
Coloured rippling: An extension of a theorem proving
heuristic

Tetsuya Yoshida1 Alan Bundy1 Ian Green1 Toby Walsh2 David Basin3

Abstract. Rippling is a type of rewriting developed in inductive the-
orem proving for removing differences between terms; the induction
conclusion is annotated to mark its differences from the induction
hypothesis and rippling attempts to move these differences. Until
now rippling has been primarily employed in proofs where there is a
single induction hypothesis. This paper describes an extension to rip-
pling to deal with theorems with multiple hypotheses.Such theorems
arise, for instance, when reasoning about data-structures like trees
with multiple recursive arguments. The essential idea is to colour the
annotation, with each colour corresponding to a different hypothesis.
The annotation of rewrite rules used in rippling is similarly general-
ized so that rules propagate colours through terms. This annotation
guides search so that rewrite rules are only applied if they reduce the
differences between the conclusion and some of the hypotheses. We
have tested this implementation on a number of problems, including
two of Bledsoe’s challenge limit theorems.

1 INTRODUCTION

Rippling is a powerful heuristic for inductive theorem proving which
tries to remove the differences between terms [4]. The induction
conclusion is annotated to mark its differences from the induction
hypothesis. Rippling moves these differences using annotated rewrite
rules. The annotation can be thought of dividing the term tree in
the conclusion into two parts: the skeleton and the wave-fronts. The
skeleton is an image of the induction hypothesis in the induction
conclusion and this remains undisturbed during rippling. The wave-
fronts represent those parts of the term that need to be moved “out of
the way” by rippling. Rippling is an effective strategy since if, say, we
can move all the wave-fronts to the top of the term tree, then we will
be able to appeal to the induction hypothesis since an exact image of
the hypothesis now appears in the conclusion. The rippling heuristic
has been implemented in a “proof planning” system called CLAM .

Until now, rippling has mainly been applied in domains where re-
cursive data-types have only one recursive argument. Many theorems
have been proven about data structures like numbers and lists (which
are built from smaller numbers and smaller lists) but fewer about
data-structures like trees which are built from multiple subtrees. The
reason for this is that the annotation used by rippling provides an
invariant (the skeleton) that directs the proof. When there is a single
induction, this invariant corresponds to a single term and is captured
unambiguously by the annotation used by rippling. However, with
multiple recursive arguments there are multiple induction hypotheses

1 Department of AI, University of Edinburgh, Edinburgh EH1 1HN, Scotland
2 INRIA-Lorraine 615, rue du Jardin Botanique, 54602 Villers-les-Nancy,

France
3 Max-Planck-Institut für Informatik, Saarbrücken, Germany

and thus multiple invariants. For the structure of these multiple in-
variants to be simultaneously preserved during the proof, we must
generalize how annotations are used to represent differences. We
therefore propose that each hypothesis be associated with a different
colour. Annotation in the induction conclusion is then coloured to
distinguish between the occurrences of the hypotheses in the skel-
eton. The annotated rewrite rules used by rippling are extended to
manipulate such coloured annotation. Such extensions are also useful
for guiding non-inductive proofs which have multiple hypotheses.

Coloured rippling has been implemented in the CLAM system.
We describe this and the results of experiments which include the
application of coloured rippling to solve two challenge theorems
about limits.

In the first two sections we introduce rippling in more detail, and
show why colours are needed to control rippling towards multiple
hypotheses. In x4 we describe the implementation of coloured rippling
and several experiments using it. In x5 we discuss related work.
Finally we draw conclusions and indicate directions for further work.

2 RIPPLING

The recursive type tree of (binary) trees has two constructors leaf
and node. We define functions maxht and minht as follows:maxht(leaf (n)) = 0maxht(node(t1; t2)) = s(max(maxht(t1);maxht(t2)))
(similarly for minht).

