI06]

• If k=O(n) this is not polynomial!

• In fact, enforcing GAC in this case is NP-
hard

• Breaking value symmetry is intractable!



Breaking value 
symmetry is NP-hard

• Reduction of SAT to value precedence

• values 4i-3, 4i-2 are interchangeable

• represent xi=true

• values 4i-1,4i are interchangeable

• represent xi=false



Breaking value 
symmetry is NP-hard

• Truth assignment

• Xi ∈ {4i-3, 4i-1}

• representing xi ∈ {true, false}

• for instance,  Xi=4i-1in CSP iff xi=false 
in SAT problem



Breaking value 
symmetry is NP-hard

• CSP variables to represent clauses

• Suppose n Boolean variables in SAT 
problem and ith clause is xj v ¬xk

• Then Xn+i ∈ {4j-2,4k}

• Can only use 4j-2 if 4j-1 appears earlier

• In other words only if xj=true in truth 
assignment



Breaking value 
symmetry is NP-hard

• Reduction of SAT to value precedence

• truth assignment

• Xi ∈ {4i-3, 4i-1}

• clause variables, ith clauses is xj v ¬xk

• Xn+i ∈ {4j-2,4k}

• Consider {x1, ¬x1 v x2}



Breaking value 
symmetry is NP-hard

• Domains not symmetric!

• Xi ∈ {4i-3, 4i-1}

• Xi ∈ {4i-3, 4i-2, 4i-1, 4i}

• Switch var: Xn+m+1 ∈ {4n+1,4n+2}

• Even(Xn+m+1) ⇒ Odd(Xi)



Breaking value 
symmetry is NP-hard

• Add constraints to CSP so it has the right value 
symmetries

• Even(Xn+m+1) ⇒ unsat

• Unsatisfiable problem has every symmetry

• Odd(Xn+m+1) ⇒ Φ

• Φ can be anything with correct value 
symmetries (e.g. pigeonhole problem)



Dynamically breaking 
value symmetry

• Pruning all symmetric values statically is NP-hard

• Dynamic methods can break all symmetry (ie 
not visit symmetric states) in polynomial time

• Dynamic methods only forward check

• Can take exponential time on problems that 
can be solved using static methods in 
polynomial time



Breaking value 
symmetries in general

• LEX LEADER constraints

• May be exponential number of such 
constraints

• Puget’s method

• Works on any value symmetry, not just 
interchangeable values



Breaking value 
symmetries in general
• Puget’s method

• Breaks any value symmetry using polynomial 
number of constraints

• But may do worse than specialized methods 
that exploit structure of symmetry group

• E.g. value precedence for symmetry of 
interchangeable values



Puget’s method

• Detour: CSP with variable symmetry in 
which variables are all different

• Map value symmetry into such a CSP

• All different problems occur frequently

• Rehearsal problem: each scene is 
rehearsed once and only once ..



Puget’s method

• Need some more group theory

• Given a group S

• Stabilizer of i, stab(i) = {σ∈S | σ(i)=i}

• For example, if S is all possible 
permutations of 1 to n then

• (2 3) is in stab(4) ...



Puget’s method

• If we have an all-different constraint, we can 
simplify the LEX LEADER constraints

• Consider (2 3) (4 5)

• <X1,X2,X3,X4,X5> ≤lex 
<X1,X3,X2,X5,X4>

• Simplifies to X2 < X3



Puget’s method

• If we have an all-different constraint, we can 
simplify the LEX LEADER constraints

• In general, let j = min{i | σ(i)≠i}

• Then the LEX LEADER constraint for σ 
simplifies to:

• X[j] < X[σ(j)]

• We can have at most a quadratic number 
of such constraints!



Puget’s method

• How to compute these ordering 
constraints efficiently?

• Use the (famous) Schreier Sims algorithm 
for computing stabilizer chains and coset 
representatives

• In fact, some of the ordering constraints 
are redundant and we need a linear 
number at most



Puget’s method

• Use the (famous) Schreier Sims algorithm 
for computing coset representatives

• U1 = {σ(1) | σ∈S}

• U2 = {σ(2)  | σ∈S, σ(1)=1}

• U3 = {σ(3)  | σ∈S, σ(1)=1, σ(2)=2}

• ...



