Value Symmetry
Breaking




Symmetry

® Symmetry is bijection, O on
assignments that preserves
solutions/constraints

® |n armies of queens problem,
swap colours!

e X[I,3]=white queen, X[6,2]
=black queen ..

o X[I,3]=black queen, X[6,2]
=white queen ..



Types of symmetry

® Which part of the assignment does the
bijection act upon!?

® Variable symmetry
® Value symmetry

® Variable/value symmetry



Value symmetry

® Only values are changed
® E.g. white queen => black queen
® E.g.blue => red, red => green, ..
e Eg. AvB =>AvC, CvD => BvD

* (£[1),2[2]..) => (a(£[1]),0(£[2]).-)



Symmetry breaking

® General method for variable symmetries
[Crawford, Ginsberg, Luks and Roy KR96]

® | ook for lexicographically least
assignment

® (Z[11,Z[2]...) Siex (Z[O(],Z[T(2)],...)

® reversal symmetry:
(X[ 1],X[2],.... X[n-1],X[n]) Stex
(X[n],X[n-1],...X[2],X[]])



Adding constraints

® Same method works with value symmetries
[Walsh CP06]

® | ook for lex least assignment

* (Z[11,Z[2]...) Sex (T(Z[1]),0(Z[1]),...)

® Simple propagator for this global constraint
based on a ternary decomposition



Adding constraints

® Same method works with symmetries in
general [walsh crog]

® |ncluding those that act both on variables
and values simultaneously

® | ook for assignment that is lex smaller
than all its symmetries

® 50, were done! Symmetry solved problem?



Adding constraints

® No! Too many constraints in general

® For instance, m interchangeable values
gives m! symmetry breaking constraints

® | ook for special cases where we can do
better



Special cases

® Value symmetry
® |nterchangeable values
® Variable symmetry

® Row and column symmetry



Interchangeable values

® Often we have some (sub)set of values
which can be freely interchanged

o [oolferl, golfer2,...}
® {white queen, black queen}
® Given m values, m! symmetries

® Cannot post LEX LEADER constraints
for every symmetry!



Generator symmetries

® Post just LEX LEADER for generator of
symmetry group

® Suppose | to m are interchangeable
® One set of generators are permutations (| i)

® Posting just these LEX LEADER constraints
leaves symmetry

® Consider: XI=1,X2=2 and XI|=1,X2=3



Generator symmetries

® Post just LEX LEADER for generator of
symmetry group

® Suppose | to m are interchangeable

® Another set of generators are permutations
(i i+1)
® Think bubble sort!

® Posting just these LEX LEADER constraints
breaks all symmetry



Generator symmetries

® Post just LEX LEADER for generator of
symmetry group

® Suppose | to m are interchangeable

® Another set of generators are permutations
(i i+1)

® Enforcing GAC on these LEX LEADER constraints
does not prune all symmetric values

o XI=1,X2€{l1,2}, X3€{l,3}, X4€{l 4}, X5=5



Value precedence

® Order Ist time we use a value [Law & Lee cPo4]

e | .|1,2,1,3,2,1,2,4 .... satisfies value
precedence

e |.1.2,1.42,1,2,3 ....does not

® Breaks all symmetry due to interchangeable
values



Enforcing value
precedence

® Puget’s method
® |ntroduce Zi for position at which i first used
o [f Xi=j then Zj<i
® |f Zj=i then Xi=j
® Order Zi
\AVARSVALY



Enforcing value
precedence

® Puget’s method
® |ntroduce Zi for position at which i first used
® Order Zi

® Decomposes problem into binary constraints
® Hinders propagation

® Consider: X1=1, X2€{1,2}, X3€{1,3}, X4&{3,4},
X5=2, X6=3, X7=4



Value precedence

® | inear time method to ensure value
precedence [walsh ECAIO¢]

® |ntroduce sequence of variables,Y[i] for
largest value used so far by X]i]

o XJil: 1,1,2,1,3,2,1,..
e Y[i]: 1,1,2,2,3,3,3,.



Value precedence

® | inear time method to ensure value
precedence [walsh ECAIO¢]

® |ntroduce sequence of variables,Y[i] for
largest value used so far by X]i]

o X[i+1] <Y[i+1]+]
o Y[i+1] = max(X[i],Y[i])



Value precedence

® | inear time method to ensure value
precedence [walsh ECAIO¢]

o X[i+1] <Y[i+I]+I
o Y[i+1] = max(X[i],Y[i])

e Consider: X1=1,X2€{1,2}, X3€{l,3}, X4
(1,4}, X5=5



Value precedence

® Value precedence implies lex least
assignment

® Consider assignment:|,1,2,1,3,2,..
® Take any permutation, 0 of 1 to n
® Suppose 0(1)=1, o(2)=2, 0(3)=5

e (1,1,2,1,3,2,.) Siex
(1,1,2,1,5,2,.)



Value precedence

® | ex least assighment implies value
precedence

® X[I]=I| otherwise suppose X[1]=2, &
consider 0(2)=1 and (2,...) <. (l,...)

