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Abstract. Ripplingisatype of rewriting developed in inductive the-
orem proving for removing differences between terms; the induction
conclusion is annotated to mark its differences from the induction
hypothesis and rippling attempts to move these differences. Until
now rippling has been primarily employedin proofs wherethereisa
single induction hypothesis. This paper describes an extension to rip-
pling to deal with theoremswith multiple hypotheses. Such theorems
arise, for instance, when reasoning about data-structures like trees
with multiple recursive arguments. The essential ideaisto colour the
annotation, with each colour correspondingto adifferent hypothesis.
The annotation of rewrite rules used in rippling is similarly general-
ized so that rules propagate colours through terms. This annotation
guides search so that rewrite rules are only applied if they reduce the
differences between the conclusion and some of the hypotheses. We
have tested this implementation on a number of problems, including
two of Bledsoe's challenge limit theorems.

1 INTRODUCTION

Rippling is a powerful heuristic for inductive theorem proving which
tries to remove the differences between terms [4]. The induction
conclusion is annotated to mark its differences from the induction
hypothesis. Rippling moves these differences using annotated rewrite
rules. The annotation can be thought of dividing the term tree in
the conclusion into two parts: the skeleton and the wave-fronts. The
skeleton is an image of the induction hypothesis in the induction
conclusion and this remains undisturbed during rippling. The wave-
fronts represent those parts of the term that need to be moved “ out of
theway” by rippling. Rippling is an effective strategy sinceif, say, we
can move al the wave-fronts to the top of the term tree, then we will
be ableto appeal to the induction hypothesis since an exact image of
the hypothesis now appearsin the conclusion. The rippling heuristic
has been implemented in a*“ proof planning” system called C' IAM .
Until now, rippling has mainly been applied in domains where re-
cursive data-types have only one recursive argument. Many theorems
have been proven about data structures like numbers and lists (which
are built from smaller numbers and smaller lists) but fewer about
data-structures like trees which are built from multiple subtrees. The
reason for this is that the annotation used by rippling provides an
invariant (the skeleton) that directs the proof. When thereis asingle
induction, this invariant correspondsto a single term and is captured
unambiguously by the annotation used by rippling. However, with
multiple recursive arguments there are multiple induction hypotheses
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and thus multiple invariants. For the structure of these multiple in-
variants to be simultaneously preserved during the proof, we must
generalize how annotations are used to represent differences. We
therefore proposethat each hypothesisbe associated with a different
colour. Annotation in the induction conclusion is then coloured to
distinguish between the occurrences of the hypothesesin the skel-
eton. The annotated rewrite rules used by rippling are extended to
manipulate such coloured annotation. Such extensionsare also useful
for guiding non-inductive proofs which have multiple hypotheses.

Coloured rippling has been implemented in the CIAM system.
We describe this and the results of experiments which include the
application of coloured rippling to solve two challenge theorems
about limits.

In the first two sections we introduce rippling in more detail, and
show why colours are needed to control rippling towards multiple
hypotheses. In §4 we describe theimplementation of coloured rippling
and several experiments using it. In §5 we discuss related work.
Finally we draw conclusionsand indicate directionsfor further work.

2 RIPPLING

The recursive type tree of (binary) trees has two constructors lea f
and node. We define functions mazht and minht asfollows:

maght(leaf(n)) =0
maght(node(t1, t2)) = s(maz(mazhi(ts), mazht(to)))

(similarly for minht).
Consider a simple theorem, maxht-minht, about binary trees,

Vit @ tree(pnat).mazht(t) > minht(t)

which C TAM provesviastructural induction over binary trees (see[6]
for how C' IAM choosesinductions), giving two hypothesesin thestep
case?
mazht(l) > minht(l),
mazht(r) > minht(r)

and an annotated induction conclusion

mazht(| node(l, r) T) > minht(| node(l, r) T) Q)

Wave-holes are those terms which are underlined; wave-fronts are
boxed. All wave-fronts have at least one wave-hole. The ideais that
the wave-fronts make explicit how the conclusion and hypotheses
differ.

4 The base case is proved by symbolic evaluation.



A skeleton is defined as®

Definition 1 (skeleton) We define skel(t) for annotatedterms ¢ as

skel(| f(ts, . tn) ) = | | skel(tl) forallt; =

skel(f(ty, ..., tn)) = {f(u1, ..., un) | Vi.u; € skel(t;)}
skel(a) = {a} for atomsa

The skeleton of a termis any element of skel(t).

