
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions,
American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to perms@amsci.org.
©Sigma Xi, The Scientific Research Society and other rightsholders

430 American Scientist, Volume 102 © 2014 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

It’s been said that in a city, you’re
never more than a few feet away
from a rat. But these days it seems
more likely that you’re never more

than a few feet away from someone
playing Candy Crush Saga. It is current-
ly the most popular game on Facebook.
It has been downloaded and installed
on phones, tablets, and computers more
than half a billion times. Largely based
on this success, its developer, Global
King, listed recently on the New York
Stock Exchange in an initial public offer-
ing valuing the company in the billions
of dollars. That’s not bad for a simple
game of swapping candies to form
chains of three or more identical pieces.

A big part of the appeal of Candy
Crush for players is that there are com-
plex underpinnings to the seemingly
simple puzzle. Surprisingly, the game
holds a lot of interest for researchers
as well: It offers insight into one of
the most important open problems in
mathematics, as well as into the secu-
rity of computer systems.

In a recent proof, I demonstrated that
Candy Crush is a mathematically hard
puzzle to solve (the paper is available
at http://arxiv.org/abs/1403.1911). To
prove this point, I needed to call upon
one of the most important and beauti-
ful concepts in the whole of computer
science, the idea of a problem reduction.
This idea maps one problem onto an-

other, or as computer scientists like to
say, it reduces one problem into another.
At its heart, this concept arises because
computer code is versatile: You can use
the same type of code to solve more
than one problem, even if the variables
differ. If the problem you started with
was hard, then the problem you map
onto must be at least as hard. The sec-
ond problem can’t be easier because
you must be able to solve the first prob-
lem with a computer program that can
solve the second problem. And if you
can show the reverse, that the second
problem can also be reduced to the first
problem, then in some sense the two
problems are equally as hard as each
other, and take a similar time to solve.

Determining the difficulty of a prob-
lem is a fundamental tenet of mathemat-
ics. But it’s not a semantic point. If you
can classify a problem by how hard it
should be to solve, you know what kind
of computing power to throw at it—and
even if it’s worth trying to solve at all. In
some ways, at least for mathematicians,
looking at Candy Crush as a math prob-
lem can be as addictive as playing it.

Hard Solutions, Easy Checks
In our analysis of Candy Crush, my col-
laborators and I started with the most
famous class of computationally hard
problems, called NP for “nondetermin-
istic polynomial time,” the “time” part of
the term indicating how long these prob-
lems could take to solve. NP contains all
the problems for which, if you give me
a solution, I can quickly check that it is
a correct answer, in a time that is just a
polynomial function of the size of the
problem. However, finding the solution
in the first place appears to be computa-
tionally challenging. Many well-known

math problems—such as determinig
whether a complex logical formula can
be satisfied, or whether a graph can be
colored so that neighboring nodes have
different colors—belong to this class of
computationally hard problems.

Beneath the NP class, in terms of
complexity, we have the class P of com-
putationally “easy” problems. In this
case, P stands just for polynomial. P
contains problems such as sorting a
list or finding a record in a database.
The time it takes for an efficient com-
puter program to solve such problems
is short, even in the worst case. Math-
ematically, the runtime of a problem in
P is a polynomial that scales to the size
of the problem. For example, one well-
known sorting algorithm, BubbleSort,
repeatedly “bubbles” the next largest
item to the top of the list like a competi-
tor in a potato race. This process takes a
time that grows as the square of the size
of the list to be sorted. Even if we dou-
bled the size of the list, the algorithm
would take four times as long in the
worst case. This worst case is when the
list is in reverse order and every item
must bubble past every smaller item. If
the list is not in reverse order, the algo-
rithm will stop even more quickly.