® X[2]=1 or 2 otherwise consider

o(1)=1, o(3)=2 and (1,3,.) <ex(l1,2,..)



Value precedence

® | ex |least assighment equivalent to value
precedence

® One value precedence constraint
equivalent to exponential number of lex
ordering constraints

® Very effective means to break symmetry
of interchangeable values



Value precedence

® Map value symmetry into variable symmetry
o X[i]=j iff Z][i,j]=1
® Value precedence iff cols lex ordered
® Consider (I,1,2,1,3,2)
® Why not use lex chain!?

® Rows also must sum to |

® Consider X[I]=1, X[2]€{l,2,3,4}],
X[3]1€{l,2,3,4}, X[4]=4



Dynamic methods

® Relatively easy to expand tree so we don'’t
visit symmetric nodes

® GE-tree, SBDD, ..
® Basic rule: only use one new value
o X|=]|
® X2=| or?2
® X3=|lor2or3..



Dynamic methods

® Dynamic methods can be exponentially
slower than static methods

® Consider pigeonhole problem:
o XI,..Xn € {l,.,n+1}

o Vi.l<isn+l = Xl=iv..v Xn=i



Dynamic methods

® Dynamic methods can be exponentially slower
than static methods

® Dynamic methods essentially only do forward
checking on next variable

® Do not prune deeper variables

® No interaction between problem constraints
and symmetry breaking constraints



Extensions to value
precedence

® Disjoint sets of interchangeable values
® E.g.car assembly line sequencing
® values |,2,.. cars with sunroofs
® values a,b,.. cars without

® | |,a,2,a,b,l,a,c,3,. satisfies value precedence
as both 1,1,2,1,3,..and a,a,b,a,c do



Extensions to value
precedence

® Two sets of interchangeable values

® O(nd”"2) time method to ensure value
precedence [walsh ECAIO¢]

® |ntroduce sequence of variables,Y[i] for
largest pair of values used so far by X]i]

¢ Xlilal e 1 At abicil o
o YI[i]: (I, ), (I, ), (1,a),(2,a),(2,b), (2,b) ..



Extensions to value
precedence

® k sets of interchangeable values

® O(nd”k) time method to ensure value
precedence [walsh ECAIO¢]

® |f k=O(n) this is not polynomial!

® |n fact, enforcing GAC in this case is NP-
hard

® Breaking value symmetry is intractable!



Breaking value
symmetry is NP-hard

® Reduction of SAT to value precedence
® values 4i-3, 4i-2 are interchangeable
® represent xi=true
® values 4i-1,4i are interchangeable

® represent xi=false



Breaking value
symmetry is NP-hard

® T[ruth assighment
o Xie {4i-3, 4i-1}
® representing xi € {true, false}

® for instance, Xi=4i-lin CSP iff xi=false
in SAT problem



Breaking value
symmetry is NP-hard

® CSP variables to represent clauses

® Suppose n Boolean variables in SAT
problem and ith clause is xj v = xk

® Then Xn+i € {4j-2,4k}
® Can only use 4j-2 if 4j-1 appears earlier

® |n other words only if xj=true in truth
assignment



Breaking value
symmetry is NP-hard

® Reduction of SAT to value precedence
® truth assighment
o Xic {4i-3,4i-1}
® clause variables, ith clauses is xj v xxk
® Xn+i € {4j-2,4k}

® Consider {xI, x| v x2}



Breaking value
symmetry is NP-hard

® Domains not symmetric!
o Xie {4i-3,4i-1}
o Xie {4i-3,4i-2,4i-1, 4i}
® Switch var: Xn+m+1| € {4n+1,4n+2}

® Even(Xn+m+|) = Odd(Xi)



Breaking value
symmetry is NP-hard

® Add constraints to CSP so it has the right value
symmetries

® Even(Xn+m+|) = unsat
® Unsatisfiable problem has every symmetry

e Odd(Xn+m+1) = @

® @ can be anything with correct value
symmetries (e.g. pigeonhole problem)



Dynamically breaking
value symmetry

® Pruning all symmetric values statically is NP-hard

® Dynamic methods can break all symmetry (ie
not visit symmetric states) in polynomial time

® Dynamic methods only forward check

® Can take exponential time on problems that
can be solved using static methods in
polynomial time



Breaking value
symmetries in general

® | EX LEADER constraints

® May be exponential number of such
constraints

® Puget’s method

® Works on any value symmetry, not just
interchangeable values



Breaking value
symmetries in general

® Puget’s method

® Breaks any value symmetry using polynomial
number of constraints

® But may do worse than specialized methods
that exploit structure of symmetry group

® E g value precedence for symmetry of
interchangeable values



Puget’'s method

® Detour: CSP with variable symmetry in
which variables are all different

® Map value symmetry into such a CSP
® All different problems occur frequently

® Rehearsal problem: each scene is
rehearsed once and only once ..