Consider a simple theorem, maxht-minht, about binary trees,8t : tree(pnat):maxht(t) � minht(t)
whichCLAM proves via structural induction over binary trees (see [6]
for howCLAM chooses inductions), giving two hypotheses in the step
case4, maxht(l) � minht(l),maxht(r) � minht(r)
and an annotated induction conclusionmaxht(node(l; r) ") � minht(node(l; r) ") (1)

Wave-holes are those terms which are underlined; wave-fronts are
boxed. All wave-fronts have at least one wave-hole. The idea is that
the wave-fronts make explicit how the conclusion and hypotheses
differ.
4 The base case is proved by symbolic evaluation.

c
 1994 T. Yoshida, A. Bundy, I. Green, T. Walsh, D. Basin
ECAI 94. 11th European Conference on Artificial Intelligence Edited by A. Cohn
Published in 1994 by John Wiley & Sons, Ltd.

A skeleton is defined as5

Definition 1 (skeleton) We define skel(t) for annotated terms t asskel(f(t1; : : : ; tn)) =[i skel(t0i) for all ti = t0iskel(f(t1; : : : ; tn)) = ff(u1; : : : ; un) j 8i:ui 2 skel(ti)gskel(a) = fag for atoms a
The skeleton of a term is any element of skel(t).
Terms with wave-fronts containing only a single wave-hole have a
unique skeleton; those with multiple holes have multiple skeletons.
We define erase(t) to be t with all annotations removed.

Rippling is the process of moving the annotated differences between
the conclusion and the hypotheses, whilst preserving (at least one)
skeleton. Preserving the skeleton means that we are able to appeal to
the induction hypothesis and complete the inductive proof should the
annotation be moved to the top of the conclusion (or around positions
which correspond to universal variables). This is done via the applic-
ation of annotated rewrite rules, called wave-rules to the conclusion.
Wave-rules are derived from equations, inequalities, equivalencesand
implications and written in the form LHS) RHS. CLAM adds
annotations so that� skel(LHS) � skel(RHS) (i.e., skeleton preserving);� jLHSj > jRHSj for some well-founded measure j � j.
Rewriting with wave-rules is similar to normal term rewriting with
the additional proviso that annotation in the rule must match with
annotation in the conclusion.This severe restriction on the application
of wave-rules greatly reduces search and the well-founded measure
guarantees that rippling terminates, yet rules like associativity can be
used in both directions (see [4]).

To ripple the induction conclusion (1) we can use the wave-rules
shown in table 1 formed from the definitions of maxht , minht and�.maxht(node(L;R) ")) s(max(maxht(L);maxht(R))) "minht(node(L;R) ")) s(min(minht(L);minht(R))) "s(X) " � s(Y) ") X � Y

Table 1. Wave-rules for maxht-minht theorem

Rippling (1) with the wave-rules from table 1 givesmax(maxht(l);maxht(r)) " � min(minht(l);minht(r)) "
To continue rippling suppose we havemax(U1; U2) " � min(V1; V2) ") U1 � V1 ^ U2 � V2

"
(3)max(U1; U2) " � min(V1; V2) ") U1 � V2 ^ U2 � V1
"
(4)

5 We write f(g(x)) as f(g(x)) but all wave-fronts have holes imme-

diately inside them.

where rule (4) is a commuted version of rule (3). Now there is a choice
point since both of these wave-rules are applicable; if wave-rule (4)
is applied, the induction conclusion becomesmaxht(l) �minht(r) ^maxht(r) � minht(l) "
which does not follow from the induction hypotheses. We incur a
search penalty since we must apply (3) for the proof to go through.
Note it is not fair to have (3) as a rewrite and not (4) since some
proofs will need the latter.

3 COLOURED RIPPLING

Clearly the notion of skeleton preservation enforced on wave-rules
(condition (ii) above) is not strong enough, since the particular skel-
etons being preserved are not present in the hypothesis. What is
required is a way to distinguish between these multiple skeletons and
so avoid ‘mixing’ one skeleton (corresponding to one hypothesis)
with another (corresponding to another hypothesis).

3.1 Adding colours to wave-holes

The problem then is that multi-hole wave-rules permit the unwanted
mixing of skeletons. Characterising when this happens is straightfor-
ward sinceCLAM can identify each wave-hole with its corresponding
induction hypothesis when it applies induction. We can therefore im-
prove the utility of rippling by ensuring that every skeleton in the
goal corresponds to an induction hypothesis. We do this with an ex-
plicit colour annotation on wave-holes which indicates the subterms
of the induction conclusion corresponding to subterms of a particular
induction hypothesis. Since a subterm may appear in more than one
hypothesis, these annotations are in fact sets of colours.