Above NP in complexity, we have
problems that are extremely hard com-
putationally. There are even problems
above NP for which our standard mod-
el of computation, the one that all our
computers implement, is inadequate.
For such problems, there is no computer
program that is guaranteed to stop and
return an answer. These examples fall in
the so-called undecidable class of prob-
lems. This class includes such questions
as deciding whether a computer pro-
gram will stop rather than run forever

Toby Walsh is reseach group leader at the Neville
Roach Lab of NICTA (National Information Com-
munications Technology Australia). He is also a
conjoint professor in the department of computer
science and engineering at the University of New
South Wales, and an external professor of the de-
partment of information science at Uppsala Univer-
sity. E-mail: Toby.Walsh@nicta.com.au

FEATURE ARTICLE

Candy Crush,s Puzzling
Mathematics
This simple game has deceptively difficult computational problems
behind it, which might be why it’s so addictive.

Toby Walsh

2014 November–December 431www.americanscientist.org © 2014 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

in some loop, which computer scientists
call the halting problem. Alan Turing, one
of the fathers of computation, proved
that the halting problem is undecidable.
No computer program exists that can
both decide whether another computer
program halts and is itself guaranteed to
halt, therefore making it a really, really
hard computational problem.

NP lies right at the boundary be-
tween easy and hard. Within NP, we
have many challenging problems such
as how to route trucks to deliver parcels,
roster staff in a hospital, or schedule
classes in a school. It turns out that win-
ning Candy Crush falls into this catego-
ry as well. Any one of these problems
can be reduced to any of the others. In
this sense, they’re all equally as hard.

Unfortunately, the best computer
programs we have for problems in NP
have a runtime that grows dramatically
as we increase the size of the problem.
On my desktop computer, I have a pro-
gram that takes a few hours to find the
optimal routing for 10 trucks and to
demonstrate that this solution was the
best possible. But for 100 trucks, the
same program would take more than
the lifetime of the universe. Mathemati-
cally, the runtime of my program is an
exponential of the size of the problem.

And exponentials quickly grow
very large, as exemplified in the clas-
sic fable where a vizier wins any prize
he wants from a sultan, and asks for
one grain of wheat on the first square
of a chessboard, then to have it dou-
bled for each subsequent square. So
there’s one grain of wheat on the first
square, two on the second, four on the
third, and so on. On the 64th and final
square of the board, you would need
18,446,744,073,709,551,615, or more than
18 quintillion, grains of wheat. That’s
approximately the amount of wheat pro-
duced worldwide in hundreds of years.
Exponentials quickly sneak up on you.

Although computer scientists widely
agree with my statement that NP prob-
lems are on the boundary between
easy and hard, for any specific problem
there is no way to know for sure which
side it lies on. The best computer pro-
grams we currently have take exponen-
tial time to solve problems in NP. But
we don’t know if there’s some exotic
algorithm out there waiting to be dis-
covered that will solve problems in NP
efficiently, in polynomial time. (Math-
ematicians abbreviate this question as
“Does P = NP?”) In fact, this is one of
the most important, famous open prob-

lems in mathematics today. The Clay
Mathematics Institute has even offered
a $1 million prize for the answer to this
question. The prize remains unclaimed
since it was first offered in 2000.

In the most recent poll on whether
P = NP is true, 83 percent of computer
scientists thought that P was not equal
to NP. That is, they think there are no ef-
ficient algorithms for solving problems
in NP and there never will be. Another
poll of computer scientists was used to
decide what to call problems that are as
hard to solve as those in NP, whether or
not they are in this class. The final name
chosen was the rather prosaic NP-hard.
But the poll did demonstrate a refresh-

ing and geeky sense of humor: Some al-
ternative write-ins were NP-impractical,
NP-tricky, and NP-hard-ass.

The idea of problem reduction is cen-
tral to the P = NP question. If we did find
an algorithm that could solve any one
of these problems in NP efficiently, then
we also could solve all of the problems
in NP efficiently. The world would be
a very different place if this outcome
ever happened. On the plus side, we’d
be able to go about our lives with bet-
ter time management, optimally routing
trucks, timetabling flights, and schedul-
ing staff to save money (and routinely
winning at Candy Crush). However, we
depend on other tasks, such as crack-

In this screen shot from Candy Crush Saga, a Color Bomb booster is obliterating all
of the purple candies on the board. Part of the reason the game is so engaging is that
it’s actually quite hard, mathematically speaking. (Image courtesy of Global King.)