Terms with wave-fronts containing only a single wave-hole have a
unique skeleton; those with multiple holes have multiple skeletons.
We defineerase(t) to be ¢ with all annotations removed.

Rippling isthe processof moving theannotated differencesbetween
the conclusion and the hypotheses, whilst preserving (at least one)
skeleton. Preserving the skeleton meansthat we are able to appeal to
theinduction hypothesisand complete the inductive proof should the
annotation be moved to the top of the conclusion (or around positions
which correspond to universal variables). Thisis done viathe applic-
ation of annotated rewrite rules, called wave-rulesto the conclusion.
Wave-rules arederived from equations, inequalities, equivalencesand
implications and written in the form LHS = RHS. CIAM adds
annotations so that

o skel(LHS) D skel(RHS) (i.e., skeleton preserving);
e |LHS| > |RH S| for somewell-founded measure| - |.

Rewriting with wave-rules is similar to normal term rewriting with
the additional proviso that annotation in the rule must match with
annotationin the conclusion. This severerestriction on the application
of wave-rules greatly reduces search and the well-founded measure
guaranteesthat rippling terminates, yet rules like associativity can be
used in both directions (see [4]).

To ripple the induction conclusion (1) we can use the wave-rules
shown in table 1 formed from the definitions of maxht, minht and
>.

"

mazht( node(L, R) T) = | s(maz(mazht(L), mazht(R)))

T T
minht( node(L,R)| ) =

Tablel. Wave-rulesfor maxht-minht theorem

s(min(minht(L), minht(R)))

Rippling (1) with the wave-rules from table 1 gives

U 1

maz(mazht(l), mazht(r)) | >|min(minht(l), minht(r))

To continue rippling suppose we have

‘ maz (U, Uy) ‘T > ‘ min(Va, V2) ‘T = ‘ UL>ViAU, > Vo ‘T(s)

‘ maz (U, Uy) ‘T > ‘ min(Va, V2) ‘T = ‘ UL> VoAU, > Wi ‘T(4)

5 We write

(s(@)]
diately inside them.

as‘ fg(z)) ‘but all wave-fronts have holes imme-
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whererule (4) isacommuted version of rule (3). Now thereisachoice
point since both of these wave-rules are applicable; if wave-rule (4)
is applied, the induction conclusion becomes

N
mazht(l) > minht(r) A mazht(r) > minht(l)

which does not follow from the induction hypotheses. We incur a
search penalty since we must apply (3) for the proof to go through.
Note it is not fair to have (3) as a rewrite and not (4) since some
proofs will need the latter.

3 COLOURED RIPPLING

Clearly the notion of skeleton preservation enforced on wave-rules
(condition (ii) above) is not strong enough, sincethe particular skel-
etons being preserved are not present in the hypothesis. What is
required isaway to distinguish between these multiple skeletonsand
so avoid ‘mixing’ one skeleton (corresponding to one hypothesis)
with another (corresponding to another hypothesis).

3.1 Adding coloursto wave-holes

The problem then is that multi-hole wave-rules permit the unwanted
mixing of skeletons. Characterising when this happensis straightfor-
wardsince C' IAM canidentify each wave-holewith itscorresponding
induction hypothesiswhen it appliesinduction. We can therefore im-
prove the utility of rippling by ensuring that every skeleton in the
goal correspondsto an induction hypothesis. We do this with an ex-
plicit colour annotation on wave-holes which indicates the subterms
of theinduction conclusion corresponding to subterms of a particular
induction hypothesis. Since a subterm may appear in more than one
hypothesis, these annotations are in fact sets of colours.

We parameterize skel with a colour, and ensure that skel only
collects holes of that colour (replace the first clause in definition 1
with:

shele(( (b, ... ) ) = shele(t))

forallti:ﬁs,ces

where S isthe set of colours labelling awave-hole).

raenrosi L 1))+ |
rinn[rodeL )| )+

] >

s(max(maxht(L)A, maxht(R)B))

s(max(minht(L) , minht(R) ) ‘T

!
S(KA)‘ = X>Y

Table2. Coloured wave-rulesfor maxht-minht (4, B stand for sets of
colours)

Coloured rippling is a further restriction on monochromatic rip-
pling: coloursin theinduction conclusion must aso be matched with
colour variables in the wave-rule. Coloured wave-rules are skeleton
preserving with respect to each colour. Mixing of skeletonsin the
way described above is thus not possible (see §3.2).