We parameterize skel with a colour, and ensure that skel only
collects holes of that colour (replace the first clause in definition 1
with:skelc(f(t1; : : : ; tn)) =[i skelc(t0i) for all ti = t0iS , c 2 S
where S is the set of colours labelling a wave-hole).

maxht(node(LA; RB) ")) s(max(maxht(L)A;maxht(R)B)) "
minht(node(LA; RB) ")) s(max(minht(L)A;minht(R)B)) "s(XA) " � s(Y A) ") X � Y

Table 2. Coloured wave-rules for maxht-minht (A, B stand for sets of
colours)

Coloured rippling is a further restriction on monochromatic rip-
pling: colours in the induction conclusion must also be matched with
colour variables in the wave-rule. Coloured wave-rules are skeleton
preserving with respect to each colour. Mixing of skeletons in the
way described above is thus not possible (see x3.2).

Let us reconsider our example with coloured rippling. In the
maxht-minht theorem the induction conclusion gets two colours (r
and b say; we write the singleton colour set fcg as c)

Automated reasoning 86 T. Yoshida, A. Bundy, I. Green, T. Walsh, D. Basin

maxht(node(lb; rr) ") � minht(node(lb; rr) ") (5)

Equation (5) has two skeletonsskelb = maxht(l) � minht(l)skelr = maxht(r) � minht(r)
not four as in the uncoloured case; note how these two skeletons are
exactly the induction hypotheses.

Rippling (5) with the wave-rules from table 2 (the coloured variet-
ies of those in table 1) gives,max(maxht(l)b;maxht(r)r) " � min(minht(l)b;minht(r)r) "

(6)
Wave-rules (3) and (4) can only be coloured as,max(U1A; U2B) " � min(V1A; V2B) ") U1 � V1A ^ U2 � V2B "

(7)max(U1A; U2B) " � min(V1B; V2A) ") U1 � V2A ^ U2 � V1B "
(8)

As desired, wave-rule (8) will not match (6) since the colour an-
notations fail to match. Wave-rule (7) does match givingmaxht(l) � minht(l)b ^maxht(r) � minht(r)r
The proof is completed by appealing to the two induction hypotheses.

3.2 Creating coloured wave-rules

We have implemented an extension toCLAM ’s existing (uncoloured)
wave-rule parser which adds colour annotation to wave-holes. This
is based on the notion of the weakenings of an annotated term.

Given a term t which has a wave-front with k > 1 wave-holes, we
can weaken t by erasing up to k � 1 wave-holes. By erasing a wave-
hole ti we mean removing the underline annotation and erasing any
further annotation in ti. A term t is maximally weak (or weakest) when
it cannot be further weakened. That is, every wave-front contains a
single wave-hole. Let weakenings(t) be the set of all maximal
weakenings of t. For example, there are 4 maximal weakenings of
the term in (1), i.e.,fmaxht(node(l; r)) � maxht(node(l; r) ;maxht(node(l; r)) � maxht(node(l; r) ;maxht(node(l; r)) � maxht(node(l; r) ;maxht(node(l; r)) � maxht(node(l; r) g
The significance of this is that weakening reduces the number of
skeletons and hence possibilities for skeleton mixing and we can use
these maximally weak terms as the basis of an algorithm that assigns
colours to wave-rules.

3.2.1 Algorithm

Accepting an uncoloured wave-rule, our parser creates weakened
wave-rules with one wave-hole per wave-front and puts a different
colour variable on each weakened wave-rule. Then these coloured
wave-rules are combined into one wave-rule, which is identical with
the original wave-rule except for colour variables on wave-holes.

The algorithm is as follows (y := a means y takes the value a).

1. Receive the wave-rule constructed from the original parser as:LHS) RHSLHS and RHS are the left-hand side and right-hand side of the
wave-rule.

2. LWs := weakenings(LHS), RWs := weakenings(RHS).
3. Put the same colour variable on the weakestwith the same skeleton

in LWs and RWs.