Puget’'s method

® Need some more group theory
® Given a group S
® Stabilizer of i, stab(i) = {o€S | a(i)=i}

® For example, if S is all possible
permutations of | to n then

® (2 3)isin stab(4) ...



Puget’'s method

® |f we have an all-different constraint, we can
simplify the LEX LEADER constraints

e Consider (2 3) (4 5)

o <XI,X2,X3,X4,X5> s..
<X1,X3,X2,X5,X4>

® Simplifies to X2 < X3



Puget’'s method

® |f we have an all-different constraint, we can
simplify the LEX LEADER constraints

® |n general, let j = min{i | O(i)#i}

® Then the LEX LEADER constraint for O
simplifies to:

* X[i] < X[o())]

® We can have at most a quadratic humber
of such constraints!



Puget’'s method

® How to compute these ordering
constraints efficiently?

® Use the (famous) Schreier Sims algorithm
for computing stabilizer chains and coset
representatives

® |n fact, some of the ordering constraints
are redundant and we need a linear
number at most



Puget’'s method

® Use the (famous) Schreier Sims algorithm
for computing coset representatives

e Ul ={o(l)| oS}
o U2 ={0(2) | oS, a(l)=1}
e U3 ={0(3) | oS, a(l)=1,0(2)=2}



Puget’'s method

® Use the (famous) Schreier Sims algorithm
for computing coset representatives

e Ui ={0o(i) | o€Ss, Vj<i.o(j)=j}
® | EX LEADER constraints simplify to
o X[i] < X[j] for j € Ui\ {i}



Puget’'s method

® Example: gracefully labelling K3 x P2

® Graceful graph has unique label for each
vertex, f(x)

® Constraint that |f(x)-f(y)| is unique for
each edge (x,y) in the graph

A




Puget’'s method

® Example: gracefully labelling K3 x P2

® Variable for each vertex, symmetries:

® ( I ’2’3’4’5’6)’ ( I ’3’2’4’695)’ (2’39 I 15’6’4)1
(2’ I )3’5’4’6)’ (3’ I ’2’5’4’5)’ (3’2) I ’6’5’4)’
(4,5,6,1,2,3), (4,6,5,1,3,2), ...



Puget’'s method

® Example: gracefully labelling K3 x P2
o Ul ={o(l)| oS} ={l,2,3,4,5,6}
e U2 ={0(2) | oS, a(l)=1}=1{2,3}
e U3 ={0(3) | oS, a(l)=I,0(2)=2} = {3}
o U4 ={4}
e US = {5



Puget’'s method

® Example: gracefully labelling K3 x P2

o Ul ={1,2,3,4,56}, U2 ={2,3}, U3 = {3}, U4
= 4lLIb =25

® | EX LEADER simplifies to:
o XI<X2, XI<X3, X|<X4, XI<X5, XI<X6
o X2< X3

® Note: XI1<X3 is redundant



Puget’'s method

® From quadratic to linear number of ordering
constraints

® Remove redundant constraints entailed by
transitivity of <

® For each j,if 4 i<j.j € Ui then let
® k=max{i|je€ Uii<j}

® Post Xk < X



Puget’'s method

® For each j,if 4 i<j.j € Ui then let
® k =max{i|je€ Uii<j}, post Xk < X]
® Example: gracefully labelling K3 x P2

o Ul ={1,2,3,4,5,6), U2 = {2,3}, U3 = {3}, U4 = {4},
Us = {5}

o =2, k=1, XI<X2
o =3, k=2, X2<X3 (nb X1<X3 redundant)
® =4 k=1, XI<X4 .



Puget’'s method

® S50, we can break all variable symmetries with
polynomial number of ordering constraints
for an all-different problem

® What’s this got to do with breaking value
symmetry!?

® Map value symmetry into variable
symmetry on all-different problem



Puget’'s method

® Map value symmetry into variable symmetry
on all-different problem

® |ntroduce Z]j] for position at which j first
used

o |f X[i]=j then Z[j]<i
o |f Z[j]=i then X[i]=j

® |f some value un-used, introduce dummy
indices (or add additional X[i] so all
values are used)



Puget’'s method

® Map value symmetry into variable symmetry
on all-different problem

® |ntroduce Z]j] for position at which j first
used

® /[j] are all-different (as only one value at
each position!)

® Value symmetry on X]i] becomes variable
symmetry on Z][j]



Puget’'s method

® Map value symmetry into variable symmetry on
all-different problem

® Can break all such variable symmetry with
linear number of binary ordering constraints

® And quadratic number of channelling
constraints between X[i] and Z[j]

® Of course, no free lunch. This decomposition
may hinder propagation!



Puget’'s method

® Map value symmetry into variable symmetry
on all-different problem

® For completely interchangeable values
® Gives ZJ[j] < Z[j+I]

® Value precedence (values first appear in
order)



Conclusions

® Symmetry occurs in many problems

® VWe must deal with it or face a
combinatorial explosion!

® We have a generic method (for small
numbers of symmetries)

® |n special cases, we can break all
symmetries