Let us reconsider our example with coloured rippling. In the
maxht-minht theorem the induction conclusion gets two colours (r
and b say; we write the singleton colour set {c} asc)
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"

"
mazht( node(ly,r,) | ) > minht(| node(l,,r,.) | ) (5)

Equation (5) hastwo skeletons
skely = mazht(l) > minht(l)
skel, = mazht(r) > minht(r)

not four as in the uncoloured case; note how these two skeletons are
exactly the induction hypotheses.

Rippling (5) with the wave-rules from table 2 (the coloured variet-
ies of thosein table 1) gives,

;
2

min(minht(l)b, minhi(r) ) '
(6)

max(maxht(l)b, mazht(r) )

Wave-rules (3) and (4) can only be coloured as,

1. Receivethe wave-rule constructed from the original parser as:
LHS = RHS

LHS and RH S arethe left-hand side and right-hand side of the
wave-rule.
2. LWs = weakenings(LHS), RWs := weakenings(RHS).
3. Putthesame colour variable on the weakest with the same skeleton
in LWs and RWs.

(@) Create LSWsList, which is a list of lists. Its elements are the
weakestsof LHS with the same skeleton. This process servesto
sort and collect the weakestswith the same skeleton.

(b) Create RSWsList in the sameway as LSWsList.

(c) For each element of LSWsList,

i. LSWs:= element of LSWsList
ii. RSWs := element of RSWsList with the same skeleton as

i - T i
‘max(UlA,UzB)‘ Z‘mzn(VlA,VzB)‘ :>‘U12V1A/\U22VZB‘ LSWs ) ]
S — S — D iii. Put the same colour variable on the weakestsin LSWs and
t , t t RSWs
‘ maz (U1, Uzy) ‘ > ‘ min(Vap, Va,,) ‘ = ‘ Ur> Vo AUp> Vi ‘ _ _
S — —— ® 4. Combine the coloured LSWss into a NewlLHS and the coloured

As desired, wave-rule (8) will not match (6) since the colour an-
notations fail to match. Wave-rule (7) does match giving

mazht(l) > minht(l)b A magzht(r) > minht(r)

The proof is completed by appealing to the two induction hypotheses.

3.2 Creating coloured wave-rules

We haveimplemented an extensionto C' IAM’sexisting (uncoloured)
wave-rule parser which adds colour annotation to wave-holes. This
is based on the notion of the weakeningsof an annotated term.

Given aterm ¢ which has awave-front with £ > 1 wave-holes, we
can weakent by erasing up to k£ — 1 wave-holes. By erasing a wave-
hole ¢; we mean removing the underline annotation and erasing any
further annotationin¢;. A term¢ ismaximally weak (or weakest) when
it cannot be further weakened. That is, every wave-front contains a
single wave-hole. Let weakenings(t) be the set of al maximal
weakenings of ¢. For example, there are 4 maximal weakenings of
thetermin (1), i.e,

{maxht() > mazhit(| node(l,r) |,
mazht(| node(l, ) |) > mazhit(| node(l,r) |,
maxht() > mazhit(| node(l,r) |,
mazhit(|node(l,r)|) > mazht(|node(l,r)

The significance of this is that weakening reduces the number of
skeletons and hence possibilities for skeleton mixing and we can use
these maximally weak terms asthe basis of an algorithm that assigns
coloursto wave-rules.

321 Algorithm

Accepting an uncoloured wave-rule, our parser creates weakened
wave-rules with one wave-hole per wave-front and puts a different
colour variable on each weakened wave-rule. Then these coloured
wave-rules are combined into one wave-rule, which isidentical with
the original wave-rule except for colour variables on wave-holes.
The algorithm is asfollows (y := « means y takesthe value a).

Automated reasoning 87

RSWssinto a NewRHS.
5. Output the coloured wave-rule as:

NewLHS = NewRHS

3.3 Properties of coloured rippling

Coloured rippling is a restriction of the monochromatic case, i.e.,
fewer rule applications are allowed in the former. As monochromatic
rippling terminates [4], coloured rippling must also terminate.