(a) Create LSWsList, which is a list of lists. Its elements are the
weakests of LHS with the same skeleton. This process serves to
sort and collect the weakests with the same skeleton.

(b) Create RSWsList in the same way as LSWsList.
(c) For each element of LSWsList,

i. LSWs := element of LSWsList
ii. RSWs := element of RSWsList with the same skeleton as

LSWs
iii. Put the same colour variable on the weakests in LSWs and

RSWs

4. Combine the coloured LSWss into a NewLHS and the coloured
RSWss into a NewRHS.

5. Output the coloured wave-rule as:NewLHS) NewRHS
3.3 Properties of coloured rippling

Coloured rippling is a restriction of the monochromatic case, i.e.,
fewer rule applications are allowed in the former. As monochromatic
rippling terminates [4], coloured rippling must also terminate.

Since colours guide the construction of unmixed copies of the in-
duction hypotheses, if coloured rippling succeeds on a conjecture,
the proof can be completed using the fertilization tactic. This is not
always true of monochromatic rippling. Coloured rippling therefore
increases the ‘utility’ or expectancy of success of the rippling heur-
istic. Of course, there are (monochromatic) rippling proofs which are
not admissible in the coloured case, but experiments in the context of
inductive theorem proving suggests that this does not arise in practice
(see the next section). In addition, since colour annotation reduces
the applicability of wave-rules, search is even less of a problem in
coloured rippling than in the monochromatic case.

4 EXPERIMENTS

This section describes some of the theorems proved using coloured
rippling. (In fact, coloured rippling is able to prove all the theorems
in the CLAM corpus; see table 4 for a selection.)

4.1 Non-inductive Proofs

The CLAM system was originally designed for inductive proof.
However, rippling can also be used to construct proofs in any situ-
ation where lemmas, hypotheses, axioms etc are structurally similar
to conjectures to be proved [7]. As an example of this, we show how
coloured rippling has been used to prove limit theorems. These theor-
ems were proposedby Bledsoe as benchmark theorems for automated
theorem provers [2].6Limit theorems have multiple hypotheses; col-
oured rippling avoids mixing of these multiple hypotheses and thus
uses less search than monochromatic rippling.

6 Our thanks to Woody Bledsoe for suggesting the application of rippling to
the LIM family of theorems.

Automated reasoning 87 T. Yoshida, A. Bundy, I. Green, T. Walsh, D. Basin

Non-Inductive Scheme. In non-inductive proofs, it is necessary
to create analogues of the induction hypotheses and conclusion by
examining and annotating the conjecture to be proved. Such an exam-
ination is required during the proof-planning for LIM+ . The follow-
ing method used in proving LIM+ is essentially CLAM ’s existing
normalization method augmented with a means of adding wave-front
annotations to the conclusion.

Definition 2 (Non-inductive method) The scheme for the non-in-
ductive proof is defined as follows.

1 Assume that the conjecture is written in the following formatt1 ! t2

2 Convert the antecedent t1 into conjunctive normal form (CNF) and
treat the collection of disjuncts as hypotheses,hyps.
3 Treat the consequent t2 as the conclusion.
4 Create the sequent: hyps ` t2

5 Add wave-front annotation to t2 using difference matching (see x5)
between t2 and each hypothesis in hyps.

The definition of lim is as follows

lim(f;a; l) � 8�:(0 < �!9�:(0 < � ^ 8x:(x 6= a ^ jx� aj < � ! jf(x)� lj < �)))
and the LIM+ theorem is:

lim(�x:f1(x); a; l1) ^ lim(�x:f2(x); a; l2)!
lim(�x:f1(x) + f2(x); a; l1 + l2):CLAM begins the proof by choosing the non-inductive method. This

results in a two-colour conclusion:

lim(�x:f1(x); a; l1); lim(�x:f2(x); a; l2) `
lim(�x: f1(x)r + f2(x)g "; a; l1r + l2g ")

There are no wave-rules applicable to this sequent. Motivated by
a one-step lookahead which recognizes that rippling can then take
place, CLAM chooses to unpack the definitions of lim in the hypo-
theses and conclusion:8�:(0 < b�c ! 9�:(0 < � ^ 8x:(x 6= a ^ jx� aj < � !���� (f1(x)r + f2(x)g) " � (l1r + l2g) "���� < b�c)))
(We have omitted the two hypotheses due to lack of space — bear in
mind that each has been unpackedas well; we also drop the outermost
quantifiers for f and l etc.) The b�c annotation marks positions in the
conclusion which correspond to the positions of universal variables in
both hypotheses. These positions are called sinks since they are able to
absorb term structure resulting from rippling wave-fronts inwards [4].