432 American Scientist, Volume 102 © 2014 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

ing codes, to be computationally chal-
lenging so that our passwords and bank
accounts stay secure. Computational
complexity can be a blessing as well as a
curse. We want to make it provably hard
for hackers to compute how to decrypt
messages. Equally, we need to be able to
encrypt those messages easily.

This example might remind you of
the definition of NP: problems where
it is easy to check answers but hard to
find them. Cryptography is all about
putting computational barriers in the
way of the bad guys. If such barriers
disappear, our modern world would
be in big trouble.

Behind the Game
To show that Candy Crush is a math-
ematically hard problem, we could re-
duce to it from any problem in NP. To
make life simple, my colleagues and
I started from the granddaddy of all
problems in NP, finding a solution to
a logical formula. This is called the sat-
isfiability problem. You will have solved
such a problem if you ever tackled a
logic puzzle. You have to decide which
propositions to make true, and which
to make false, to satisfy some set of
logical formulae: The Englishman lives
in the red house. The Spaniard owns
the dog. The Norwegian lives next to
the blue house. Should the proposition
that the Spaniard owns the zebra be
made true or false?

To reduce a logic puzzle to a Candy
Crush problem, we exploit the close
connection between logic and electrical
circuits. Any logical formula can simply
be represented with an electrical circuit.
Computers are, after all, just a large col-
lection of logic gates—ANDs, ORs, and
NOTs—with wires connecting them to-
gether. So all we need to do is show that
you could build an electrical circuit in a
Candy Crush game.

First off, we need a board on which
to build the circuit. This board needs to
be a neutral pattern of candies where
the order of the candy types in rela-
tion to the others never changes (see
figure at left). The candy patchwork
resembles traffic lights: In even col-
umns, we alternate red jellybeans and
yellow lemon drops, whereas in odd
columns, we alternate orange lozenges
and green gum pieces. With such a
background, even if we move columns
up or down, we will never create a
chain of three identical candies.

Into this framework we insert the elec-
trical components, which are made of
purple cluster candies. The clusters push
aside the other candies, rather than over-
writing them. Connecting these clusters
creates wires to carry signals around
the circuit, and multiple wires can also
be linked to make more complex con-
figurations as needed (see figure). If we
place a purple cluster on the input to
the wire at the left, we will create a chain
of three purple clusters. This chain gets
deleted, part of the basic premise of the
game, which moves down the candies
in the affected columns and propagates
the signal along the wire. Eventually, a
purple cluster will appear in the output
on the right. A signal is thus transmitted
across the board.

starter

out

out

out

true

false

�o
w

 d
ire

ct
io

n
�o

w
 d

ire
ct

io
n

�o
w

 d
ire

ct
io

n

1

2

3

base grid

components signal transmission

wire

switch

To prove that Candy Crush is in a class of problems called NP, it can be turned into the equivalent
of a logic puzzle that is also in this class, by devising a model electrical circuit made of candies.
The first component needed is a base board that has a neutral pattern of candies (top left). A wire
is made from purple clusters (middle left). A switch lets a user decide which wires to use (bottom
left). The signal travels through the wire in a process kicked off by a starter input that creates three
candies in a row, which in the game are always deleted (top right). The next cluster moves down
(indicated by the arrow labeled flow direction), also creating a row of three (middle right). When this
row deletes, a candy falls into the output slot, completing the transmission (bottom right).

2014 November–December 433www.americanscientist.org © 2014 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

We also need switches that the user
can set to decide which wires are active.
These switches represent the choice of
whether a proposition in our Boolean
formula is set to true or false. The user
can move the middle purple cluster ei-
ther up or down. This motion will set off
a signal either to the left or to the right.