Puget’s method

• Use the (famous) Schreier Sims algorithm 
for computing coset representatives

• Ui = {σ(i) | σ∈S, ∀j<i . σ(j)=j}

• LEX LEADER constraints simplify to

• X[i] < X[j] for j ∈ Ui \ {i}



Puget’s method

• Example: gracefully labelling K3 x P2

• Graceful graph has unique label for each 
vertex, f(x)

• Constraint that |f(x)-f(y)| is unique for 
each edge (x,y) in the graph



Puget’s method

• Example: gracefully labelling K3 x P2

• Variable for each vertex, symmetries:

• (1,2,3,4,5,6), (1,3,2,4,6,5), (2,3,1,5,6,4), 
(2,1,3,5,4,6), (3,1,2,5,4,5), (3,2,1,6,5,4),            
(4,5,6,1,2,3), (4,6,5,1,3,2), ...



Puget’s method

• Example: gracefully labelling K3 x P2

• U1 = {σ(1) | σ∈S} = {1,2,3,4,5,6}

• U2 = {σ(2)  | σ∈S, σ(1)=1} = {2,3}

• U3 = {σ(3)  | σ∈S, σ(1)=1, σ(2)=2} = {3}

• U4 = {4}

• U5 = {5}



Puget’s method

• Example: gracefully labelling K3 x P2

• U1 = {1,2,3,4,5,6}, U2 = {2,3}, U3 = {3}, U4 
= {4}, U5 = {5}

• LEX LEADER simplifies to:

• X1<X2, X1<X3, X1<X4, X1<X5, X1<X6

• X2< X3

• Note: X1<X3 is redundant



Puget’s method

• From quadratic to linear number of ordering 
constraints

• Remove redundant constraints entailed by 
transitivity of <

• For each j, if ∃ i<j. j ∈ Ui then let 

• k = max{i | j ∈ Ui, i<j}

• Post Xk < Xj



Puget’s method
• For each j, if ∃ i<j. j ∈ Ui then let 

• k = max{i | j ∈ Ui, i<j}, post Xk < Xj

• Example: gracefully labelling K3 x P2

• U1 = {1,2,3,4,5,6}, U2 = {2,3}, U3 = {3}, U4 = {4}, 
U5 = {5}

• j=2, k=1, X1<X2

• j=3, k=2, X2<X3 (nb X1<X3 redundant)

• j=4, k=1, X1<X4 ..



Puget’s method

• So, we can break all variable symmetries with 
polynomial number of ordering constraints 
for an all-different problem

• What’s this got to do with breaking value 
symmetry?

• Map value symmetry into variable 
symmetry on all-different problem



Puget’s method
• Map value symmetry into variable symmetry 

on all-different problem

• Introduce Z[j] for position at which j first 
used

• If X[i]=j then Z[j]≤i

• If Z[j]=i then X[i]=j

• If some value un-used, introduce dummy 
indices (or add additional X[i] so all 
values are used)



Puget’s method

• Map value symmetry into variable symmetry 
on all-different problem

• Introduce Z[j] for position at which j first 
used

• Z[j] are all-different (as only one value at 
each position!)

• Value symmetry on X[i] becomes variable 
symmetry on Z[j] 



Puget’s method

• Map value symmetry into variable symmetry on 
all-different problem

• Can break all such variable symmetry with 
linear number of binary ordering constraints

• And quadratic number of channelling 
constraints between X[i] and Z[j]

• Of course, no free lunch. This decomposition 
may hinder propagation!



Puget’s method

• Map value symmetry into variable symmetry 
on all-different problem

• For completely interchangeable values

• Gives Z[j] < Z[j+1]

• Value precedence (values first appear in 
order)



Conclusions

• Symmetry occurs in many problems

• We must deal with it or face a 
combinatorial explosion!

• We have a generic method (for small 
numbers of symmetries)

• In special cases, we can break all 
symmetries



Questions?