Coloured rippling with the wave-rules from table 3, followed by
two applications of fertilization with each of the hypotheses com-
pletes the proof. Most of the wave-rules from this table are de-
rived from Bledsoe’s clausal axiomatization. Those which are not
are the distributivity of minus over plus (11)7, and of implies over
conjunction (12). Wave-rule (13) is an existential form of the lemmaU < X ^ U < Y ! U < min(X;Y), which appears in Bledsoe’s
axiomatization.
7 Bledsoe’s axiomatization instead uses unary minus with commutativity and

associativity of plus.

4.2 Experimental Results

Coloured rippling has been incorporated into CLAM , and success-
fully tested on a collection of inductive and non-inductive theorems.
In the near future we hope to carry out some experimental analysis
of the search behaviour. A selection of theorems about binary trees
is provided below; we hope that quantitative results concerning effi-
ciency will be forthcoming.maxht(t) � minht(t)(�) tipcount(swap(t)) = tipcount(t)tipcount(duptree(t)) > tipcount(t)maxht(duptree(t)) > maxht(t)(�) swap(swap(t)) = t(�) flattentree(swap(t)) = rev(flattentree(t))length(flattentree(t)) = tipcount(t)flattentree(maptree(t; f)) = mapcar(flattentree(t); f)

swap(maptree(t; f)) =maptree(swap(t); f)tipcount(t) = labelcount(t) + 1
lim(�x:f1(x); a; l1) ^ lim(�x:f2(x); a; l2)!

lim(�x:f1(x) + f2(x); a; l1 + l2)
lim(�x:f1(x); a; l1) ^ lim(�x:f2(x); a; l2)!

lim(�x:f1(x)� f2(x); a; l1 � l2)
Theorems marked (*) are from [3]. All but the LIM theorems are
without lemmas.

Table 4. Some theorems which can be proved by the system

5 RELATED AND FUTURE WORK

Hutter has also developed a calculus for manipulating annotated terms
which is implemented in the INKA system [5]. His annotated terms,
called C-terms, also have a notion of “colour” similar to that used here.
Hutter has given algorithms for unifying together annotated terms
and for substitution into annotated terms; these are used to perform
rewriting of annotated and coloured terms. Although this calculus
can deal with multiple colours, INKA uses only two (denoting the
wave-hole and wave-front) since the problem of mixing of skeletons
has not been identified. Therefore, Hutter did not use his colours for
coloured rippling. We believe, however, that it might be possible to
map coloured rippling into the C-term calculus.

There are many possible directions for further work. We only have
space here to list a few of them.

Difference matching. Annotations in the consequentof the LIM+
and LIM� theorem were added by hand. Ideally, wave annotation in
the consequent should be added automatically by the system, as in
inductive proofs. The difference matching of [1] adds monochromatic
wave annotations to terms. We plan to use this procedure to add
coloured wave annotation. The idea is to combine together compatible
monochromatic answers from difference matching to give coloured
annotations. This algorithm is quite similar to the one described in x3
and presented in [8], however, it has not been implemented yet.

Loss of colours. Losing colours dynamically during rippling is
expected to enable the system to prove more difficult theorems [8].
However, this has a potential exponential cost since we would need
to consider every possible weakeningof colours. If a wave-hole hasn
colours, there areO(2n) possible weakenings.This may considerably
worsen the efficiency of the system (though n is usually small). In
addition, we intend to investigate when colour weakening should be
applied.