Finally, we can build logic gates
such as AND, OR, and NOT out of
other purple clusters using these ba-
sic components. We then just have to
connect switches to these logic gates
with long enough wires and we have
an electrical circuit that simulates our
logical formula. The electrical circuit
has one output bit that represents the
truth of the logical formula.

Puzzle Mapping
Expressed in terms of these electrical
logic circuits, the puzzle in playing Can-
dy Crush is deciding which switches to
set so that the logic gates fire appropri-
ately and the output bit is set to true. In
this way, we reduce the problem of satis-
fying a logical formula to solving a Can-
dy Crush problem. And as satisfying
a logical formula is a hard problem, so
must be solving a Candy Crush board.

You can also show the reverse. That
is, you can reduce a Candy Crush prob-
lem to satisfying a logical formula. We
simply need to write down a sequence
of formulae that represent the play of
a Candy Crush board. Essentially you
find such a logical description of Candy
Crush within any program that plays it.

Hence, Candy Crush is no harder than
any of the problems in NP, and the game
is just as hard as solving all the other
problems in NP. If we had an efficient
way to play Candy Crush, we would
have a provably efficient way to route
trucks, roster staff, or schedule classes.
Alternatively, if we had an efficient way
to way to route trucks, roster staff, or

schedule classes then we would have
an efficient way to play Candy Crush.
That’s the power of a problem reduction.

The next time you fail to solve a Can-
dy Crush board in the given number of
moves, you can console yourself with
the knowledge that it was a mathemati-
cally hard problem to solve. Indeed,
that trait may be part of what makes
the game so addictive; if it were as easy
to solve as tic-tac-toe, for instance, it
wouldn’t be nearly as engaging.

At the heart of all this is the funda-
mental and beautiful idea of problem
reduction, which has allowed com-
puter scientists to simplify the maze
of different computational problems

into a smaller number of fundamen-
tal classes such as P and NP, which
computer scientists call the complex-
ity zoo. Currently there are about 500
problem classes in the zoo, including
ones with exotic names such as Δ2P,
LogFew, NEEE, and P-close. (In case
you haven’t worked it out yet, com-
puter scientists love acronyms.)

In the unlikely event that P is shown
to be equal to NP, the number of dis-
tinct classes in the complexity zoo
drops sharply. Many classes that are
thought to be different would in fact
map to each other. On the other hand,
if P is not equal to NP, as most com-
puter scientists believe, then the zoo
rightly contains many distinct problem
classes. In fact, the zoo continues to
grow in size. Complexity zoologists
have recently introduced new classes
to describe the complexity of problems
solved with quantum computers.

The idea of problem reduction of-
fers an intriguing possibility for Candy
Crush addicts. Perhaps we can profit
from the millions of hours humans
spend solving Candy Crush problems?
By exploiting the idea of a problem re-
duction, we could conceal some practi-
cal computational problems within these
puzzles. Other computational problems
benefit from such interactions: Every
time you prove to a website that you’re
a person and not a bot by solving a
CAPTCHA (one of those ubiquitous dis-
torted images of a word or number that
you have to type in) the answer helps
Google digitize old books and news-
papers. Perhaps we should put Candy
Crush puzzles to similar good uses.

Our studies of Candy Crush gave us
deep respect for this seemingly innocu-
ous pastime. It actually offers insight
into one of the most important open
questions today in mathematics, and
the implications of this question extend
to many practical applications such as
the encryption algorithms used to keep
your bank account safe. You might like
to explain this bigger picture to your
boss the next time you are caught try-
ing to get just one more level.

A scene from the TV series Elementary, a modern Sherlock Holmes adaptation, illustrates how NP
problems have permeated pop culture well beyond Candy Crush. In the show, two mathematicians
conceal their work on P = NP from rivals by doing calculations in UV markers, as discovered by
Holmes (above) after their murder for their groundbreaking results. (Photograph courtesy of CBS.)

For relevant Web links, consult this
issue of American Scientist Online:

http://www.americanscientist.org/
issues/id.111/past.aspx

Computational
complexity can be
a blessing as well

as a curse.