Since colours guide the construction of unmixed copies of the in-
duction hypotheses, if coloured rippling succeeds on a conjecture,
the proof can be completed using the fertilization tactic. Thisis not
always true of monochromatic rippling. Coloured rippling therefore
increases the ‘utility’ or expectancy of success of the rippling heur-
istic. Of course, there are (monochromatic) rippling proofs which are
not admissiblein the coloured case, but experimentsin the context of
inductive theorem proving suggeststhat this doesnot arisein practice
(see the next section). In addition, since colour annotation reduces
the applicability of wave-rules, search is even less of a problem in
coloured rippling than in the monochromatic case.

4 EXPERIMENTS

This section describes some of the theorems proved using coloured
rippling. (In fact, coloured rippling is able to prove all the theorems
in the C'IAM corpus; seetable 4 for a selection.)

4.1 Non-inductive Proofs

The CIAM system was originally designed for inductive proof.
However, rippling can also be used to construct proofsin any situ-
ation where lemmas, hypotheses, axioms etc are structurally similar
to conjecturesto be proved [7]. As an example of this, we show how
coloured rippling hasbeen used to prove limit theorems. Thesetheor-
emswere proposed by Bledsoeasbenchmark theoremsfor automated
theorem provers [2].8Limit theorems have multiple hypotheses; col-
oured rippling avoids mixing of these multiple hypotheses and thus
uses less search than monochromatic rippling.

6 Our thanks to Woody Bledsoe for suggesting the application of rippling to
the LIM family of theorems.
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Non-Inductive Scheme. In non-inductive proofs, it is necessary
to create analogues of the induction hypotheses and conclusion by
examining and annotating the conjectureto be proved. Such an exam-
ination is required during the proof-planning for LIM* . The follow-
ing method used in proving LIM+ is essentially C' 7AM’s existing
normalization method augmented with ameans of adding wave-front
annotations to the conclusion.

Definition 2 (Non-inductivemethod) The scheme for the non-in-
ductive proof is defined as follows.

1 Assumethat the conjectureis written in the following format
t1— 12

2 Convertthe antecedent ¢1 into conjunctivenormal form (CNF) and
treat the collection of disjuncts as hypotheses, hyps.
3 Treat the consequent ¢, asthe conclusion.
4 Create the sequent:
hyps F t2

5 Add wave-front annotationto ¢, using difference matching (see §5)
between ¢, and each hypothesisin hyps.

The definition of lim is asfollows
lim(f,a,1) =Ve.(0< e —
.(0<éAVa (s £aN|t—a|<b—|f(x)=1I <€)
and theLIM* theoremis:
lim(Az. fi(z), a, ) Alim(Az. fo(z), a, L) —
lim(Az. fi(z) + fo(z), a,la + bo).

C IAM beginsthe proof by choosing the non-inductive method. This
results in atwo-colour conclusion:

lim(Az. fi(z),a, i), imAz. fo(z),a, i) -

1 1
Jefn e, ])

There are no wave-rules applicable to this sequent. Motivated by
a one-step lookahead which recognizes that rippling can then take
place, C IAM choosesto unpack the definitions of lim in the hypo-
theses and conclusion:

Ve (0< ] =0 (0< 65AVz(z #£aNn]|x—al <é—

lim(Az.| fi(z) + fo(=

T

~—

1 U

(fulx) + folz) )| =k, +) || <))

(We have omitted the two hypothesesdue to lack of space — bear in
mind that each hasbeen unpacked aswell; we al so drop the outermost
quantifiersfor f and! etc.) The |- | annotation marks positionsin the
conclusionwhich correspondto the positions of universal variablesin
both hypotheses. These positionsare called sinkssincethey areableto
absorb term structure resulting from rippling wave-frontsinwards[4].

Coloured rippling with the wave-rules from table 3, followed by
two applications of fertilization with each of the hypotheses com-
pletes the proof. Most of the wave-rules from this table are de-
rived from Bledsoe's clausal axiomatization. Those which are not
are the distributivity of minus over plus (11)! and of implies over
conjunction (12). Wave-rule (13) is an existential form of the lemma
U<XAU<Y — U <min(X,Y), which appearsin Bledsoe's
axiomatization.