Automated reasoning 88 T. Yoshida, A. Bundy, I. Green, T. Walsh, D. Basin

(U1X + U2Y ")� (V1X + V2Y ")) (U1 � V1X) + (U2 � V2Y) "
(11)j UX + V Y "j < E) jU jX + jV jY " < EUX + V Y " < W) U < WX

2

#X ^ V < WY
2

#Y "Q! P1X ^ P2Y ") Q! P1X ^Q! P2Y "
(12)8x: P1X ^ P2Y ") 8x:P1X ^ 8x:P2Y "9�:Ψ(U < � ! P1X ^ P2Y ")) 9�:Ψ(U < � ! P1)X ^ 9�:Ψ(U < � ! P2)Y "
(13)

0 < �! PX ^QY ") 0 < �
2 ! PX ^ 0 < �

2 ! QY "
Table 3. Wave-rules for LIM+

N-ary trees. This paper has described coloured rippling using bin-
ary trees. Binary trees can be generalized to n-ary trees. Since binary
trees have a fixed number of branches, it is relatively easy to define
the tree induction method. N-ary trees are more problematic since it
is not possible to determine in advance the number of branches.

Decomposition of the antecedent into hypotheses. In x3, CNF is
used to convert the antecedent into hypotheses in the non-inductive
method. However, this may give many too small hypotheses. Tech-
niques for decomposing the antecedent into hypotheses is left for
further work (one possibility is to use difference matching, with the
aim of removing the difference between the antecedent and the con-
sequent).

6 CONCLUSIONS

This paper has demonstrated the successful application of rippling
to data structures with multiple recursive arguments. The presence
of multiple recursive arguments may upset monochromatic rippling
because these arguments can become mixed. The key idea to solve
this problem is to add colour annotation to wave-holes to distinguish
between the different arguments. This idea can also be applied to
challenging non-inductive theorems like limit theorems. Our exper-
iments have given us considerable confidence in the applicability of
this extension to rippling; the theorems about binary trees and limits
were proved in a uniform way which should also be applicable to
many other examples.

Acknowledgements T. Yoshida was supported by the Rotary Schol-
arship Program. Grant number SERC GR/H/23610 supported I. Green
and computing equipment. T. Walsh was supported by a SERC
postdoctoral fellowship and a Human Capital and Mobility fellow-
ship. D. Basin was funded by the German Ministry for Research and
Technology (BMFT) under grant ITS 9102. The responsibility for the
contents of this publication lies with the authors.

REFERENCES

[1] D. Basin and T. Walsh, ‘Difference unification’, in Proceedings of the 13th
IJCAI. International Joint Conference on Artificial Intelligence, (1993).

Also available as Technical Report MPI-I-92-247, Max-Planck-Institute
für Informatik.

[2] W.W. Bledsoe, ‘Challenge problems in elementary calculus’, Journal of
Automated Reasoning, 6(3), 341–359, (1990).

[3] R.S. Boyer and J.S. Moore, A Computational Logic, Academic Press,
1979. ACM monograph series.

[4] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill, ‘Rip-
pling: A heuristic for guiding inductive proofs’, Artificial Intelligence,
62, 185–253, (1993). Also available from Edinburgh as DAI Research
Paper No. 567.

[5] D. Hutter, ‘Guiding inductive proofs’, in 10th International Conference
on Automated Deduction, ed., M.E. Stickel, pp. 147–161. Springer-
Verlag, (1990). Lecture Notes in Artificial Intelligence No. 449.

[6] A. Stevens, ‘A rational reconstruction of Boyer and Moore’s technique
for constructing induction formulas’, in The Proceedings of ECAI-88,
ed., Y. Kodratoff, pp. 565–570. European Conference on Artificial Intel-
ligence, (1988). Also available from Edinburgh as DAI Research Paper
No. 360.

[7] T. Walsh, A. Nunes, and A. Bundy, ‘The use of proof plans to sum series’,
in 11th Conference on Automated Deduction, ed., D. Kapur, pp. 325–339.
Springer Verlag, (1992). Lecture Notes in Computer Science No. 607.
Also available from Edinburgh as DAI Research Paper 563.

[8] Tetsuya Yoshida, Coloured Rippling, Master’s thesis, Dept. of Artificial
Intelligence, Edinburgh, 1993.

Automated reasoning 89 T. Yoshida, A. Bundy, I. Green, T. Walsh, D. Basin