7 Bledsoe's axiomatization instead uses unary minus with commutativity and
associativity of plus.
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4.2 Experimental Results

Coloured rippling has been incorporated into C'IAM , and success-
fully tested on acollection of inductive and non-inductive theorems.
In the near future we hope to carry out some experimental analysis
of the search behaviour. A selection of theorems about binary trees
is provided below; we hope that quantitative results concerning effi-
ciency will be forthcoming.

mazht(t) > minht(t)

(*) tipcount(swap(t)) = tipcount(t)

tipcount(duptree(t)) > tipcount(t)

magzht(duptree(t)) > mazrht(t)

(+) swap(swap(t)) = t

(*) flattentree(swap(t)) = rev(flattentree(t))

length(flattentree(t)) = tipcount(t)

flattentree(maptree(t, f)) = mapcar( flattentree(t), f)

swap(rmaptree(t, f)) = maptree(swap(t), f)

tipcount(t) = labelcount(t) + 1

lim(Az. fi(z), a, ) Alim(Az. fo(z), a, ) —
|Im()\xf1(x) =+ fz(x), a, L+

lim(Az. fi(z), a, ) Alim(Az. fo(2), a, ) —
|Im()\xf1(x) — fz(x), a,ly — lz)

Theorems marked (*) are from [3]. All but the LIM theorems are
without lemmas.

Table4. Some theoremswhich can be proved by the system

5 RELATED AND FUTURE WORK

Hutter has al so devel oped acal culusfor manipulating annotated terms
which isimplemented in the INKA system [5]. His annotated terms,
called C-terms, also haveanotion of “ colour” similar to that used here.
Hutter has given algorithms for unifying together annotated terms
and for substitution into annotated terms; these are used to perform
rewriting of annotated and coloured terms. Although this calculus
can deal with multiple colours, INKA uses only two (denoting the
wave-hole and wave-front) since the problem of mixing of skeletons
has not been identified. Therefore, Hutter did not use his colours for
coloured rippling. We believe, however, that it might be possible to
map coloured rippling into the C-term calculus.

There are many possibledirections for further work. We only have
space hereto list afew of them.

Difference matching. Annotationsin the consequent of the LIM*+
and LIM~ theorem were added by hand. Ideally, wave annotation in
the consequent should be added automatically by the system, asin
inductive proofs. Thedifference matching of [ 1] adds monochromatic
wave annotations to terms. We plan to use this procedure to add
coloured wave annotation. Theideaisto combinetogether compatible
monochromatic answers from difference matching to give coloured
annotations. Thisalgorithm is quite similar to the onedescribedin §3
and presented in [8], however, it has not been implemented yet.

Loss of colours. Losing colours dynamically during rippling is
expected to enable the system to prove more difficult theorems [8].
However, this has a potential exponential cost since we would need
to consider every possibleweakeningof colours. If awave-holehasn
colours, thereare O(2") possibleweakenings. Thismay considerably
worsen the efficiency of the system (though = is usually small). In
addition, we intend to investigate when colour weakening should be

applied.
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(Une+ U2y |

u u
)= (Mg + 1y |) = (=) + (L2 = 1ay)

(11)

T
(Lt Vyfl<r=

U 14 '
01, +1V1,

<F

!
Ux+Vy| <W=

U<

w

—X

2

! !
ANV <| =
X Y

(12)

)
Q=P APy | = Q=P AQ = Pr

Vo[ Py A Doy | = [VaPry AVaPry

‘T

(13)

"
BWU <8 =[P AP |) =

WU <6—P) ABWU <6— Py

"
O<e— BX/\QY =

0<5—=P NO<5—-@Q

T

Table3. Waverulesfor LIMT

N-ary trees. Thispaper has described coloured rippling using bin-
ary trees. Binary trees can be generalized to n-ary trees. Since binary
trees have a fixed number of branches, it is relatively easy to define
the tree induction method. N-ary trees are more problematic since it
is not possible to determine in advance the number of branches.

Decomposition of the antecedent into hypotheses. In §3, CNF is
used to convert the antecedent into hypothesesin the non-inductive
method. However, this may give many too small hypotheses. Tech-
niques for decomposing the antecedent into hypotheses is left for
further work (one possibility is to use difference matching, with the
aim of removing the difference between the antecedent and the con-

sequent).

6 CONCLUSIONS

This paper has demonstrated the successful application of rippling
to data structures with multiple recursive arguments. The presence
of multiple recursive arguments may upset monochromatic rippling
because these arguments can become mixed. The key idea to solve
this problem is to add colour annotation to wave-holesto distinguish
between the different arguments. This idea can also be applied to
challenging non-inductive theorems like limit theorems. Our exper-
iments have given us considerable confidence in the applicability of
this extension to rippling; the theorems about binary trees and limits
were proved in a uniform way which should also be applicable to
many other examples.
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